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Abstract — The similarity between neural and (adaptive) immune networks has been known for
decades, but so far we did not understand the mechanism that allows the immune system, unlike
associative neural networks, to recall and execute a large number of memorized defense strategies
in parallel. The explanation turns out to lie in the network topology. Neurons interact typi-
cally with a large number of other neurons, whereas interactions among lymphocytes in immune
networks are very specific, and described by graphs with finite connectivity. In this paper we
use replica techniques to solve a statistical mechanical immune network model with “coordinator
branches” (T-cells) and “effector branches” (B-cells), and show how the finite connectivity en-
ables the coordinators to manage an extensive number of effectors simultaneously, even above the
percolation threshold (where clonal cross-talk is not negligible). A consequence of its underlying
topological sparsity is that the adaptive immune system exhibits only weak ergodicity breaking,
so that also spontaneous switch-like effects as bi-stabilities are present: the latter may play a

significant role in the maintenance of immune homeostasis.

Copyright © EPLA, 2017

Beyond the so-far-classical approaches by Cohen,
de Boer, May, Nowak and Perelson (see, e.g., [1-5]) that
paved the main route for mathematical modelling in im-
munology, and after a pioneering early paper by Parisi [6]
followed by about two decades of dormancy, there is now
increasing interest in statistical mechanical approaches
to model the immune system [7-16]. This interest is
stimulated in part by the potential of new quantitative
methods for the study of systems with complex network
topologies [17-21]. In this paper we show how statistical
mechanics can resolve a central problem in theoretical im-
munology: understanding the parallel processing ability
of the subclass of lymphocytes that are dedicated to the
coordination of the adaptive immune response, i.e., helper
and regulator T-cells.

T- and B-lymphocytes are divided into clones. Cells
of the same B-clone detect and attack the same anti-
gens, and are selected for activation when their allocated

antigens invade the host. Conditional on authorization by
T-helpers (via eliciting cytokines), the selected B-cells un-
dergo clonal expansion: they multiply, and start releasing
high quantities of soluble antibodies to inhibit the enemy.
After the antigen has been deleted, B-cells are no longer
triggered, thus —instructed by T-regulators (via suppres-
sive cytokines)— stop producing antibodies and undergo
apoptosis. In this way the clones reduce their sizes, and or-
der is restored. We stress that two signals are required for
B-cell clones to expand. The first arises from antigen bind-
ing; the second is a “consensus” signal, a cytokine secreted
by T-helpers. This AND-gate-like mechanism [22,23] pre-
vents abnormal reactions, such as autoimmunity [7,24].
The core of the immune adaptive response thus consists
of an effector branch (the B-clones!) and a coordination

IThe effector branch includes also, e.g., killer T-cells [24], which
will not be considered here for simplicity. See, e.g., [7].
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Fig. 1: (Colour online) Examples of connected components in
the bipartite interaction graph B of the model (2) with inter-
acting B- and T-cells (upper panels), and the corresponding
connected components in the equivalent graph G of the effec-
tive system (4) with T-cells only (lower panels). Dashed green
links mark positive interactions; solid red links mark negative
ones.

branch (the helper and regulator T-clones), which interact
through cytokines that convey either eliciting or suppres-
sive signals. This can be modeled as a collection of in-
teracting variables on a bipartite network, endowed with
specific “spin-glass couplings” [7,8] (see figs. 1(a), (b)).

The immune system is able to learn (e.g., how to fight
new antigens), memorize (e.g., previously seen antigens)
and “think” (e.g., select the best strategy to deal with
pathogens), all of which it has in common with neural
networks. However, the architectures of neural and im-
mune networks are very different. Neurons tend to have a
huge number of connections with others [25] (for instance,
cortical modules in mammals are known to share the hier-
archical organization of densely connected clusters [26,27],
far above the giant component appearance), thus overper-
colated network models (mathematically convenient) are
more tolerable in the neural scenario. In contrast, the in-
teractions among lymphocytes (via chemical messengers,
i.e., cytokines) are very specific and short ranged: the
underlying topology displays finite connectivity. This dif-
ference plays a crucial operational role [28-30]. Neural
network models perform high-resolution serial processing,
which is achieved by many spins (neurons) interacting
extensively. We will show that the immune system’s strik-
ing ability to cope with many antigens simultaneously, in-
stead, can be understood as a direct consequence of having
many spins (lymphocytes) that interact in an intelligent
sparse manner.

