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Introduction

This PhD thesis summarizes three years of work in understanding arti�cial information
processing in order to develop new neural networks whose capabilities outperform the state
of the art in the �elds of pattern recognition and signal detection in Arti�cial Intelligence.
The ultimate aim is to apply these techniques to high dimensional inferential problems as
those typically emerging in any modern design of a biotechnological experiment.
Indeed purposes of this work are twofold. From one side we aim at developing a theoretical
framework for Arti�cial Intelligence, where a comphrension of its processing mechanisms
and spontaneously emerging computational skills may �nd a natural place: this �eld of
Science has been historically grounded on the statistical mechanics of complex systems,
i.e. the maximum entropy variational extremization a' la Jaynes and Parisi theory of spin
glasses, that will thus be the two leitmotif of the whole thesis. From the other side, we
want to convert the above theoretical comprehension of information processing by neural
network and learning machines in concrete practical applications in the laboratory, at work
with problems in Biological Complexity.
As a result the thesis is naturally split into three main Chapters.
The �rst chapter, the Theoretical Backbone, is a conditio sine qua non in order to be sure
to share the basic mathematical instruments we need during the thesis. Once quickly
streamlined statistical inference and statistical mechanics in the beginning of the chapter,
than we move to deepen the two archetypal models we need to rely on along the whole
manuscript, namely the Curie-Weiss model (as the harmonic oscillator for simple systems)
and the Sherrington-Kirkpatrick model (as the hegemon example of a complex paradigm).
Once simple and complex references are provided we can build up the simplest architec-
tures of neural networks and learning machines, namely the Hop�eld neural network and
its dual representation, the Restricted Boltzmann machine: while historically heuristic ap-
proaches were available to describe these systems already in the past century (e.g. the
so-called Replica Trick in the '80s & '90s), since the groundbraking interpolation tech-
niques introduced by Francesco Guerra in the early 2000, it is �nally possible to obtain a
rigorous mathematical control of these networks and in this thesis the formalization of the
new neural networks I studied is achieved by these novel mathematical tools 1.
Once such a minimal summary is over with the �rst chapter, the second chapter reports
new research in the �eld of Theoretical Arti�cial Intelligence. At �rst in order to make
the Hop�eld network a precious intrument at work in the Labs, the pivotal generalization
that we have to face is to shift its storing skills toward learning skills: namely, within the
standard statistical mechanical formulation of such a network the most important question
addressed in the past has been given N binary neurons to give rise to a fully connected
Hebbian network, how many -already de�ned- patterns P the network is able to cope with

1Indeed we paid attention to a systematic usage of the same techniques along the whole manuscript:
all the models (the three ones of the �rst Chapter and the two generalizations provided in Chapter Two)
have all been addressed with the Guerra's interpolation technique and -where required- by the same signal-
to-noise analysis with the hope of making the manuscript easier to be understood.

1



INTRODUCTION 2

at its best? - this is a question on the maximal storage capacity α of the network, whose
answer is αmax = Pmax/N ∼ 0.14 for the Hop�eld neural network. We should generalize
this question toward given the same network, if it is not supplied with already prescribed
patterns (that we can call archetypes for obvious reasons) rather it is fed by examples, which
are the critical sizes of the datasets containing the examples that we must ensure to the
Hop�eld network such that it can reconstruct the archetype so to be able to learn and gen-
eralize it? This will be the �rst research point addressed in this thesis.
Once established these thresholds for learning, still in the second chapter, I will focus on
two major generalizations (always biologically inspired) of the Hop�eld reference, that is
neural networks equipped with ultra-memory and with ultra-detection skills, as I brie�y
summarize hereafter:

