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Abstract – Through a redefinition of patterns in a Hopfield-like model, we introduce and
develop an approach to model discrete systems made up of many, interacting components with
inner degrees of freedom. Our approach highlights the intrinsic connection between the kind of
interactions among components and the emergent topology describing the system itself; also, it
allows to effectively address the statistical mechanics on the resulting networks. Indeed, a wide
class of analytically treatable, weighted random graphs with a tunable level of correlation can be
recovered and controlled. We especially focus on the case of imitative couplings among components
endowed with similar patterns (i.e. attributes), which naturally gives rise to small-world effects. We
also solve the thermodynamics (at a replica symmetric level) by extending the double stochastic
stability technique: free energy, self-consistency relations and fluctuation analysis for a picture
of criticality are obtained. Finally, applications are considered, with particular attention to the
agreement among the non-trivial features predicted by the theory and the experimental findings.

Copyright c© EPLA, 2011

Introduction. – The performance of most complex
systems, from the cell to the Internet, emerges from
the collective activity of many inner components. At
an abstract level, the latter can be reduced to a series
of nodes connected each other by links envisaging the
interaction, i.e. a graph [1–3]. Such a description has
led to identify classes of (topological) universality, and
to evidence how experimentally revealable features, e.g.
cliquishness, modularity or peculiar degree distribution,
not only underlie a certain degree of correlation among
components and/or links, but also crucially affect the
behavior of the whole system [1]. This constituted a real
breakthrough with respect to the previous tendency to
model complex networks either as regular, homogeneous
objects, such as lattices, or as purely random networks
à la Erdös-Rényi (ER) [4].
In this letter we introduce and develop an approach to

model collective systems where nodes are characterized by
a set of attributes and pairwise interactions may, in prin-
ciple, be of different nature (e.g. imitative, repulsive, etc.).
According to the way we fix such features we can recover a
broad class of weighted random graphs exhibiting tunable

(a)E-mail: elena.agliari@fis.unipr.it

topological properties; this also allows to infer about the
plausibility of a given modelization: the choice of a partic-
ular network must be consistent with the kind of interac-
tions governing the system itself and vice versa.
In the second part of this work, we study the thermo-

dynamic properties of a subset of these structures gener-
ated by a “Hebbian-like kernel”; interestingly, such an
approach allows to work out the thermodynamics of a
wide class of diluted graphs, even in the presence of ferro-
magnetic disorder on couplings.

Modelization. – Given a set of V components, we
characterize each of them by a “pattern” ξ, namely
a set of attributes, encoded by a binary string of length L.
Then (similarly to the “hidden variable” approach [5,6]),
a rule r is introduced in such a way that any couple of
strings is associated to a real value which provides the
pertaining coupling, r(ξi, ξj) = Jij , ultimately generating
a topology. Now, crucial for the whole approach are the
way the strings are extracted and the rule r, both to be
defined according to the processes one wishes to model.
For instance, for the i-th node, the µ-th entry ξµi =

1(ξµi = 0) can represent, within a social context, the
positive (negative) attitude of the i-th agent towards a
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socio-political issue, or, within a biological context, the
presence (absence) of a particular genetic mutation or
the hydrophilic (hydrophobic) nature of a binding site
in the i-th building block. In the following, in order to
highlight the possible applications of our theory, we will
emphasize the various features which the model is able to
reproduce and we will resume them in the final discussion
about possible applications.

The Hebbian-like kernel. We investigate in detail the
case of biased patterns where the probability to extract
any entry is P (ξµi = 0) = 1−P (ξµi = 1) = (1− a)/2, a∈
[−1, 1]; the rule r is given by the scalar product

Jij = Jji =
L∑
µ=1

ξµi ξ
µ
j . (1)

Notice that such a rule resembles the Hebbian one,
well known in neural networks [7], apart from the shift
[−1,+1]→ [0,+1] in the definition of patterns; this
plain replacement converts frustration into ferromagnetic
dilution.
Property 1. We are therefore naturally focusing on

systems where the interaction among components is
stronger the larger the number of positive attributes they
share.
A useful parameter to characterize a given node is

the number ρ of non-null entries present in the related
string: Within a mean-field approach, it can be shown
that the probability for i to have degree (number of
neighbors) equal to z follows a binomial distribution
Pdeg(z; a, ρi, V ), where large ρi yields narrow (small vari-
ance) distributions peaked at large z (see fig. 1; we refer
to appendix A for more details). Then, one can write the
overall degree distribution as a combination of the bino-
mials Pdeg(z; a, ρ, V ), each weighted on the probability
P1(ρ; a, L) that a string displays ρ non-null entries:

P̄deg(z; a, L, V ) =

L∑
ρ=0

Pdeg(z; a, ρ, V )P1(ρ; a, L). (2)

This expression gives rise to a L-modal distribution where
“modes”, each corresponding to a different value of ρ,
are solved as long as the connectivity and L are not too
large in order to ensure spread distributions for z and ρ
(see fig. 1, left and right panels, respectively, and [8] for
more details).
Property 2. Multimodal degree distributions constitute

an interesting feature of the model, as they allow to
naturally discriminate between different classes of nodes
possibly fulfilling different functions. In particular, nodes
corresponding to a large degree are often associated to a
relatively small reactivity and vice versa [9].
A more global characterization can be attained by the

average link probability, considering a generic couple of
nodes, neglecting any information about correlations: p=
1−{1− [(1+ a)/2]2}L, so that the average degree reads
as z̄ = pV . Now, for L→∞, p approaches a discontinuous

Fig. 1: (Color online) Degree distribution P̄deg(z; a, L, V )
for systems displaying small L/V ratio and multimodal distri-
bution (left panel) and large L/V with modes collapsing into
a unimodal distribution (right panel); the chosen values of a
are −0.71 and −0.92, respectively. In the former case we plot
data points (•) as well as the analytical curves consistently with
eq. (2). In the latter case we show the distributions correspond-
ing to each mode Pdeg(z; a, ρ, V ) in agreement with numerical
data, as well as the overall distribution (thicker, bright curve).

function assuming value 1 when a>−1 and value 0 when
a=−1. Consequently, focusing on the so-called high-
storage regime (in neural networks jargon [7]) where L is
linearly divergent with V , i.e. L= αV , the range of values
for a yielding a non-trivial topology can be characterized
by means of the scaling

a=−1+ γ
V θ
, (3)

where θ� 0 and γ is a finite parameter1. Hence, for
large sizes, only values of a close to −1 are interesting
(see fig. 1), while larger values of a yields p≈ 1 and the
degree distribution is a delta function peaked at V − 1.
Nonetheless, if one chooses L small enough such that the
degree distribution gets spread, modes are still solved.
Following [8], we distinguish the following regimes, holding
in the thermodynamic limit (see fig. 2):

– θ < 1/2, p→ 1, z̄→ V ⇒ Fully connected (weighted)
graph [10].

– θ= 1/2, p∼ 1− e−γ2α/4, z̄ =O(V ) ⇒ Linearly
diverging connectivity. Within a MF description the
(weighted) ER graph with finite link probability is
recovered [11].

– 1/2 < θ < 1, p ∼ γ2αV 1−2θ/4, z̄ =O(V 2−2θ) ⇒
Extreme dilution regime: limV→∞ z̄−1 =
limV→∞ z̄/V = 0 [12].

1Since a∈ [−1, 1], we have that 0� γ � 2V θ; in particular, when
θ= 0 the upper bound for γ is 2.
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Fig. 2: (Color online) Phase diagram representing the topology
of the graph as the parameters θ and α are varied; notice that
the scale for α is specified in terms of γ2. In the region on the
left (blue) disorder on couplings is present, while on the right
side (yellow) this disorder is lost but topological inhomogeneity
is still present. In the narrow central region (green) both kinds
of disorder may coexist.

– θ= 1, p∼ γ2α4V , z̄ =O(V 0) ⇒ Finite connectivity
regime [13]. Within a MF description γ2α/4 = 1
corresponds to a percolation threshold.