Let us consider an immune repertoire of Np different
B-clones, labeled by u € {1,...,Np}. The size of clone
i is b, € R. In the absence of interactions with anti-
gens and T-cells (i.e., at rest), we take clonal sizes to
be Gaussian distributed; this is supported both by ex-
periments and theoretical arguments [7]. Without loss of
generality we may take zero means and unit widths, i.e.,
P(b,) ~ N(0,1). A value b, > 0 then indicates that
clone p has expanded (relatively to the typical clonal size),
while b, < 0 implies inhibition. As in standard reaction
kinetics (where chemical potentials scale linearly with the
fields, i.e., logarithmically with the concentrations, when

framed in statistical mechanical terms [31]), the relation
between the relative concentration of B-cells and their
clonal sizes is logarithmical (apart a constant factor that
sets the proper scale, i.e., at rest the average clone size is
of order O(103) [24]), see [32] for details. Similarly, we con-
sider Ny T-clones, labeled by i € {1,..., Nr}. The state
of T-clone i is denoted by o;. For simplicity, T-clones
are assumed to have just two possible states: secreting
cytokines (o; = 41) or quiescent (o; = —1), see [7] for
details. The cytokine &!" secreted by helper ¢ and detected
by clone p is described by a discrete variable, carrying
either an excitatory (¢! = +1) or inhibitory (&' = —1)
instruction; the value, ¢! = 0 is used to indicate lack of
signalling among clones 7 and u. The pattern of cytokines,
which describes the interactions between T- and B-clones,
represents a bipartite graph, denoted as B. Its Ny Np en-
tries {¢!'} are quenched?, and taken to be independently
distributed according to

L c c
P = g Geren )+ (152 ) dra ()

with ¢ > 0. As stated, we focus on the biologically rele-
vant regime [24]: finite connectivity, i.e., ¢ = O(NY), and
high storage, i.e., Ng = aNp with a > 0 fixed, while
N, Ny — oo. Here the number of B- and T-clones are
comparable and the interactions between cells do not scale
with the system size, mirroring chemical specificity; fur-
ther, as the amount of different clones is of order O(10?),
we assume that a theory developed in the thermodynamic
limit (as the one we are presenting here) is somehow
reasonable.

P(¢") implicitly accounts for bond dilution in the
graph B. In particular, when the link probability ¢/Np
exceeds the percolation threshold 1/v/NpNp, i.e., for
ac® > 1, the graph B will have a giant component
(see fig. 2).

To highlight the computational capabilities of such a
system, as in the route paved in neural networks [25,26],
in these first steps we restrict ourselves to an equilib-
rium analysis. Here the probability of a configuration
(b, o) is captured by the relative Gibbs weight P(b, o)
exp(—fH(b, o|€)): we introduce an effective Hamiltonian
H(b,o|¢) —that is not meant in terms of the energy
of the system as in the classical framework of statis-
tical mechanics— at an inverse noise level § = 1/T
(where T, that in physics plays the role of the tem-
perature, is the proxy for the —standard/white— noise
strength). In these regards, the usage of the Gibbs mea-~
sure has to be understood under the maximum entropy
principle perspective [33,34] (this is standard in neural
networks [35], and it has been recently applied also in
theoretical immunology [15]).

2Cytokines are split into several families (e.g., interferons, inter-
leukins) and here they are assumed to be quenched because they do
not evolve over time [24]; however, a more refined model should take
into account a range of values broader than +1 in order to capture
their different strength.
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Fig. 2: (Colour online) Examples of graphs G obtained for dif-
ferent values of ¢, with Ny = 5000 and o = 0.1. Recalling
the critical threshold ac® = 1, here we compare graphs with
ac® < 1 (below percolation, left panel) and ac? = 1 (perco-
lation threshold, right panel). Isolated nodes are not shown;
their number is 4058 and 3694, respectively. As expected, loops
between cliques start to occur at the percolation threshold.