� The �rst generalization -ultra-memory- raises to enlarge the maximal storage capac-
ity, i.e. αc ∼ 0.14 as, from general information theoretic argument we know that
the upper bound for such a capacity should be αtop = 11 hence the actual bound
αmax ∼ 0.14 seems rather unsatisfactory. The idea that we implemented is to allow
the network to sleep: namely, by suitably stylizing in mathematical equations the two
key mechanisms of dreaming in mammals (Random Eye Movement and Slow Wave
Sleep), I prove that the network -if allowed to take some rest- can actually saturate
the critical capacity for symmetric networks as prescribed by Information Theory
argument reaching αc ∼ 1.00. As we will see, beyond constituting a remarkable
step forward in Theoretical Arti�cial Intelligence per se and a new bridge between
arti�cial information processing and biological information processing, this enlarged
capacity results in remarkable computational implications, at �rst the possibility of
avoiding (or better minimizing) over�tting while learning from datasets.

� The second generalization -ultra-detection- constists in equipping the network with
higher order interactions w.r.t. the pairwise reference (the so-called dense network
limit): in particular, inspired by the redundant representation in humans (roughly
speaking the presence of two sources providing similar information as e.g. the two
eyes we use to see), I studied a generalized Boltzman machine equipped with two
identical input layers and prove the latter to be the dual of a dense Hop�eld network
whose Hebbian kernel contains redundant information: remarkably this redundancy
allows the network to tune its signal-to-noise threshold for signal detection. Indeed
I proved the (quite counterintuitive at a �rst glance) result that -while the standard
Hop�eld network can detect a signal whose intensity is O(1) if it lies in a sea of
noise at worst of the same magnitude of the signal -hence O(1)- the present dense
generalization can detect a signal O(1) even if lost in a sea of noise O(

√
N). Clearly

there is a price to pay for this skill: when at work, the network sacri�ces extensive
memory storage to free neurons and synapses in order to play with the redundancy
coming from the two input layers for �nding out the information hidden in the noise.
This closes my theoretical work in Arti�cial Intelligence discussed in this thesis.

The last part of the thesis -Chapter Three- reports two applications of high-dimension
statistical inference (that the maximum entropy criterion allows to account for) on two
biological problems: detecting interactions between (pancreatic) cancerous cells and those
cells that surround -or in�ltrate- the tumoral mass -namely the stroma- and inferring the

1Actually it is possible to reach even αtop = 2 by removing the symmetry of the synaptic matrix, but
this requires working if o�-equilibrium settings not yet crystal clear for disordered systems and will not be
deepened here.



INTRODUCTION 3

timescales involved in heart rate variability in healthy and pathogenic patients as I brie�y
summarize again hereafter.

� Detecting cancer-stroma interactions: once suitably marked for �uorescence (in order
to be able to recognize the two cellular lineages) we mix, in vitro, cancerous cells
and stroma cells and via time-lapse confocal microscopy we record the dynamics of
these cells twice: the �rst time cells are left alone to dialogue, the second time a
chemoterapeutic drug (i.e. gemcitabine) is added in the colture medium. From a
physical perspective, the dataset for network's training thus constists in the entire
phase space of these cells (i.e., positions and velocities) and the pourpose of the
inference is to detect kinetic cellular interactions in order to see how these are a�ected
(or not) by the presence of the chemoterapy. I studied two di�erence lineages of
pancreatic cancer and I obtained di�erent results: on a given tumoral line (the more
aggressive), stroma and cancer dialogues were absent with and without the presence
of gemcitabine, questioning of the e�cacy of this drug for this particular type of
cancer (indeed the progression of the clonal expansion of the cancer raised almost
unperturbately) while for the other tumoral line, the e�ect of the gemcitabine is to
highly increase interaction between cancer and stroma (consistently with the death
count of roughly O(50%) of cancerous cells) thus highglighting a key mechanism of
action of the drug.

