
About the ergodic regime in the analogical Hopfield neural networks:
Moments of the partition function
Adriano Barra and Francesco Guerra 
 
Citation: J. Math. Phys. 49, 125217 (2008); doi: 10.1063/1.3039083 
View online: http://dx.doi.org/10.1063/1.3039083 
View Table of Contents: http://jmp.aip.org/resource/1/JMAPAQ/v49/i12 
Published by the American Institute of Physics. 
 
Related Articles
Uncertainty quantification for Markov chain models 
Chaos 22, 043102 (2012) 
Robustness of random graphs based on graph spectra 
Chaos 22, 043101 (2012) 
Tsallis entropies and matrix trace inequalities in quantum statistical mechanics 
J. Math. Phys. 53, 103303 (2012) 
Role of phonon anharmonicity in time-domain thermoreflectance measurements 
Appl. Phys. Lett. 101, 083108 (2012) 
A derivation of the master equation from path entropy maximization 
JCP: BioChem. Phys. 6, 08B615 (2012) 
 
Additional information on J. Math. Phys.
Journal Homepage: http://jmp.aip.org/ 
Journal Information: http://jmp.aip.org/about/about_the_journal 
Top downloads: http://jmp.aip.org/features/most_downloaded 
Information for Authors: http://jmp.aip.org/authors 

Downloaded 08 Oct 2012 to 141.108.19.30. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions

http://jmp.aip.org/?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L23/1570277243/x01/AIP/MapleSoft_JMPCovAd_1640x440banner_05_30_2012/Physics_advert_May2012.jpg/7744715775302b784f4d774142526b39?x
http://jmp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Adriano Barra&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jmp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Francesco Guerra&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jmp.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3039083?ver=pdfcov
http://jmp.aip.org/resource/1/JMAPAQ/v49/i12?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4757645?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4754875?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4753981?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4746275?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4743955?ver=pdfcov
http://jmp.aip.org/?ver=pdfcov
http://jmp.aip.org/about/about_the_journal?ver=pdfcov
http://jmp.aip.org/features/most_downloaded?ver=pdfcov
http://jmp.aip.org/authors?ver=pdfcov


About the ergodic regime in the analogical Hopfield neural
networks: Moments of the partition function

Adriano Barra1,2,a� and Francesco Guerra1,3,b�

1Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185
Roma, Italy
2Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato 5,
40126 Bologna, Italy
3INFN, Sezione Roma 1, Piazzale Aldo Moro 2, 00185 Roma, Italy

�Received 25 June 2008; accepted 10 November 2008; published online 24 December 2008�

In this paper we introduce and exploit the real replica approach for a minimal
generalization of the Hopfield model by assuming the learned patterns to be dis-
tributed according to a standard unit Gaussian. We consider the high storage case,
when the number of patterns linearly diverges with the number of neurons. We
study the infinite volume behavior of the normalized momenta of the partition
function. We find a region in the parameter space where the free energy density in
the infinite volume limit self-averages around its annealed approximation, as well
as the entropy and the internal energy density. Moreover, we evaluate the correc-
tions to their extensive counterparts with respect to their annealed expressions. The
fluctuations of properly introduced overlaps, which act as order parameters, are also
discussed. © 2008 American Institute of Physics. �DOI: 10.1063/1.3039083�

I. INTRODUCTION

In the past 20 years, from the early work by Hopfield28 and the nowadays historical theory of
Amit, Gutfreund, and Sompolinsky �AGS�2–4 to the modern theory for learning,7,15 the neural
networks, thought of as spin glasses with a Hebb-like “synaptic matrix,”25 became more and more
important in several different contexts, such as artificial intelligence,26 cognitive psychology,27 and
problem solving.8,17 Despite their fundamental role and due to their very difficult mathematical
control, very little is rigorously known about these networks. Along the years several contributions
appeared �e.g., Refs. 1, 9–12, and 32–35�, often motivated by an increasing understanding of spin
glasses �e.g., Refs. 19–21, 31, and 36�, and the analysis at low level of stored memories has been
achieved.

However, in the high level of stored memories, fundamental inquiries are still rather incom-
plete. Furthermore, general problems such as the existence of a well defined thermodynamic limit
are unsolved, in contrast with the spin glass case.22,24

In this paper, we introduce some techniques �essentially in the real replica framework� devel-
oped for the spin glass theory �see, e.g., Refs. 6, 14, 18, and 23� in order to give a description of
the Hopfield model in the high temperature region with high level of stored memories �i.e.,
patterns� without using replica trick.30 We take the freedom of allowing the learned patterns to take
all real values, their probability distribution being a standard Gaussian N�0,1�, and we refer to
this minimal generalization as the analogical Hopfield model to stress that the memories are no
longer discrete as in standard literature.

Within this scenario, we exploit the moment method in order to prove bounds on the critical
line for the ergodic phase and give the explicit expression for all the thermodynamical quantities
in the infinite volume limit, in complete agreement with the AGS theory. Furthermore we show in
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a simple way self-averaging of free and internal energies and entropy per site and calculate their
extensive fluctuations around the annealed expressions, in analogy with what was found by Ai-
zenman et al.37 for the Sherrington–Kirkpatrick model in the ergodic region.