The effective Hamiltonian for the combined T- and
B-cell system [9,36], interacting on the graph B, reads as

1 Nr Np 1 Ng
» _ . - 2
H(b, ol¢) = ﬁ;;&‘mbw 5 ﬁ;m. 2)

In the language of disordered systems, this is a hyper-
diluted bipartite spin-glass, while in the jargon of machine
learning this is a Boltzmann machine with a Gaussian reg-
ularizer. Crucially, in the partition function Z, en route
to the free energy and the system’s thermodynamics, we
can integrate out b, [9,36], viz.

7 Z/db VIR 3 omBHE) ()
o o

where H(o|¢) now includes T-T interactions only:

NT NB NB

1 1
H(UK):_Q? Z Zfiﬂffffﬂjz—?c ZMi(U) (4)
ij=1p=1 p=1
Here M,(o) = >,&"0; is the non-normalized overlap

between the T-cell state o and the vector (&f,...,¢&K).
The B-T system on the bipartite graph B has thereby
been mapped to an equivalent effective T-T system on
a monopartite weighted graph G, in which the coupling
between node pairs (i,j) has the Hebbian form [24,25]
Jij = Z,in §'E (see figs. 1(c), (d)). Tt follows that
T-clones can retrieve stored cytokine signalling patterns.
To understand the immunological meaning of pattern re-
trieval, we focus on the B-clone p and consider the case
where each T-clone i is “aligned” with the related cytokine
&!" (if non-zero). Those i that inhibit clone p (i.e., secrete
¢l = —1) will be quiescent (o; = —1), and those ¢ that
excite p (i.e., secrete &' = +1) will be active (o; = +1).
This state gives the maximum of M), (o), i.e., of the over-
all signal received by the B-clone pu, see eq. (2): the ran-
dom environment becomes a “staggered magnetic field”
that forces the expansion of clone p, so the arrangement
of T-cells leading to the retrieval of pattern p corresponds
to maximal clone-specific excitatory signalling upon the

B-clone p. If &' € {—1,1} for all (i,u), so the bipar-
tite network is fully connected, retrieval will operate as
in the Hopfield model [37]; the system could expand only
one B-clone at a time and this would be a disaster for
immuno-surveillance. If the immune system is to manage
an extensive number of expanded B-clones simultaneously,
it will require extreme dilution.

Let us now consider a topological perspective. We note
that in the wunder-percolated regime the graph B is a
forest, where the typical components are (combinations
of) stars centered on a B-node (because experimentally
Nr > Np [24]); see fig. 1(a). Such trees are mapped into
complete graphs or combinations of complete graphs in G
(fig. 1(c)). Therefore, when ac? < 1 the typical compo-
nents in G are of finite size (see fig. 2) and may form cliques
whose occurrence frequency decays exponentially with
their size. In this regime, two T-nodes 7,5 have at most
one common neighboring B-node y, so the spins o; and o;
can propagate non-conflicting signals to u. We thus expect
this regime to be compatible with parallel retrieval. Paral-
lel retrieval can be jeopardized by the presence of loops in
B, which create alternative feedback routes between spins;
see fig. 1(b). The probability that a loop occurs in B scales
as (ac?)? [30], so loops should appear near the percolation
threshold. In the graph G, such a loop implies that two
cliques can share not only nodes but also links, and that
two T-nodes can have a coupling |J;;| > 2 (see fig. 1(d)
and fig. 2). As a result, the simultaneous retrieval of all
patterns within the same component is no longer ensured.

Hyper-dilution in B is apparently crucial for extensive
multiple clonal expansions. It ensures that patterns to be
retrieved in G have many blank entries and that, unlike
neural networks, “pure states” are no longer low-energy
configurations. Retrieving a pattern (£}, .., &k) does not
involve all spins o;, and those corresponding to null en-
tries can be used to recall other patterns. This is ener-
getically favorable since the energy (4) is quadratic in
the magnetizations M,, (o). However, to quantify retrieval
within this new scenario we need alternative (and more re-
fined) order parameters beyond standard Mattis magneti-
zations. The distribution P(M) = N5! Zi\rjl S, (o) OF
Mattis magnetizations would work perfectly to the case,
but it contains entangled information, from the thermal
magnetization fluctuations within a single pattern, and
from fluctuations over different patterns. Upon denot-
ing with P.(k) the prior that a pattern has k non-zero
entries, we can disentangle the different contributions by
focusing on P(M]|k), the conditional magnetization dis-
tribution for patterns with k& non-zero entries, defined
via P(M) = Z,iv:Tl P.(k)P(M|k). We can easily calculate
P.(k), because it depends only on the structure of B. Since
we have Np independent entries, each non-zero with prob-
ability ¢/Nr, in the thermodynamic limit the variable k is
Poissonian distributed:

P(M)=e*)_
k=0

Ck
P(M]k). (5)

o
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With this observable we can in fact solve the present
model analytically, and calculate the free energy per spin
using the finite connectivity replica method, within the
replica-symmetric approximation (RS). Full details of this
(somewhat lengthy) calculation have been published else-
where [30,36]. The result leads to an explicit expression
for P(M]|k) in terms of an effective field distribution W (h),
which is to be solved in a self-consistent way, that is

efack ac)”
P(M|k) = Z#/dh

r>0
k Ny (7lh
Moo ¥ {piEl o
e—Cck e—ack ac)”
W) =2 2 7’!( )/dh
k>0 r>0
- 1 Nw(rlh)
.(EW(hS)ll.;—lé[ g5l DVVZ(Tlh)Df (7)

with the short-hand

(=5 3 1)

T==+1
and where
NM(T|h) - <6M7Zl<k7'ze%(zl§k Tl)2+ﬁz.e§rhs7'ls>
- T
Dy (7|h) = <e£(zlgw)2+azsghms>
NW(TVL) = <e%(zlsk Tl)2+ﬁTT i<k TL+5Zs§rhsﬂ?>

)
T

Dw (1|h) = <e£(zl£k T* 45 e ”+5Zs§rh~<”s>

with the short-hand

(f)-=27% > f(n,...

Tl...Tk:il

7Tk)-

From P(M]|k) we can deduce to what extent the network
can perform extensive parallel retrieval, since the “pattern
size” k determines the associated overlap range via —k <
M <k.

One observes that W(h) = §(h) is a solution of (7) at
any noise level. If we inspect bifurcations of alternative
solutions with non-zero moments m, = [dh h"W(h) (in
particular with m; = 0 but my # 0, because W(h) =
W (—h)), we find a second-order transition along the crit-
ical surface in the (o, 8, ¢)-space defined by

2
¥ [ [Dz tanh © cosh" ™' ©
aCQZe_CC— f z tan c;)il _1 (8)
= k! JDz cosh™ ©

where © = z\/B/c + B/c and Dz = (2r)"Y/2¢=*"/2dz.
This expression is confirmed by the results of solving
egs. (6) and (7) via the population dynamics method [38],

2.5
c=1
parallel processing of
[ extensively many clones
15¢
&~
1F
05r clonal 1
cross-talk
0 . . . .
0 0.5 1 15 2 2.5 3
2

Fig. 3: (Colour online) Transition lines (8) for ¢ = 1,2,3,4,
in the (a, T)-plane. In the parallel processing phase the effec-
tive T-T network can successfully control an extensive number
of B-clones simultaneously. In the clonal cross-talk phase (at
low temperatures above the precolation point) the connectivity
causes interference between clone-specific strategies. Circles:
transition calculated via numerical solution of (8) for ¢ = 1.

® a=0.1 c=3 0.5
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~
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Fig. 4: (Colour online) Top panels: effect on P(M]|k) of moving
into the cross-talk regime by increasing a (left: ¢ = 3 and
T =5/3; right: ¢ =1 and T' = 5/4). Bottom panels: shapes
of P(M|k) and P(M) for ac® = 1/2, in the parallel processing
regime. All values are calculated from the solution of (6), (7),
for k = 6.

see figs. 3 and 4. The left-hand side of (8) obeys LHS <
ac?, limg_o LHS = 0 and limg_.oo LHS = ac®. Hence a
transition at finite noise level T. = 51 (a, ¢) > 0 to a new
state with W (h) # 6(h) exists as soon as ac? > 1. The
critical noise level goes to zero when ac? = 1, i.e., at the
percolation threshold. The transition line (8) is shown in
the (o, T)-plane in fig. 3. In the under-percolated regime,
i.e., for ac? < 1, there is no possibility of a phase transi-
tion. Here the only solution of (7) is W(h) = 6(h), and (6)
reduces to an expression corresponding to a Boltzmann
distribution for a size-k Curie-Weiss ferromagnet:

2
PO 2 ()

-

Hence for ac® < 1 the cross-talk between different pat-

terns vanishes. Each pattern effectively links to its own
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Fig. 5: (Colour online) Upper panel: schematic representation of bi-stability induced by weak ergodicity breaking for a connected
component of size k = 3 in the bipartite interaction graph B (namely for a connected component of size k = 2 in the monopartite
interaction graph G). In this example the component constitutes a flip flop [22,23], where two coordinator clones (71 and T5)
handle the expansion of an effector clone (B), by sending inhibitory and excitatory signals, respectively. Each clone is made of
50 cells. This system exhibits two free-energy minima corresponding to 7> and B both active (while T} is quiescent) or to T
and B both quiescent (while T3 is active). The hopping rate between these states is 7 o< exp(Skdf), where df is the relative
change in its intensive free energy. The time series for the magnetizations of the clones 77 and 7> are shown in the bottom: note
that, in the present context, the time does not represent a physical time, rather, it solely counts the number of Monte Carlo
steps. This component, upon marginalization over the effectors, is equivalent to a dimer in G where the two coordinators must
be anti-parallel, and this constitutes a logical clause imposing that when one is firing the other is quiescent (and vice versa).

dedicated set of spins, and the system behaves as a set
of Np disjunct networks, each with a single stored pat-
tern, and each acting as a finite ferromagnet (after the
gauge transformation o; — &/0;). In the infinite noise
limit B — 0 we find the trivial P(M|k) = (0ar,52,_, )+
i.e., all spins take random values. In the zero noise
limit 8 — oo we obtain P(M|k) = $(6amk + Oar,—k),
i.e., perfect retrieval. Overall P(M|k) goes from a sin-
gle peak at M = 0 for high noise levels, towards two
symmetric peaks, at low noise levels; P(M) always has
a maximum at M = 0 (see fig. 4, bottom panels). Be-
low the critical line in fig. 3 the relevant solution of (7)
has W(h) # 6(h). Now the effective Boltzmann factor
in (6) acquires a further term 3> _ he7_, which ac-
counts for the fact that the Np subsystems are no longer
disconnected, leading to cross-talk interference via effec-
tive random fields {h,}, which reduce the system’s par-
allel processing ability (see fig. 4, top panels). All our
results are supported by numerical simulations [30]. Note
further that, as the percolation threshold is given by
ac? = 1, assuming ¢ ~ O(1) (as experimentally suggested
by the chemical specificity of cell’s dialogues), the criti-
cal ratio for effectors vs. coordinators a. = [B]/[T] ~ 1,
again in plain agreement with the leukocytary formula
(i.e., the immune system works properly when T-cells
are —of the same order but— more abundant than
B-cells [24]).

Finally, it is important to stress that, since each
subsystem (i.e., each clique as those sketched in fig. 1)
is of finite size k, the system will exhibit only weak
ergodicity breaking [39], that is, free-energy barriers
between minima related to Hamiltonian (4) do not
diverge in the thermodynamic limit N — oo (because,
due to finite connectivity, they are proportional to k& and
not to Np). This implies that the system may eventually
jump spontaneously from one minimum to another —in
the free-energy landscape— corresponding to the two
gauge symmetric magnetizations M = £k (see fig. 5).
Using 0 f to label the (intensive) free-energy barrier, the
typical time-scale for these stochastic transitions reads as
7 ~ eP#f (which tends to infinity only at the pathological
zero noise level f — o), and grows exponentially with
the size k of the subsystem (note that here the time is just
meant as the number of Monte Carlo steps). These bi-
stabilities are due to intrinsic small system’s fluctuations
and are object of intense research at present [32,40-43].
These may in fact have deep implications in homeostasis:
beyond standard apoptotic pathways (e.g., via death of
Fas-like receptors [44]), also a persistent lack of signalling
could prompt cellular depletion or functional reduction
(i.e., cells that are not triggered within a given time-scale
may undergo energy [45] or apoptosis [24] pathways) hence
switching between positive and negative instructions to
clones may shape opportunely their relative sizes.

28003-p5
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In conclusion, we have shown how new insights and
techniques from graph theory and statistical mechanics
of finitely connected spin systems allow us to deepen our
understanding of important aspects of the adaptive im-
mune system, namely its remarkable and crucial ability to
manage an extensive number of clones in parallel, and its
possible relation to homeostatic regulation.
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