� Inferring timescales in heart rate variability: while naively one may point out that
the cardiac frequency always stays con�ned between 40 and 300 beats per minute
(hence there are not at all several timescales to cross), the attention in this research
is not on the beats per minute, rather on their variation per minute: the latter in-
deed spans over several scales and and it is known to be power-law distributed (in
particular the characteristic 1/f noise typical of heart-rate variability stems from
the interplay between the parasympathetic and orthosympathetic systems). I stud-
ied historical series recorded from standard Holter for healthy patients and those
su�ering from cardiac decompensation or su�ering from atrial �brillation and -via
a suitable adaptation of the maximum entropy inferential criterion- I revealed the
existence of huge di�erences in their related statistics both in the time and frequency
domains highlighting novel aspects of non-invasive early diagnosis which could be to-
morrow integrated in a Personalized Medicine, where these approaches are becoming
pervasive already nowadays.

Finally I'd like to remark that, if we see the skills of the Hop�eld networks and Boltzmann
machines emerging as a consequence of the minimization of their respective cost functions
under the prescription of maximization of their relative entropies, both the research chap-
ters -the former dealing with biologically-inspired neural networks, the latter dealing with
high-dimensional biological inference- are tributes to maximum entropy variational scheme
that, as stated, is indeed the �rst conceptual pillar of the whole thesis. Further, if we note
that dialogues among cancerous and stroma cells in the �rst experiment are of complex
nature (i.e. both promoting and inhibiting dynamics) and we appreciate the frustration
resulting from the interplay between the parasympathetic and orthosympathetic systems
in heart rate variability, also the Parisi representation of a complex systems plays naturally
as the second pillar over which the whole thesis raises.



Chapter 1

Part 1: Theoretical Backbone

1.1 The mathematical pillars

Statistical mechanics aroused in the last decades of the XIX century thanks to its
founding fathers L. Boltzmann, J.C. Maxwell and J.W. Gibbs. Its scope (at that time)
was to provide a consistent theoretical background formalizing the already existing em-
pirical thermodynamics, in order to reconcile its noisy and irreversible behaviour with a
deterministic and time reversal microscopic dynamics. While trying to get rid of statis-
tical mechanics in just a few words is almost meaningless, its modus operandi may be
summarized via toy-examples. Let us start with a very simple system, e.g. a perfect gas,
in which molecules obey a Newton-like microscopic dynamics (without friction - as we
are at the molecular level - thus time-reversal). Rather than focusing on each particular
particle trajectory to characterize the state of the system (that would be computation-
ally prohibitive because we shall integrate numerically an Avogadro number of coupled
ODEs), we de�ne order parameters (variables describing the system's behaviour from a
macroscopic perspective, e.g. the density) in terms of microscopic variables (the particles
belonging to the gas). By averaging their evolution over suitable probability measures
and simultaneously imposing minimum energy and maximum entropy principles, via this
route it is possible to infer the macroscopic behaviour of the system in agreement with
thermodynamics, hence linking the microscopic deterministic and time reversal mechanics
with the macroscopic strong dictates stemmed by the second principle (i.e. the arrow of
time coded by the entropy growth). Despite famous attacks to Boltzmann theorem (e.g.
by Zermelo or Poincaré), statistical mechanics was immediately recognized as a deep and
powerful bridge between microscopic dynamics of system's constituents and (emergent)
macroscopic properties shown by the system itself, as exempli�ed by the equation of state
for perfect gases obtained by considering the Hamiltonian for a single particle accounting
for the kinetic contribution only [1, 2].

One step beyond the perfect gas scenario (where no interaction takes places among
atoms), J.D. Van der Waals and J.C. Maxwell in their pioneering works focused on real
gases, in which particle interactions were �nally considered by introducing a non-zero
potential in the microscopic Hamiltonian describing the system. This extension required
�fty-years of deep changes in the theoretical physics perspective in order to be able to
face new classes of questions. The remarkable reward lies in a theory of phase transitions
where the focus is no longer on details regarding the system constituents, but rather on the
characteristics of their interactions. Indeed, phase transitions, namely abrupt changes in
the macroscopic state of the whole system, are not due to the particular system considered,
but are primarily due to the ability of its constituents to perceive interactions over the

4



1.1. THE MATHEMATICAL PILLARS 5

thermal noise. For instance, when considering a system made of a large number of water
molecules, whatever the level of resolution to describe the single molecule (ranging from
classical to quantum), by properly varying the external tunable parameters (e.g. the
temperature), the system eventually changes its state with a phase transition from liquid
to vapor (or solid, depending on parameter values): of course, the same applies generally
to liquids (not just to water).