Larger values of θ determine a disconnected graph with
vanishing average degree. Therefore, θ coarsely controls
the connectivity regime of the network, while γ and α
(which turn out to be intrinsically related) allow a fine
tuning.
Up to now we just focused on topological disorder; as for

couplings, we can still detect “modes”, each characterized
by Jρ representing the average strength for links stemming
from a node associated to a string with ρ non-null entries.
While Jρ provides a measure of the local “field” seen by
a single node, a global description can be attained by
the overall average coupling J̄ ≡∑ρ JρP1(ρ; a, L), taken
over the whole graph; the two quantities are related
via Jρ =

√
J̄ρ/L [8]. As we will see in the next section,

despite the self-consistence relation (more sensible to local

conditions) is influenced by
√
J̄ , the critical behavior

occurs at βc = J̄
−1, consistently with a manifestation of

a collective, global effect.
By looking in more detail at the coupling distribution

holding in the thermodynamic limit and for values of a
determined by eq. (3), we find that, for 1/2< θ� 1, nodes
are pairwise either non-connected or connected due to one
single matching among the relevant strings. For θ= 1/2
this still holds when αγ2/4	 1, which corresponds to a
relatively high-dilution regime, otherwise some degree of
disorder is maintained. On the other hand, for θ < 1/2,
while topological disorder is lost, disorder on couplings is
still present. However, for θ= 0 and γ = 2, the coupling
distribution gets peaked at J =L and, again, disorder on
couplings is lost [8].

Small-world properties. Among the properties defin-
ing “small-world” networks [14] there is a high degree of
transitivity, that is neighborhood cohesiveness, which is

Fig. 3: (Color online) Natural logarithm of c/cER as a function
of α and a for a system with V = 2000. When a follows the
scaling of eq. (3) with γ = 1.5 (dashed line) the ratio is ≈4,
meaning high clustering. Data points (•), fitted by a power
law ∼(1+ a)η, η≈ 1.5, demarcate the region where the graph
is made of 20 components (the giant one plus isolated nodes).

usually quantified by the (average local) clustering coef-
ficient c to be possibly compared with the one expected
for a comparable (i.e. displaying the same average degree)
ER graph, namely cER = z̄/V [1].
Property 3. For the graph generated by eq. (1), the

neighborhood Vi of i is made up of all nodes displaying
at least one non-null entry corresponding to any non-
null entries of ξi. This condition biases the distribution of
strings relevant to nodes ∈ Vi, so that they are more likely
to be connected with each other. This is also confirmed
numerically: fig. 3 shows that c/cER > 1 in a wide region
of the plane (α, a), especially in the region of high
dilution.
Property 4. This kind of link correlation allows to

detect communities densely and strongly linked up, so
that the role of weak ties is crucial in maintaining
the graph connected, while strong ties turn out to be
redundant [15,16].

Thermodynamics. – When dealing with the thermo-
dynamical properties of these networks, we first paste V
variables (spins) σ= {−1,+1} on the nodes and define the
Hamiltonian

H(σ; ξ) =
−1

2αV 2(1−θ)

V∑
i<j

L∑
µ

ξµi ξ
µ
j σiσj , (4)

formally identical to a Hopfield model, apart from the
normalization which accounts for quenched variables
non-symmetrical with respect to zero. From eq. (4) the
standard package of disordered statistical mechanics
can be introduced: the partition function ZV (β; ξ) =∑
σ exp[−βHV (σ; ξ)], the Boltzmann state ω(.) =∑
σ .e

−βHV (σ;ξ)/ZV (β; ξ), and the related free energy
A(β, γ, θ) = limV→∞ V −1E logZV (β; ξ), where E averages
over the quenched distributions of the bit strings ξ.
At first, in order to obtain an explicit expression of the
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free energy, through the Hubbard-Stratonovick transform
we map the partition function of our model into a
bipartite ER one, whose parties are the V Ising spins and
L auxiliary Gaussian fields z as

ZV (β; ξ) =
∑
σ

∫ +∞
−∞

L∏
µ=1

dµ(zµ)e

√
β/α

V 1−θ
∑V,L
i,µ ξi,µσizµ , (5)

namely a system ruled by the following “effective Hamil-
tonian” H̃ = (1/

√
βαV 1−θ)

∑V,L
i,µ ξiµσizµ: Two parties

interacting with Bernouillian dilution and constant
weights. As shown in appendix B, for these systems it is
possible to extend the double stochastic stability tech-
nique recently developed in [17]; as a consequence, once
introduced the proper order parameters of the theory,
we can directly focus on the resulting thermodynamical
properties.
To figure out our order parameters, as replica symmetry