We investigate also about the overlap fluctuations in the ergodic region. The paper is orga-
nized as follows. In Sec. II we define the analogical Hopfield model, and show that it is equivalent
to a bipartite spin glass, where one party is described by Ising spins and the other by Gaussian
spins. We introduce also the main thermodynamic quantities and their annealed approximation. In
Sec. III we introduce overlaps for replicas of the Ising spins and the Gaussian spins and show how
they enter in the expression of thermodynamic quantities, for example, the internal energy. In Sec.
IV we state our main results about the validity of the annealed approximation and establish the
fluctuations of the extensive thermodynamic variables and the overlaps. In Sec. V we study the
momenta of the normalized partition function in the infinite volume limit and prove our results
about the annealed approximation. In Sec. VI we prove the log normality of the limiting distri-
bution for the partition function and prove the rest of our results. Finally, Sec. VII is devoted to
some conclusion and outlook for future developments.

II. DEFINITION OF THE MODEL

We introduce a large network of N two-state neurons �1, .. ,N�� i→�i= �1, which are
thought of as quiescent �sleeping� when their value is −1 or spiking �emitting a current signal to
other neurons� when their value is +1. They interact throughout a synaptic matrix Jij defined
according to the Hebb rule for learning,

Jij = �
�=1

p

�i
�� j

�. �1�

Each random variable ��= ��1
� , .. ,�N

�� represents a learned pattern and tries to bring the overall
current in the network �or in some part� stable with respect to itself �when this happens, we say we
have a retrieval state, see, e.g., Ref. 2�. The analysis of the network assumes that the system has
already stored p patterns �no learning is investigated here�, and we will be interested in the case in
which this number increases linearly with respect to the system size �high storage level�, so that
p /N→� as N→�, where ��0 is a parameter of the theory denoting the storage level.

In standard literature these patterns are usually chosen at random independently with values
�1 taken with equal probability of 1/2. Here, we chose them as taking real values with a unit
Gaussian probability distribution, i.e.,

d���i
�� =

1
�2�

e−��i
��2/2. �2�

Of course, avoiding pathological case, in the high storage level and in the high temperature region,
the results should show robustness with respect to the particular choice of the probability distri-
bution and we should recover the standard AGS theory. The use of a Gaussian distribution has
some technical advantages, as it allows to easily borrow powerful techniques from the spin glass
case. The physical interpretation is very simple. While the patterns with �1 values describe
“images” with white or black pixels, respectively, the patterns with continuous values describe
“gray” pixels with a continuously variable luminosity from −� �completely black� to +� �com-
pletely white�.

The Hamiltonian of the model involves interactions between any couple of sites according to
the definition
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HN��;�� = −
1

N �
�=1

p

�
i	j

N

�i
�� j

��i� j . �3�

By splitting the summations �i	j
N = 1

2�ij
N− 1

2�i
N
ij, we can write the partition function in the follow-

ing form:

ZN,p��;�� = �
�

exp	 �

2N
�
�=1

p

�
ij

N

�i
�� j

��i� j −
�

2N
�
�=1

p

�
i

N

��i
��2
 = Z̃N,p��;��e�−�/2N���=1

p �i=1
N ��i

��2
,

�4�

where ��0 is the inverse temperature and denotes here the level of noise in the network. We have
defined

Z̃N,p��;�� = �
�

exp	 �

2N
�
�=1

p

�
ij

N

�i
�� j

��i� j
 . �5�

Notice that the last term at the right hand side of Eq. �4� does not depend on the particular state of
the network.

As a consequence, the control of the last term can be easily obtained. In fact, let us define the

random variable f̂N so that

f̂N =
1

N
�
�

p

�
i

N

��i
��2. �6�

Then we have

ln ZN,p��;�� = ln Z̃N,p��;�� −
�

2
f̂N. �7�

Since E f̂N= p we have immediately limN→��1 /N�E f̂N=�. On the other hand, f̂N is a sum of
independent random variables and therefore, by the strong law of large numbers, we have also

limN→��1 /N� f̂N=�, � almost surely.

Furthermore, by the central limit theorem, we have, in distribution, limN→�� f̂N−E f̂N�=�2��,
� being a standard Gaussian N�0,1�. In fact,

E� f̂N
2 � =

1

N2�
�

p

�
i

N

�


p

�
j

N

E���i
��2�� j

�2� = p2 + 2
p

N
, �8�

so that E� f̂N
2 �−E� f̂N�2=2p /N, which in the thermodynamic limit gives the result.

Consequently we focus just on Z̃�� ;��. Let us apply the Hubbard–Stratonovich lemma16 to
linearize with respect to the bilinear quenched memories carried by the �i

�� j
�. If we define the

“Mattis magnetization”2 m� as

m� =
1

N
�

i

N

�i
��i, �9�

we can write

125217-3 Hopfield neural networks J. Math. Phys. 49, 125217 �2008�
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Z̃N,p��;�� = �
�

exp	�N

2 �
�=1

p

m�
2
 = �

�
� 	�

�=1

p
dz� exp�− z�

2 /2�
�2�


exp	��N�
�=1

p

m�z�
 .