The fact that the macroscopic behaviour of a system may spontaneously show cooper-
ative, emergent properties (actually hidden in its microscopic description and not directly
deducible when looking at its single components) was de�nitely appealing in neuroscience.
In fact, in the 70s, neuronal dynamics along axons, from dendrites to synapses, was already
rather clear (see e.g. the celebrated book by Tuckwell [3]) and not much more intricate
than circuits that may arise from basic human creativity. In this context, the aptness of a
thermodynamic formulation of neural interactions - revealing possible emergent capabilities
- was immediately pointed out, despite the route was not clear yet. Indeed, we will try to
show in this thesis that one of the main rewards in using statistical mechanics to inspect
the spontaneous information processing skills neural networks show is the concept of phase
diagram: we will be able to identify, in the space of the tunable parameters of the network
(e.g. the level of noise the network is embedded in or the information load of the network,
etc.), regions where some emerging skills are available, regions where other behaviours ap-
pear and regions where the network no longer works as an information processing system.
This is exactly the opposite perspective w.r.t. the extensive empirical trials that consti-
tute nowadays the main route to Machine Learning, as seen from an engineering-prone
perspective.

Along the same lines, while we will largely rely upon statistical mechanics to paint
these phase diagrams, we can also adopt a pure statistical inference perspective - in or-
der to match our results with those existing in the Engineering Literature where much of
the results have been framed in statistical terms: the bridge will be the Maximum En-
tropy Principle acting as the Roman Giano Bifronte as it can be used to literally ground
both statistical mechanics as well as statistical inference, as we will quickly revise in this
introductory section.1

1.1.1 Statistical mechanics in a teaspoon

This framework requires a probability measure on a given space, that is invariant with
respect to the Hamiltonian �ow. For a system of N particles this measure can be easily
deduced, and it is related to the Hamiltonian function, that we choose to be

HN (p, q) =
1

2m

N∑

i=1

p2
i +

∑

i 6=j
V (qi − qj),

where in this generic construction p = (p1, . . . , pN ) and q = (q1, . . . , qN ) are the Lagrangian
coordinates in the phase space of the system, with pi and qi respectively being the momen-
tum and the position of particle i, and V is a potential. Setting these quantities to be in
the three-dimensional euclidean space, the state space is Ω = R6N . When working on spin
or neural networks, the state variable are idealized with Boolean vectors σ = (σ1, . . . , σN ),
where each σi ∈ {−1,+1} represents the spins orientation (up or down) or the neuron's

1Of course here we are tacitely assuming the reader to be familiar with these �elds of Science as,
obviously, nor there is hope to be exhaustive on such broad themes in just a few pages, neither this is the
scope of the present manuscript.



1.1. THE MATHEMATICAL PILLARS 6

activity (spiking or not spiking). Here the state space is Ω = {−1,+1}N .
From now on we will only consider systems with a noisy microscopic behaviour. In this
stochastic context, we de�ne the entropy functional for the system as the following:

S[P] = −
∫

Ω
dx P(x) lnP(x),

with x = (p, q), P being the probability distribution over the state space Ω. Entropy is
by de�nition the measure of the system disorder. In fact, the smaller is the subset of Ω on
which the density P is concentrated and the smaller is the measured entropy. Indeed, if
the system is described by a probability distribution that is highly concentrated in a small
area of the state space it means that the system is actually not that random but is rather
ordered. For example, if we consider the discrete case with N possible states, the entropy
function is described by

SN [P] = −
N∑

i=1

Pi lnPi, (1.1)

with the closure condition
N∑

i=1

Pi = 1.