(RS) is expected to be conserved in ferromagnetic diluted
networks, we naturally avoid (multi)-overlaps by defining

Mlb =
1

V

∑
i

ωlb+1(σi), Nlc =
1

L

L∑
µ

ωlc+1(zµ),

where the index in ω means that we are considering all
the possible magnetizations built trough only lb+1 links
inside the graph (as the graph is no longer weighted, it is
a microcanonical decomposition of the observable in sub-
clusters conceptually close to the one introduced in [18]).
The averaged order parameters 〈M〉=∑lb P (lb)Mlb , and〈N〉=∑lc P (lc)Nlc , can then be obtained being P (l) the
probability that l links are present, namely

P (lb) =

(
V

lb

)(
1+ a

2

)V−lb (1− a
2

)lb
, (6)

P (lc) =

(
L

lc

)(
1+ a

2

)L−lc (1− a
2

)lc
. (7)

We can now explicitly write down the free energy as

A(β, γ, θ) = log 2+ lim
V→∞

γ

2V θ
〈log cosh(

√
βN̄V θ)〉

+
βγ2

8
〈M̄〉2−

√
βγ

2
〈M̄〉〈N̄〉,

where the bars denote the “replica symmetric” (i.e. delta-
distributed over their means) values (see appendix B).
Further, by extremizing the free energy with respect

to the order parameters [17] we get the self-consistent
relation 〈N̄〉= 〈M̄〉√βγ/2, which allows to express the
whole theory only via 〈M̄〉 (as expected looking at the
original Hamiltonian (4)). Consequently, we can explicitly
develop the various cases of interest, in particular:

– θ= 0: Fully connected, weighted regime.

This case recovers the Curie-Weiss (CW) model and,
specifically, the upper bound of γ (i.e. γ = 2) gives the
unweighted fully connected structure. Consistently,

its free energy and related self-consistency turn out
to be

A(β, γ = 2, θ= 0) = log 2+
γ

2
log cosh

(
βγ

2
M̄

)

−βγ
2

8
M̄2, M̄ = tanh

(
βγ

2
M̄

)
. (8)

Note that, as there is only one possible network
built with all links, all the subgraph magnetizations
collapse into only one, namely P (M̄) = δ(M̄ −MCW ),
where MCW is the standard CW magnetization.
Furthermore, note that for γ = 2 we recover exactly
the CW thermodynamics.

– θ= 1/2: Standard dilution and ER regime.

With a scheme perfectly analogous to the previous
one we can write down the free energy and its related
self-consistent equation as

A(β, γ, θ = 1/2) = log 2+ lim
V→∞

[
γ

2
√
V

· log cosh
(
βγ

2

√
V 〈M̄〉

)
− βγ

2

8
〈M̄〉2

]
,

(9)

〈M̄〉= lim
V→∞

tanh

(
βγ

2

√
V 〈M̄〉

)
. (10)

Fictitious diverging contributions emerge in the ther-
modynamic limit because the normalization we chose
for the Hamiltonian (4) gives the correct extensiv-
ity for the fully connected case only, while for the
ER regime we expect a normalization factor O(V −1).
Note in fact that the argument of the logarithm of
the hyperbolic cosine can be read as β

√
J̄V 〈M̄〉. As

in standard approaches [11], it is enough to renor-
malize the coupling by scaling it with the amount of
nearest neighbors [19] (which in the ER dilution grows
linearly with the volume size).

For intermediate values of θ, as well as for θ > 1/2
(corresponding to an extreme dilution regime), it is possi-
ble to apply a scheme analogous to the previous ones
and to write down straightforwardly an expression for the
related free-energy and the coupled self-consistencies.
Property 5. In general, we find that the effective field felt

by a generic spin does not scale linearly with the average
coupling strength J̄ as one would expect naively, but,
rather, it scales as the square root of J̄ ; of course this effect
disappears approaching the CW limit where

√
J→ J̄→ 1.

Moreover, since the interaction matrix in the Hamiltonian
has been normalized (i.e. is bounded by one),

√
J̄ > J̄ .