�10�

Using Eq. �10�, the expression for the partition function �4� becomes

ZN,p��;�� = �
�
� 	�

�=1

p

d��z��
exp	��

N
�
�=1

p

�
i=1

N

�i
��iz�
exp	−

�

2
f̂N
 , �11�

with d��z�� the standard Gaussian measure for all the z�.
For a generic function F of the neurons, we define the Boltzmann state ���F� at a given level

of noise � as the average,

���F� = ��F� = �ZN,p��;���−1�
�

F���e−�HN��;��, �12�

and often we will drop the subscript � for the sake of simplicity. Notice that the Boltzmann state

does not involve the function f̂N, which factors out. The s-replicated Boltzmann state is defined as
the product state �=�1��2� ¯ ��s, in which all the single Boltzmann states are at the same
noise level �−1 and share an identical sample of quenched memories �. For the sake of clearness,
given a function F of the neurons of the s replicas and using the symbol a� �1, .. ,s� to label
replicas, such an average can be written as

��F��1, . . . ,�s�� =
1

ZN,p
s �

�1
�
�2

¯�
�s

F��1, . . . ,�s�exp	− ��
a=1

s

HN��a,��
 . �13�

The average over the quenched memories will be denoted by E and for a generic function of these
memories F��� can be written as

E�F���� =� 	�
�=1

p

�
i=1

N
d�i

�e−��i
��2/2

�2�

F��� =� F���d���� . �14�

Of course E��i
��=0 and E���i

��2�=1. We use the symbol ·� to mean ·�=E��·�.
Recall that in the thermodynamic limit it is assumed that

lim
N→�

p

N
= � ,

� being a given real number, which acts as free parameter of the theory. The main quantity of
interest is the intensive pressure defined as

AN,p��,�� = − �fN,p��,�� =
1

N
ln ZN,p��;�� , �15�

while the quenched intensive pressure is defined as

AN,p
� ��� = − �fN,p

� ��� =
1

N
E ln ZN,p��;�� , �16�

and the annealed intensive pressure is defined as
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ĀN,p��� = − � f̄N,p��� =
1

N
ln EZN,p��;�� . �17�

According to thermodynamics, here fN,p�� ,��=uN,p�� ,��−�−1sN,p�� ,�� is the free energy density,
uN,p�� ,�� is the internal energy density, and sN,p�� ,�� is the intensive entropy �the star and the bar
denote the quenched and the annealed evaluations as well�. Obviously, by the Jensen inequality,

we have AN,p
� ���� ĀN,p���.

III. THE ROLE OF THE OVERLAPS AND THE INTERNAL ENERGY

According to the bipartite nature of the Hopfield model expressed by Eq. �11�, we introduce
two other order parameters beyond the Mattis magnetization �Eq. �9��: the first is the overlap
between the replicated neurons, defined as

qab =
1

N
�
i=1

N

�i
a�i

b � �− 1, + 1� , �18�

and the second the overlap between the replicated Gaussian variables z, defined as

pab =
1

p
�
�=1

p

z�
a z�

b � �− �, + �� . �19�

These overlaps play a considerable role in the theory as they can express thermodynamical quan-
tities. As an example let us work out the quenched internal energy of the model, uN,p

� ���
=N−1HN�� ;���.

Proposition 1: For ��1, the quenched internal energy uN
� �� ,�� of the analogical Hopfield

model can be expressed as

uN,p
� ��� =

HN��;���
N

= −
�

2
	 �p/N� − ��

p
m�

1 q12m�
2 �

1 − �

 . �20�

Proof: The proof is based on direct calculations. We use Gaussian integration and integration
by parts over the Gaussian memories. Let us begin with

N−1E��HN��;��� = −
1

2�
�

p

E���m�
2 �� +

1

2N2�
�

p

�
i

N

E��i
�2� = −

1

2�
�

p

E���m�
2 �� +

p

2N
. �21�

Now we write explicitly a Mattis magnetization into the Boltzmann average of �21� so to use
integration by parts over the memories �i

� �i.e., E�F���=E��F����,

−
1

2�
�

p

E���m�
2 �� +

p

2N
= −

1

2N
�
�

p

�
i

N

E��i
����im��� +

p

2N
= −

�

2N
�
�

p

�
i

N

E	����im��2�

− �2��im�� +
1

�N

 +

p

2N
= �

H��;���
N

−
�p

2N
+

�

2 �
�

m�
1 q12m�

2 � .

�22�

�

In particular for �=1 we get exactly for any N the very remarkable expression
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�
�=1

p

m�
1 q12m�

2 � =
p

N
, �23�

as it can be understood by looking at the last line of �22� and choosing �=1. At the end of this
section we write down a short formulary in which we consider the streaming of both the partition
function and the Boltzmann state with respect to the level of noise � and to a generic stored
pattern �i

�, as these calculations will be useful several times along the paper,

��ZN,p��;�� = �
�
� 	�

�=1

p

d��z��
�
i=1

N

�
�=1

p 	 �i
��iz

�

2��N
−

��i
��2

2N

exp��

i=1

N

�
�=1

p 	��

N
�i

��iz
� − �

��i
��2

2N

�

= �
i=1

N

�
�=1

p 	���i
��iz

��

2��N
−

��i
��2

2N

ZN,p��;�� , �24�

��i
�ZN,p

� ��;�� = �	��

N
���iz

�� −
�

N
�i

�
ZN,p
� ��;�� , �25�

��i
����iz

�� =��

N
����z��2� − �2��iz

��� , �26�

���z��2� = Z−1��;���
�
� 	�

�=1

p

d��z��
 �

�z�	z� exp	�
�=1

p

�
i=1

N 	��

N
�i

��iz
� − �

��i
��2

2N





�27�

=1 +��

N
�
i=1

N

�i
����iz

�� , �28�

where, in �25�, ��R is a generic positive real number.