Let's consider the simple case of a uniform distribution

Pi =

{
1
N i ≤ N,
0 i > N,

(1.2)

where Pi is the probability that state i is occupied. Then, S = lnN , meaning that the
number of con�gurations in which the system can be found with a considerable probability
is eS and thus con�rming the meaning of S as a measure of the system disorder.

We now illustrate how expression (1.1) can also be interpreted as the number of system
con�gurations. Let us consider a set of systems (ensemble) made of N identical systems
and suppose that each one of them can take on K di�erent possible states. A con�guration
of this system is given by the numbers N1, . . . , NK , where Ni is the number of the systems
in the ensemble occupying the i-th state. The number of possibilities that satisfy this
con�guration is given by the multinomial coe�cient

N !
∏N
i=1Ni!

= N,

with the condition that
∑

iNi = N . Applying Stirling's formula, the entropy SN is
SN = 1/N lnN following this computation:

1

N
lnN =

1

N

(
N lnN −

K∑

i=1

Ni lnNi

)
=

K∑

i=1

Ni

N

(
lnN − lnNi

)
=

= −
K∑

i=1

Ni

N
ln
Ni

N
= −

K∑

i=1

Pi lnPi = SN [P],

in which the probability Pi has been identi�ed with the frequency Ni/N thanks to the law
of large numbers (tacitely highlighting that we will be interested in evaluating quantities
in the asymptotic limit N → ∞, called thermodynamic limit in Statistical Mechanics.
Therefore we obtained an interpretation of an ensemble entropy, and it is the one that we
will use throughout this thesis: S is proportional to the logarithm of the number of ways
that a given con�guration can appear.



1.1. THE MATHEMATICAL PILLARS 7

Remark 1.1. Thanks to the previous de�nitions and examples, we can conclude that for
a smaller entropy we have a system that is concentrated on a small number of states and
thus we have more information about it.

Now, we show how Gibbs measure has the ability of maximizing the entropy functional.
To do this, we consider the evolution of a set of N (a large and �xed number) interacting
Hamiltonian systems in thermal equilibrium, meaning that the energy of a generic sub-
system j presents small �uctuations on the average value �xed at Ej . We can say that
the ensemble is in thermal equilibrium if every subsystem gives out and receives an equal
quantity of energy from the other subsystems. Assuming that we know EN , the ensemble's
average value of the total energy is given by

EN =
N∑

i=1

PiEi,

where the sum is carried on all the possible values that can be observed in the ensemble.
For simplicity, we shall consider a discrete case in which Ej stands in a discrete set EN
and every subsystem of the ensemble takes average energy levels in EN . From the second
principle of thermodynamics, we know that the entropy of an isolated system grows as
the information decreases while system evolves. Hence, it comes naturally to look for the
probability distribution Pj of all the available energy levels that maximize the entropy
SN [P]. This distribution exists and it is called the Gibbs measure. The problem can be
translated in a mathematical form as





maxPj SN [P],∑N
i=1 PiEi = EN ,∑N
i=1 Pi = 1.

(1.3)

This is a constrained maximization problem, whose solution is obtained by means of La-
grange multipliers, i.e. �nding the maximum of the following function

SN,β,γ [P] = −
∑

i

Pi lnPi + β
(∑

i

PiEi − EN
)

+ γ
(∑

i

Pi − 1
)
.