However, this feature, which is a consequence of the
diverging variance in the bitstring distribution [8], does
not affect the transition line that scales consistently with
a manifestation of a collective, global effect, as βc ∝ J̄−1
(the proof is reported in appendix C).
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Discussion. – In this work we formalized the genera-
tion of collective systems made up of nodes characterized
by a set of attributes and in mutual interaction, high-
lighting how the definition of attributes and of the way
the components interact impose a specific topology on the
emerging network, with important consequences on the
overall system performance.
In particular, we focused on imitative (i.e positive

coupling) systems where the interaction strength Jij
among two nodes i and j is larger the more similar
the related attributes, and we showed that a wide class
of topologies can be recovered, exhibiting small-world
features and multi-modal degree distributions.
The thermodynamics of these systems has also been

addressed showing that for such disordered, diluted ferro-
magnets a second-order phase transition occurs at a criti-
cal temperature Tc corresponding to the average coupling
strength J̄ . On the other hand, by looking at the self-
consistent relations (being more sensible to local condi-
tions), we showed that the field felt by the generic spin

scales like
√
J̄ (which indeed corresponds to the average

local field) instead of J̄ as expected from classical ferro-
magnetic theory: this accounts for a superlinear contribu-
tion in the exchanges among the elements ascribable to
the high cliquishness of the underlying network.
Now, due to the generality of the approach, one can

introduce slight variations with respect to the model
analyzed here, possibly yielding dramatic changes in the
global layout of the graph (e.g. scale-free degree and/or
coupling distributions) and properly extend the thermo-
dynamic analysis. Indeed, the framework developed here
may open a new alternative (e.g. to replica trick) for trying
to solve spin glasses on correlated networks (by consid-
ering rules r not positive defined), whose mathematical
difficulty is still prohibitive.
Finally, we briefly discuss two paradigmatic examples

of our theory, concerning social [20] and immunological
[21,22] networks.
In social networks agents are represented by nodes

and links among them denote a kind of relationship. As
pointed out by Brock and Durlauf [23], the interactions
among agents are essentially imitative and the larger
the number of interests they share, the stronger their
interaction (Property 1 ). Interestingly, within our model
this prescription is sufficient to give rise to another
pivotal point, namely small-world features (Property 3 ),
in agreement with Milgram’s experiment [24] (showing
that the average distance among nodes is relatively short)
and with Watts and Strogatz’s model [14] (exhibiting high
degree of transitivity). Moreover, the weight distribution
determined by eq. (1) also recovers Granovetter’s seminal
observation [20] about the crucial role of weak ties in
keeping the network connected (Property 4 ).
As for theoretical immunology, we recall Jerne’s [25]

original formulation of the idiotypic network, whose nodes
are lymphocytes and their interaction stems from the
complementarity among the related set of epitopes; this

can be captured by a rule r which privileges comple-
mentary entries [21,22], still retaining the hierarchy
yielding a multimodal degree distribution. This aspect
nicely matches with the fundamental contribution due
to Varela [26], who showed the existence of connectivity
classes such that the more connected lymphocytes and
the more lazy to respond to external antigens (Prop-
erty 2 ). Moreover, the immune network displays intrinsic
correlations which may give rise to non-trivial collective
behaviors (Property 5 ), ultimately affecting the immune
response.

∗ ∗ ∗
This work is supported by FIRB grant RBFR08EKEV.

Appendix A. – Given a string ξi of length L, with
entries independently extracted according to P (ξµi =
0) = 1−P (ξµi = 1) = (1− a)/2, a∈ [−1, 1], we define

ρi ≡
∑L
µ=1 ξ

µ
i . Due to the independence underlying the

extraction of each entry, ρ follows a binomial distribution

P1(ρ; a, L) =

(
L

ρ

)[
(1+ a)

2

]ρ [
(1− a)
2

]L−ρ

≡ B(ρ;L, (1+ a)/2), (A.1)

with average ρ̄a,L =L(1+ a)/2. Moreover, it can be shown
that the probability for two string ξi and ξj , displaying
respectively ρi and ρj non-null entries, to be connected is