IV. THE MAIN RESULTS

Now we are ready to state the main results of this paper in the form of the following theorems.
Theorem 1: There is a �2��� defined in the following, such that for �	�2��� we have the

following limits for the intensive free energy, internal energy, and entropy as N→� and p /N
→�:

lim
N→�

�− �fN,p��;��� = lim
N→�

N−1 ln ZN,p��;�� = ln 2 −
�

2
ln�1 − �� −

��

2
,

lim
N→�

�uN,p��;��� = − lim
N→�

N−1�� ln ZN,p��;�� = −
��

2�1 − ��
,

lim
N→�

�sN,p��;��� = lim
N→�

N−1�ln ZN,p��;�� − ��� ln ZN,p��;��� = ln 2 −
�

2
ln�1 − �� −

��

2
−

��2

2�1 − ��
,

� almost surely. The same limits hold for the quenched averages, so that, in particular,

lim
N→�

N−1E ln ZN,p��;�� = ln 2 −
�

2
ln�1 − �� −

��

2
.
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Theorem 2: There is a �4��� defined in the following, such that for �	�4��� we have the
convergence in distribution,

ln Z̃N,p��;�� − ln EZ̃N,p��;�� → C��� + �S��� , �29�

where � is a unit Gaussian in N�0,1� and

C��� = − 1
2 ln�1/�1 − �2�2�� , �30�

S��� = �ln�1/�1 − �2�2���1/2, �31�

with �= �1−��−1.
If we consider the overlaps among s replicas, then there is a �2s��� defined in the following,

such that for �	�2s��� the rescaled overlaps converge in distribution under ·�=E��·� as fol-
lows:

�NQab →
�ab

�1 − �2�2�
, �32�

�pPab →
���

1 − �2

�ab

�1 − �2�2�
+

1

1 − �
�ab, �33�

where �ab and �ab are unit Gaussian in N�0,1� independent for each couple of replicas �a ,b� and
independent from the � appearing in the limit for the fluctuation of ln ZN,p.

We remark that the limitation on the parameter regions is strictly related to our technique in
the proof. There are good reasons to believe that the theorems can be extended to the whole
expected ergodic region ��1+���	1.

In order to prove these results, we need some properties about the annealed momenta of the
partition function, which will be studied in Sec. V.

V. MOMENTA OF THE NORMALIZED PARTITION FUNCTION

Annealing is a regime in which no retrieval is achievable because the same time scale for both
neurons and synapses is implicitly assumed �the synaptic plasticity is thought of as fast as the
neuronal current rearrangement�. Anyway, annealing is the first step to be investigated in order to
have a good control of the statistical mechanics features of the model.

To obtain the annealed intensive pressure, which we call ĀN,p���, we must exchange the
logarithm and the average over the memories in the expression of the quenched free energy �i.e.,
E ln ZN,p�� ;��⇒ ln EZN,p�� ;���. Therefore at first we need to evaluate E�ZN,p�� ;���.

Proposition 2: For 0��	1 we have that

EZ̃N,p��;�� = 2N�1 − ���−p/2�. �34�

Proof:

EZ̃N,p��;�� =� 	�
�=1

p

�
i=1

N

d���i
��
� �

�=1

p

d��z���
�

exp	�
�=1

p

�
i=1

N 	��

N
�i

��iz
�



= �
�
� 	�

�=1

p

d��z��
exp���/2��
�=1

p

z�
2 � = 2N�1 − ��−p/2.

Then, by recalling the definition �5� of Z̃N,p, we can immediately state the following.
Proposition 3: In the thermodynamic limit and for every value 0��	1, the annealed pres-
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sure per site Ā�� ,��=limN→� ĀN,p��� of the analogical Hopfield model is

lim
N→�

1

N
ln E�ZN,p��;��� = Ā��,�� = ln 2 −

�

2
ln�1 − �� −

��

2
. �35�

Remark 1: We stress that the annealed free energy (35) turns out to be the same as in the AGS
theory with digital patterns. Furthermore,

lim
�→�,�→0,���→��

Ā��,�� = ln 2 + ����2/4, �36�

which is the expression for the annealed free energy of the Sherrington–Kirkpatrick model at the
temperature �� .37

This is not surprising as, at given N, in the limit p→�, �→0 with ��p /N→�� we get in
distribution ZN,p�� ;��→ZN

SK��� ;J�, where SK stands for the Sherrington–Kirkpatrick model and J
is the associated noise �standard unit Gaussian Jij for each couple of sites�. At given N, the neural
network with infinite stored patterns becomes a Sherrington–Kirkpatrick mean field spin glass.

Remark 2: If we now turn to the energy density it is easy to show that its “annealed

expression,” defined as ū�� ,��=−��Ā�� ,��, is given by

lim
N→�

ūN,p��� = − lim
N→�

1

N
�� ln EZN,p = −

1

2

��

�1 − ��
, �37�

where, with respect to (20) thought in the infinite volume limit, the order parameters are missing.
Both the expressions �35� and �37� do diverge in the limit of �→1, suggesting a point where

annealing has to break whatever �. To investigate the region of validity of the annealing, which is
defined as the ergodic region, we have to study the momenta of the partition functions and check
if and where they are well defined.

It will be easier to deal with the normalized partition function Z̄N,p�� ;�� defined as

Z̄N,p��;�� �
Z̃N,p��;��

EZ̃N,p��;��
. �38�

As the momenta will turn out to be expressed in terms of overlaps, the following lemma will be
of precious help for our purpose.