The solution is quite nice and simple, and reads

Pi =
e−βEi

ZN
,

where ZN = e1−γ =
∑

i e
−βEi is known as the partition function. The computed values of

Pi are in fact maximum points for the entropy. The parameter β can be calculated with
the following condition:

1

ZN

N∑

i=1

Eie
−βEi = EN ,

from which we can also show why β can be interpreted as the inverse of the temperature.
To clarify this point, we introduce the function

FN (β,EN ) = lnZN ,

whose associated di�erential is

dFN =
∂FN
∂β

dβ +

N∑

i=1

∂FN
∂Ei

dEi = −ENdβ − β
N∑

i=1

Ni

N
dEi, (1.4)
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where we have replaced Pi with the frequency Ni/N of the event of having the energy level
Ei in the ensemble. We can rewrite equation (1.4) as

d
(
FN + ENβ

)
= β

(
dEN −

N∑

i=1

Ni

N
dEi

)
, (1.5)

and give a nice physical interpretation. In fact, if we suppose to work on di�erent ensemble
subsystems (e.g. varying their dimension, parameters, etc.), the quantity

∑
iNi/NdEi

represents the work on the ensemble needed to change the energy levels of the systems
and dEN its internal energy variation. Thus, for the �rst principle of thermodynamics,
dEN −

∑
iNi/N dEi is nothing but the amount of exchanged heat dQN between the

ensemble and the external environment. Hence, the identi�cation of β = 1/T , where T it
the ensemble temperature, is straightforward since it is the only way to make βdQN exact.

From the second principle of thermodynamics, we know that d(FN + EN/T ) must be
the system entropy di�erential, being dQN/T = dSN . Hence, taking β = 1/T , we have
the (extensive) free energy of the system:

FN (β) ≡ − 1

β
lnZN = EN − TSN . (1.6)

The free energy FN (β) (or -alternatively- the statistical pressure alphaN (β) = −βF (β),
that conveys the same information, vide infra) is a state function that can be expressed
through the system order parameters and control parameters, such that, by extremizing
this observable w.r.t. the order parameters -to impose thermodynamic principia- we obtain
a set of coupled equations for their evolution in the space of the tunable parameters, whose
inspection gives rise to the phase diagrams, that are the highest reward of this approach.

Remark 1.2. The order parameter values that minimize FN describe the equilibrium
states of the system. In fact, minimizing the free energy, they also maximize the system
entropy and minimize the system energy and are ful�lled by the most number of (allowed)
microscopic states. Thus, they are the most probable values.

An equivalent way to �nd the values of Pi that maximize the entropy is based on the
search of the free energy FN minima satisfying the conditions in (1.3). Plugging the
de�nitions of entropy (1.1) and average energy into (1.6) and imposing the minimum
conditions, we have

FN,µ(β) =
∑

i

PiEi + T
∑

i

Pi lnPi + µ
(∑

i

Pi − 1
)

= 0,

∂FN
∂Pi

(β) = Ei + T lnPi + T + µ = 0 ⇒ Pi = e−Ei/T · e−µ/T−1.

Forcing the normalization on Pi, we get µ such that e−µ/T−1 = 1/{∑i e
−Ei/T } ≡ 1/ZN ,

so that Pi = e−Ei/T /ZN .

From the de�nitions given above, we can learn the following relations:

FN = EN − TSN =

=
∑

i

PiEi + T
∑

i

Pi lnPi|Pi=ZN−1e−Ei/T =

=
1

ZN

∑

i

Eie
−βEi +

T

ZN

∑

i

e−βEi ln

(
1

ZN
e−βEi

)
= −T lnZN ,

SN = β2∂FN
∂β

, EN = FN + β
∂FN
∂β

.
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Ultimately, we will be interested in the thermodynamic limit for the intensive (i.e. nor-
malized to the system size) free energy, referred to as f(β) (i.e. we drop the index N) and
to �nd its minima. Thus

f(β)
.

= lim
N→∞

1

N
FN (β) = lim

N→∞
− 1

βN
lnZN . (1.7)

Equivalently, we can study the statistical pressure, referred to as αN (β) when dealing with
a �nite system of size N , and as α(β) when dealing with the thermodynamical limit, that
is

α(β) = lim
N→∞

αN (β) = −β lim
N→∞

1

N
FN (β) = lim

N→∞

1

N
lnZN (β). (1.8)

The reason behind this equivalent choice between the free energy and the statistical pres-
sure is mainly historical: indeed, in the standard approaches to �eld theory and statistical
mechanics by theoretical physicists, they used to deal with the free energy, yet the math-
ematical physicists (in particular in the celebrated trilogy of papers describing Quantum
Field Theory as a Statistical Mechanical Theory by F. Guerra, L. Rosen and Barry Simon)
formulated the whole theory by using α(β) rather than f(β)): as we will tackle the whole
thesis with rigorous Guerra's rigorous techniques, often we will naturally prefer to keep
speaking about the statistical pressure rather than the free energy.