Plink(ρi, ρj ;L) = 1− (L− ρi)!(L− ρj)!
[L!(L− ρi− ρj)!] . (A.2)

By averaging over, say ρj , one finds the expected link
probability Plink(ρi, a) = 1− [(1− a)/2]ρi for the node i.
Then, the probability that i has degree (number of neigh-
bors) equal to z follows as the binomial Pdeg(z; a, ρi, V ) =
B(z;V, Plink(ρi, a)). Due to the average over ρj , this corre-
sponds to a MF approach where we treat all the remaining
nodes in the average; this works finely for V large and ρi
not too small (see fig. 1).
As for the whole system, the global degree distribution

can be written as the average of Pdeg(z; a, ρi, V ) over
ρ∈ [0, L], where each term is weighted by P1(ρ; a, L), as
shown in eq. (2).
Finally, we notice that the average link probability p

for two generic nodes can be estimated from eq. (A.1) and
eq. (A.2) as

p =
L∑
ρi=0

L∑
ρj=0

P1(ρi; a, L)P1(ρj ; a, L)Plink(ρi, ρj ;L)

= 1−
[
1−
(
1+ a

2

)]L
. (A.3)

Appendix B. – Dealing with the free energy built
by the partition function (see eq. (5)) we enlarge the
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technique of the double stochastic stability [17] by intro-
ducing the following interpolating structure:

A(t) =
E

V
log
∑
σ

∫ +∞
−∞

L∏
µ

dµ(zµ) exp

[
t

√
β/α

V 1−θ

×
∑
i,µ

ξiµσizµ+(1− t)
(
L∑
lc=1

blc

V∑
i

ηiσi

+

V∑
lb=1

clb

L∑
µ

χµzµ

)]
, (B.1)

where now E=EξEηEχ, blc [with lc ∈ (1, . . . , L)], and clb
[with lb ∈ (1, . . . , V )] are real numbers (possibly functions
of β, γ, θ) to be set a posteriori.
Note that A(t= 1) is our goal, while A(t= 0) is straight-

forward as it involves only one-body calculations. So we
want to use the fundamental theorem of calculus to get a
sum rule, as

A(1) =A(0)+

∫ 1
0

[∂A(t′)/∂t′]t′=t dt,

which ultimately implies the evaluation of the t-streaming
of eq. (B.1) and the explicit calculation of A(0).
By a long but straightforward calculation, and using a

bar to denote the replica symmetric order parameters
(namely M̄, N̄), we find that ∂tA(t) = S(t)−√
βγ/2

∑
lb

∑
lc
P (lb)P (lc)M̄lbN̄lc , where the fluctua-

tion source S(t) is proportional to 〈(M − M̄)(N − N̄)〉
and can be neglected at the RS level.
The replica symmetric solution ARS(t= 1) can then be

written as ARS(t= 1) =A(t= 0)−
√
βγ〈M〉〈N〉/2, whose

explicit expression is reported in eq. (8).

Appendix C. – In order to prove that βc = J̄
−1, we

analyze the fluctuations of the rescaled order parameters
〈M〉=√V 〈M − M̄〉, 〈N〉=√L〈N − N̄〉 checking where
they diverge, this defines the onset of criticality: At first
we need to derive the t-streaming of the squares of these
objects (i.e. 〈M2〉, 〈MN〉, 〈N 2〉), which lead to a system
of coupled ordinary differential equations in t, namely

〈Ṁ2〉= 2〈M2〉〈MN〉, (C.1)

〈ṀN〉= 〈M2〉〈N 2〉+ 〈(MN )2〉, (C.2)

〈Ṅ 2〉= 2〈N 2〉〈MN〉. (C.3)

Then we have to start the “motion” at t= 0 (this Cauchy
condition is straightforward to be evaluated as, in t= 0,
everything is factorized) and propagate it trough t= 1;
the obtained fluctuations will be meromorphic functions,
whose pole defines the critical point [18].
By using Wick theorem to express four-point corre-

lations through series of two-point correlations [27] and

due to internal symmetries reflecting the MF interactions
among the two parties [8], the plan is fully solvable and
all these fluctuations, as well as the correlation 〈MN〉,
are found to diverge on the same βc = J̄

−1, as intuitively
expected.
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