Lemma 1: At �=0 , in the thermodynamic limit the two replica overlaps qab, a�b , become
almost surely zero and their rescaled values �Nqab converge in distribution to unit Gaussian �ab

independent for each couple of replicas.
Proof: At �=0 the Boltzmann measure �0 becomes flat on all the configurations, so that all �i

a

are independent and take the values �1 with equal probability of 1/2. By taking into account the
expression of the overlap qab=N−1�i�i

a�i
b, the lemma follows by the strong law of large numbers

and the central limit theorem on sums of independent variables. �

Theorem 3: For s�N and for �	�s���, with �s��� suitably defined in the following, the
following limiting expression for the integer momenta of the normalized partition function holds:

lim
N→�

E�Z̄N,p
s ��;��� = exp	 s�s − 1�

4
	ln	 1

1 − �2�2�



 , �39�

where �=1 / �1−��.
Proof: Let us at first notice that there is a constraint �s����s−1, which becomes effective

starting from s=2. The key point is that E�Z̃N,p
s �� ;��� becomes infinite at fixed N if the constraint

is not satisfied. In fact, let us calculate this momentum by introducing the replicated �i
a, z�

a for
i=1,2 , . . . ,N, �=1,2 , . . . , p, a=1,2 , . . . ,s,
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EZ̃N,p
s ��;�� = E	�

�1

¯ �
�s
� 	�

a=1

s

�
�=1

p

d��z�
a �
exp��

�=1

p

�
i=1

N 	��

N
�i

��
a=1

s

�i
az�

a
�

= �

�1

¯ �
�s
� 	�

a=1

s

�
�=1

p

d��z�
a �
exp	 �

2N
�
�=1

p

�
i=1

N 	�
a=1

s

�i
az�

a
2
 = �
�1

¯ �
�s
� 	�

�=1

p 

�		�

a=1

s

d��z�
a �
exp	 �

2N
�
i=1

N 	�
a,b

s

�i
az�

a �i
bz�

b


 , �40�

where we have performed the Gaussian integration over the memories � and have expressed the
resulting square in the form of the double sum �a,b. The sum over i gives the overlaps qab. We
notice also that we have complete factorization over �. Therefore, we can introduce generic
variables za, a=1,2 , . . . ,s, and define

Bp,s��;Q� =� 	�
a=1

s

d��za�
exp	�

2 �
a,b

s

qabzazb
 , �41�

where Q is the s�s matrix with elements qab, so that

EZ̃N,p
s ��;�� = 2Ns�0�ep ln Bp,s��;Q�� . �42�

Now we can see the reason for the limitation �	1 /s. In fact, let us notice that

0 � �
a,b

s

qabzazb � �
a,b

s

�za��zb� = s2	s−1�
a

�za�
2
� s2s−1�

a

�za�2 = s�
a

�za�2,

where we have introduced the uniform distribution s−1�a on �1,2 , . . . ,s� and exploited the
Schwartz inequality. Therefore, the integral defining Bp,s�� ;Q� in �41� can be uniformly bound by
�1−s��−p/2, which is finite in the region s�	1. On the other hand, it is easily seen that for some
� configurations the integral in �41� is infinite if s��1. The worst case is when all qab=1. Then
we have from �41�

Bp,s =� 	�
a=1

s

d��za�
exp	�

2 �
a,b

s

zazb
 =� 	�
a=1

s

d��za�
exp	�

2 	�a

za
2

=� 	�

a=1

s

d��za�
� d��y�exp	���
a

zay
 =� d��y�exp	 s�

2
y2
 ,

and the integral on the auxiliary variable y is divergent if s��1. From now on we remain in the
region s�	1. Let us go back to the definition �41�. We write �a,bqabzazb=2��ab�qabzazb

+�a�za�2, where �ab� are all couples of different replicas. Then we have

Bp,s��;Q� =� 	�
a=1

s

�d��za�e�1/2���za�2
�
exp	��

�ab�

s

qabzazb

= 	� d��z��e�1/2���z��2
s� 	�

a=1

s

d�̄�za�
exp	��
�ab�

s

qabzazb
 = �1

− ��−s/2� 	�
a=1

s

d�̄�za�
exp	��
�ab�

s

qabzazb
 , �43�

where we have introduced the normalized deformed measure
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d�̄�z� =
e�1/2��z2

d��z�

� e�1/2���z��2
d��z��

.

Finally, if we define a modified B̄p,s�� ;Q� as

B̄p,s��;Q� =� 	�
a=1

s

d�̄�za�
exp	��
�ab�

s

qabzazb
 , �44�

we can write

EZ̃N,p
s ��;�� = �EZ̃N,p��;���s�0�ep ln B̄p,s��;Q�� . �45�

In order to investigate the N→� limit, it is convenient to start from the case where s=2. Then B̄p,2

can be explicitly calculated in the form

B̄p,2 = − 1
2 ln�1 − �2�2q12� . �46�

In fact, in this case we have

B̄p,2 =� d�̄�z1�d�̄�z2�exp��q12z
1z2� ,

where the two Gaussian integrals can be calculated explicitly and lead to �46�. Therefore, we are
led to consider the �� ,�� region where

�0�exp�− 1
2 p ln�1 − �2�2q12

2 ���
stays finite in the N→� limit. Through a simple change in variables �i

1=�i� ,�i
2=�i��i we are led

to the consideration of a mean field ferromagnetic Ising system ��1 , . . . ,�N� with normalized
partition function

�0�exp�− 1
2 p ln�1 − �2�2m2��� , �47�

where now �0=2−N�� and m=N−1�i�i, as usual. Now, we can state and prove the following
theorem.

Theorem 4: Consider the trial function

���,�;M� = −
1

2
� ln�1 − �2�2M2� + ln cosh	�

�2�2M

1 − �2�2M2
 − �M
�2�2M

1 − �2�2M2 ,

depending on the order parameter M, with −1�M �1. Clearly, at M =0 we have ��� ,� ;0�=0.
Define �2��� as the largest value such that, for any �	�2���, we have ��� ,� ;M�	0 for any
positive M. It is easily shown that �2���� �1+�1+��−1. Then for �	�2��� we have

lim
N→�

�0	exp	−
1

2
p ln�1 − �2�2m2�

 = �1 − ��2�2�−1/2. �48�

Notice that �2��� defines the onset of the ferromagnetic phase transition for the model. The proof
of the theorem follows standard methods of statistical mechanics. In order to get a lower bound we
only notice that

− ln�1 − �2�2m2� � �2�2m2,

and therefore
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�0�exp�− 1
2 p ln�1 − �2�2m2��� � �0�exp� 1

2 p�2�2m2�� .