Once we are able to write explicitly the free energy or the statistical pressure in terms
of the system order parameters, we proceed with the calculation of the state equations for
these quantities. This procedure consists in deriving the statistical pressure with respect
to each order parameter in order to �nd its critical points where the statistical pressure
has a maximum (or a minimum in the case we are dealing with the free energy).

A licit question could be the following: why are we considering the thermodynamic
limit when neural networks cannot physically contain in�nitely many neurons? Other
than obtaining the associative memory characteristic (technically speaking, solely in the
thermodynamic limit, neural networks are a form of non-ergodic systems [4], as, along the
same reasoning, just in that limit phase transitions do exist [5]), we can also give a merely
practical justi�cation: in this limit, most of the probability distributions describing crucial
observables (e.g. those pertaining to thermodynamic functions as free energy, energy and
entropy) become delta-peaked, thus ultimately allowing a simpler description of the system
under study (w.r.t. �nite volume expressions).

1.1.2 Statistical inference in a nutshell

Following the same attitude of the previous Section, where we forced a deep and com-
plicated discipline in just a few pages, here we address Statistical Inference. In fact, this
is another giant �eld, but we will cover solely one of its many rami�cations. This Section
deals with a particular application of information theoretic concepts to problems of sta-
tistical inference (typically addressed in Machine Learning), that is density estimation for
a random variable X (with values x ∈ Ω) which is not completely speci�ed, in the sense
that the full set of probabilities {Pi, i = 1, . . . , N} or, in the case of a continuous random
variable, the probability density function P(x) are unknown. We assume that information
about probabilities is available in terms of averages 〈fα(x)〉 for a family {fα} of functions
of X (e.g. the moments µn = 〈xn〉 of X). The task is once more to estimate P solely
on the basis of available information. Remarkably, the method of choice here is again the
Maximum Entropy Principle, for density estimation this time, as we brie�y revise.

The solution to the problem formulated above, as proposed by Jaynes [6] in the 1950s,
is based on the observation that the (Shannon [7]) entropy associated to a random variable
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X, that is

S(X) = −k
∑

x∈A
P(x) lnP(x), (1.9)

describes the average uncertainty about actual outcomes of observations of X (with some
normalizing factor k whose knowledge is now inessential), therefore measuring our igno-
rance about X (see also [8, 9, 10]). According to Jaynes, a consequence of that observation
is that the best estimate of a set of probabilities {P(x), x ∈ A}, compatible with the avail-
able information, is given by an assignment of probabilities maximizing the entropy - that
is, our ignorance about X - subject only to constraints coming from experiemental �ndings.
Note that this can be seen as a mathematical formalization of the Occam razor and it is
not too far from the old Principle of Su�cient Reason by Liebniz.

One thereby expects to prevent inappropriate implicit assumptions about X, involving
properties that we have in fact no knowledge of, from sneaking into the probability assign-
ment that is being made. Jaynes prescription thus provides a systematic method of being
maximally unbiased in a probability estimate and only using known averages. In order to
formulate the solution in detail, we return to the previous convention of making explicit
the dependence of the entropy on the distribution P by using the notation S[P].