The right hand side converges to �1−��2�2�−1/2 provided ��2�2	1. Notice that this last condi-
tion can be written also as �	1 / �1+���, which is the critical line according to the AGS theory.
For the upper bound, let us introduce the truth functions on the � configuration space, defined by
�1=��m2� m̄2� and �2=��m2� m̄2�, where m̄ is some positive number. Then we have that the
�0�¯� in �47� splits into the sum of two pieces,

�0�¯� = �0�¯�1� + �0�¯�2� .

For �	�2���, the second piece converges to zero as N→�. In fact, let us define for −1�M
�1

��M� = −
p

2N
ln�1 − �2�2M2� , �49�

with its M derivative

���M� =
p

N

�2�2M

1 − �2�2M2 . �50�

Notice that � is convex in M, so that

��m� � ��M� + �m − M����M� . �51�

Now, let us consider M as taking all values of m for which m2� m̄2. There are at most N+1 such
values. For the sake of simplicity, introduce the inequality

1 � �
M

exp�− N���m� − ��M� − �m − M����M��� , �52�

where M is summed over all stated values. The reason of the inequality is clear. In fact, there is
one term equal to 1, when M =m, while all other terms are positive. By exploiting the inequality,
we can write

�0	exp	−
1

2
p ln�1 − �2�2m2�
�2
 � �

M

�0�exp�− N�− ��M� − �m − M����M����2� .

�53�

If now we remove the �2 and perform the average over �0 by taking into account that the
exponent is factorized with respect to the �i, we get

�0	exp	−
1

2
p ln�1 − �2�2m2�
�2
 � �

M

exp	N	��M� + ln cosh	 p

N

�2�2M

1 − �2�2M2
 − M���M�

 .

�54�

Clearly, in the region �	�2��� and for large N, each term in the sum is uniformly bounded by an
exponential of the type exp�−cN� for some constant c. Of course there are at most N+1 terms.
Therefore, as N→�, the right hand side goes to zero, as we were interested to show.

Now we must consider the first term �0�¯�1�. Let us notice that in the region m2� m̄2 by
convexity we have −ln�1−�2�2m2��−ln�1−�2�2m̄2��m2 / m̄2�. By inserting the inequality in the
first term and neglecting the �1, we have in the infinite volume limit
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lim sup
N→�

�0	exp	−
1

2
p ln�1 − �2�2m2�
�1
 � 	1 +

� ln�1 − �2�2m2�
m̄2 
−1/2

. �55�

Since m̄ is arbitrary, we can take m̄→0. Collecting all results, we immediately establish the limit
in �48�. Notice that �2���� �1+���−1; otherwise ��� ,� ;M� would start with a positive derivative
at M =0. This ends the proof of Theorem 3 in the case s=2.

The general case can be handled in a similar way. Now we encounter ferromagnetic models

for the Ising variables �i
a, a=1,2 , . . . ,s, i=1,2 , . . . ,N, with Boltzmannfaktor exp�p ln B̄p,s�. If

�s��� denotes the onset of the associated ferromagnetic transition, then we can immediately prove
that

lim
N→�

�0�ep ln B̄p,s� = exp	 s�s − 1�
4

	ln	 1

1 − �2�2�



 �56�

for ���s���. In fact, as in the proof for the case s=2, we see that in the expression of B̄p,s�� ;Q�
only the first two terms in the expansion of the exponent do matter provided the stated condition
on � holds. These terms are easily calculated as in the case s=2. Then we recall that under �0, for
a�b, the rescaled overlaps �Nqab converge in distribution to independent unit Gaussian �ab. We
see that the term s�s−1� in formula �39� comes essentially from the fact that there are s�s−1� /2
couples �a ,b� for s replicas. Therefore, Theorem 3 is fully established. �

Now we are ready to prove Theorem 1, at least in the region �	�2���.
First of all, let us recall that if uN�0 is a sequence of random variables normalized to

E�uN�=1, then a simple application of the Markov inequality36 and the Borel–Cantelli lemma
gives

lim sup
N→�

1

N
ln uN � 0,

almost surely. Moreover, if E�uN
2 ��cE2�uN�, uniformly in N, for some finite constant c, then

lim
N→�

1

N
ln uN = 0,

almost surely.
If we define

uN =
E�Z̃N,p��;���s

Es�Z̃N,p��;���
,

and take into account our previous results, then we immediately find, � almost surely,

lim sup
N→�

1

N
ln Z̃N,p��;�� � ln 2 −

�

2
ln�1 − �� for any � 	 1, �57�

lim
N→�

1

N
ln Z̃N,p��;�� = ln 2 −

�

2
ln�1 − �� for any � 	 �2��� . �58�

In order to get Theorem 1, in the stated region, it is only necessary to recall Eq. �7� connecting ZN,p

with Z̃N,p and the limiting properties of f̂N. �
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VI. LOG NORMALITY OF THE LIMITING DISTRIBUTION FOR THE PARTITION
FUNCTION

In this section we want to show that the limiting distribution of the normalized partition
function �38�, at least in a given region of the � ,� plane, is log normal. This will immediately give
us the mean and the fluctuations of the thermodynamical quantities in that region.29

Let us remember that if C��� and S��� are given functions and � a standard Gaussian N�0,1�,
a variable ���� has a log-normal distribution if it is possible to write it down as16

���� = exp�C��� + �S���� . �59�

The momenta of ���� are

E��s���� = E�exp�sC��� + sS������ = exp�C���s + 1
2s2S2���� . �60�

So if we choose

C��� = −
1

2
ln	� 1

1 − �2�2�

 , �61�

S2��� = ln	� 1

1 − �2�2�

 , �62�

we see that Z̄N,p�� ;�� and ���� have the same integer momenta in the limit provided we restrict
the values of � according to the order of the momentum s, as expressed in Theorem 3. This seems

to suggest that Z̄N,p�� ;�� is log-normal distributed in the limit. To prove that this is effectively the

case, it will be sufficient to prove that the momenta Z̄N,p�� ;��� do in fact converge to those of �
for all values of � in some interval of the real line.13 In other words, we have to extend the limiting
behavior of Theorem 3, from integer values of s to real values � in some nontrivial interval, at
least in some region of the �� ,�� plane. To solve this task we have to evaluate the limiting

behavior of Z̄N,p
� �� ;�� for � in some interval of the real line.

We get the result by analyzing

�� ln E�Z̄N,p
� � = ���ln E�Z̃N,p

� � − � ln E�Z̃N,p�� =
��E�Z̃N,p

� �

E�Z̃N,p
� �

− �
��E�Z̃N,p�

E�Z̃N,p�
, �63�

which can be written in terms of overlaps via the following helpful proposition.
Proposition 4: For any real �, with ��s, s integer, and �	1 /s, the � derivative of the

annealed real momenta of the partition function can be expressed in terms of overlaps as

��E�Z̄N,p
� �

E�Z̄N,p
� �

=
p�/2

�1 − ��	�� − 1�E	 �Z̄N,p
� �

E�Z̄N,p
� �

��q12p12�
 + 1
 . �64�

Notice that �� ln E�Z̄N,p
� � is convex increasing in �. Therefore, the limitation on the values of �

assures the existence of the relevant averages.
Proof: Using Eq. �24� we can write

��E�Z̃N,p
� � = E��Z̃N,p

�−1��Z̃N,p� = �
�=1

p

�
i=1

N 	 �

2��N
E��i

�ZN,p
� ���iz

���
 . �65�

Furthermore we can write
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E��i
�Z̃N,p

� ���iz
��� = ���

N
E�Z̃N,p

� �2��iz
��� − �

�

N
E��i

�Z̃N,p
� ���iz

��� +��

N
E�Z̃N,p

� �

+
�

N
�
j=1

N

E�Z̃N,p
� � j

����iz
��� −��

N
E�Z̃N,p

� �2��iz
��� , �66�

and, using �25�–�27�,

�
�=1

p

�
i=1

N

E��i
�Z̃N,p

� ���iz
��� =

p��N

�1 − � + ��/N�
��� − 1�E�Z̃N,p

� ��q12p12�� + E�Z̃N,p
� �� . �67�

By substituting �67� into �65� and dividing by E�ZN,p
� � we get the result. �

With the help of �64� we can rewrite �63� as

�� ln E�Z̄N,p
� � =

����� − 1�
2�1 − ��

E	 Z̄N,p
�

E�Z̄N,p
� �

���Nq12
�pp12�
 . �68�

To proceed further we have now to investigate the distribution of the rescaled overlaps because
they do appear into the expression above. Such distribution can be obtained trough the evaluation
of their momenta generating function. We will see that at least in a given region the distribution of

Z̄N,p
� is not coupled with the one of the overlaps. From this observation, by looking at Eq. �69� the

log normality for the normalized partition function is easily achieved. Let us start by proving the
following.

Proposition 5: Consider a generic number of replicas s. For each couple �a ,b� of replicas, let
��ab ,�ab� be real numbers in the momentum generating functional (which we assume to be very
small). Let � be a real number in the interval s���2s. Then, at least for �	�2s���, we have the
limit

lim
N→�

E	 Z̄N,p
�

E�Z̄N,p
� �

�	exp	�
ab

�ab
�Nqab + �

ab

�ab
�ppab


 = exp	1

2�
ab

�ab
2 1

1 − �2�2�

+
1

2�
ab

�ab
2 �2	 ��2�2

1 − �2�2�
+ 1
 + �

ab

����2�ab�ab

1 − �2�2�

 , �69�

where as usual �=1 / �1−�� and �ab denotes the sum over all couples �ab� .
Proof: We give the proof at first for �=s in the region �	�s���. Then we will enlarge the

proof to the interval s���2s in the region �	�2s���. For �=s the left hand side of �69� can be
thought of as

	�ia �
�i

a 
� 	�
�a

d��z�
a �
e���/2���=1

p �abqabz�
a z�

b �e��ab�ab��Nqab�+�ab�ab
�ppab�

= 	�ia �
�i

a 
� 	�
�a

d���z�
a �
exp	�

ab

�ppab�����ab + �ab�
exp	�
ab

�ab�ab
�ps/2

= �0	exp	�
ab

1

2
�2���2�ab

2 + �ab
2 + 2����ab�ab�

exp	�

ab

�ab�ab
�ps/22Ns

= exp	1

2�
ab

1

1 − �2�2�
���2�4�ab

2 + �ab
2 + 2����2�ab�ab� +

�2

2
�ab

2 
E�ZN,p
s � ,

where d�� is the Gaussian with variance �= �1−��−1. Therefore, by taking the limit, we prove the
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proposition �=s. In order to provide the extension to the interval s���2s we must show that
defining

A � exp	1

2�
ab

�ab
2 1

1 − �2�2�
+

1

2�
ab

�ab
2 �2	 ��2�2

1 − �2�2�
+ 1
 + �

ab

����2

1 − �2�2�
�ab�ab


the following holds:

lim
N→�

E	Z̄N,p
� �	exp	�

ab

�ab
�Nqab + �

ab

�ab
�ppab
 − A

 = 0. �70�

The proof of �70� can be obtained in the simplest way by using the Cauchy–Schwartz inequal-
ity �E2�AB��E�A2�E�B2�� choosing �=�+s, with 0���s. In fact, we have

E2	Z̄N,p
� Z̄N,p

s 	�	exp	�
ab

�ab
�Nqab + �

ab

�ab
�ppab

 − A

 � E�Z̄N,p

2� �E	Z̄N,p
2s 	�	exp	�

ab

�ab
�Nqab

+ �
ab

�ab
�ppab

 − A
2
 . �71�

Here the first factor is bounded in the region �	�2s���. In fact, by monotonicity we have

E�Z̄N,p
2� ��E�Z̄N,p

2s �. The second term is the sum of three terms obtained by calculating the square of

���exp��ab�ab
�Nqab+�ab�ab

�ppab��−A�, the simplest being E�Z̄N,p
2s �A2 which is known.

It is easy to check that for the double product we have in the limit

lim
N→�

AE	Z̄N,p
2s �	exp	�

ab

�ab
�Nqab + �

ab

aab
�ppab


 = lim

N→�
A2E�Z̄N,p

2s � .

For the last term we have

lim
N→�

E	Z̄N,p
2s �	exp	�ab

�ab
�Nqab + �

ab

�ab
�ppab + �

ãb̃

�ãb̃
�Nqãb̃ + �

ãb̃

�ãb̃
�ppãb̃


 ,

lim
N→�

= A2E�Z̄N,p
2s � , �72�

where the state � is thought of by 2s replicas, the sum on the couples of variables �ã , b̃� taking
into account the second set s+1, . . . ,2s. The sum of these three terms goes to zero as N→�,
proving the proposition. �

From Proposition 5 we can derive the next corollary, which is a part of Theorem 2.
Corollary 1: For s replicas, at least for �	�2s���, in the thermodynamic limit the limiting

distributions of the rescaled overlaps are

�NQab → �ab, �73�

�pPab →
���

1 − �2�ab +
1

1 − �
�ab, �74�

where �ab�N�0,1� and �ab�N�0,1 / �1−�2�2���.
Now we are ready for the proof of the following basic theorem.
Theorem 5: For �	�4���, in the thermodynamic limit, we have that in distribution

Z̄N,p��;�� → exp�C��� + �S���� , �75�

where ��N�0,1� and
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C��� = − 1
2 ln�1/�1 − �2�2�� , �76�

S��� = �ln�1/�1 − �2�2���1/2. �77�

Proof: The limitation �	�4��� is clear. In fact, we will exploit formula �68�, which requires
two replicas for 2���4,,and the results of Proposition 5 that require the stated limitation on �.
Therefore, we see immediately that

lim
N→�

E�Z̄N,p
� ���Nqab

�ppab�/E�Z̄N,p
� �� �78�

=��ab
��ab

lim
N→�

E�Z̄N,p
s ��exp��ab

�ab
�Nqab + �ab

�ab
�ppab���

E�Z̄N,p
� �

�79�

=
����2

�1 − �2�2��
. �80�

Therefore, we have

lim
N→�

�� ln E�Z̄�� =
��� − 1�

2
	 1

1 − �

��

�1 − ��2 − ��2
 . �81�

By exploiting convexity in �, we can integrate this expression and obtain the limit

lim
N→�

E�Z̄N,p
� � → exp	��� − 1�

4
	ln	 1

1 − �2�2�





for all values of � in a nontrivial interval of the real axis. This shows the convergence in distri-

bution of Z̄N,p to a log-normal random variable, as stated in the theorem. �

Finally, we can easily prove Theorem 2 if we recall the definition in �38�. �

VII. CONCLUSION

In this work we introduced the framework of the real replicas, successfully applied on spin
glasses �see, e.g., Refs. 5, 21, and 23�, to neural networks in the ergodic regime. This approach
naturally holds for the high storage memory case, which is mathematically challenging. Acting
together as a biological generalization to analogical stored memories and as a technical trick to
manage easily the mathematical control, we allowed the patterns to live as Gaussian variables on
N�0,1� instead of �1 but, as we checked a fortiori, this does not affect �at least in the part of the
ergodic region that we can control� any macroscopical distribution once the thermodynamic limit
is taken. Thinking of the Hopfield model as a bipartite model in a proper space of variables,
beyond the Mattis magnetization, we introduced the other order parameters qab and pab, one for
each interacting structure, the N dichotomic Ising neurons �i, and the p fictitious Gaussians z�,
which are able to fully describe the high temperature region we investigated.

We showed that the partition function is log-normal distributed in a suitably defined region.
Then we evaluated the distribution of the rescaled overlaps, which share centered Gaussian fluc-
tuations with different variances. Finally we proved that all the thermodynamic quantities fluctuate
around their annealed approximation and calculated their spread. All the densities �e.g., energy
density, free energy density, and entropy density� turn out to be self-averaging on their annealed
values.

Further investigation should give us the full control of the whole ergodic phase and bring us
exploring the retrieval phase and hopefully the still completely obscure broken replica phase.
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