The problem to be solved can now formally be stated as follows. Let X be a ran-
dom variable, with the set A of possible realizations given. It is assumed that the only
information available about the probabilities {P(x), x ∈ A} is given in terms of a set of
averages

〈fα(x)〉 =
∑

x∈A
P(x)fα(x) = f̄α, fα ∈M,

with M = {fα(x)} denoting a given family of functions. We stress that this family must
always contain the function f0(x) ≡ 1, whose trivial average

〈f0(x)〉 =
∑

x∈A
P(x) = 1,

ensures that P(x) is a probability and thus S[P] a real entropy. Denoting P∗ as the best
estimate of the probability distribution compatible with the above constraints, then it is
found according to the following prescription

S[P∗] = max
P
{S[P]} such that 〈fα(x)〉 = f̄α. (1.10)

We will now brie�y discuss some prototypical examples to get acquainted with entropy
maximization by an inferential perspective.

� Worst Example: Uniform Distribution

Let us suppose we know nothing about the system under consideration. Then, the
only constraint is that P∗ is a probability distribution, so that Jaynes criterion turns
into the maximization of the functional

S0[P] = S[P] + kα0

(∑

x∈A
P(x)− 1

)
.

Then, P∗ is obtained with the conditions

∂S0[P]

∂P(x)
= −k lnP(x)− k + kα0 = 0, (1.11)

∂S0[P]

∂α0
= k

(∑

x∈A
P(x)− 1

)
= 0, (1.12)
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and it is trivial to check that the solution is the uniform distribution (as expected
since we have no a priori information on the system, see eq. 1.2).

� Crucial Example: Gaussian Distribution

Let us suppose now that - as in the standard experimental settings - we can measure
the �rst empirical momenta regarding the system under study, i.e. the mean and
the variance. Again, the functional to maximize can immediately be written in
Lagrangian form as

S2[P] = S[P] + kα0

(∑

x∈A
P(x)− 1

)
+ kα1

(∑

x∈A
xP(x)− µ1

)

+ kα2

(∑

x∈A
P(x)(x− µ1)2 − µ2

)
.

(1.13)

In a similar fashion as before, P∗ is found by solving

∂S0[P]

∂P(x)
= 0, (1.14)

∂S0[P]

∂αs
= 0, (1.15)

for s = 0, 1, 2. It is again trivial - but also crucial - to check that the solution is the
Gaussian distribution (as expected since we have information on the mean and the
variance of the system under consideration), namely

P∗(x) =
1

Z
eα1x+α2x2 =

1

Z
e−(x−α̂1)2/2α̂2

2 ,

with α̂1 = µ1 and α̂2 ≡ σ2 = µ2 − µ2
1.

Thus, the Gaussian probability density - apart from its key role in the Central Limit The-
orem - enjoys a privileged role also as a maximally unbiased estimator of a probability
density function with the only constraints of given �rst and second moments (or equiva-
lently of given mean and variance).

A �nal note stressing the overall harmony among the two approaches hereafter summa-
rized, is a tribute to reductionism (leaving criticism to the Conclusions): in Physics, as long
as forces are linear,1 the Hamiltonian (or energies) are quadratic forms in the microscopic
variable (for instance, for a spring whose law is F = −kx, as F = −∂xE(x) the associated
energy is E(x) = kx2/2) and, as a sharp consequence of this, the Boltzmann-Gibbs distri-
bution ∝ exp(−βE) is a Gaussian (in the microscopic variables x).

Note that the maximum entropy principle has tacitely been the unique guide in this stream-
lined and biased summary of the two disciplines we rely along this thesis.
In the next sections we address a celebrated example of a simple system (the Curie-Weiss
model) and a celebrated example of a complex system (the Sherrington-Kirkpatrick model):
these are the two fundamental ingredients whose generalities we need to know in order to

1The assumption of linearity in the forces is a natural de�nition of a �reductionistic description� as,
thanks to linearity, a sum of two forces translates in the linear sum of the consequences they imply: it is
trivial to visualize this by taking for example a vertical spring in a gravitational �eld and adding to its
lower extremum one or two masses and than checking the relative equilibrium elongation of the spring
itself, in formulae: F1 = −kx1, F2 = −kx2, → Ftot = F1 + F2 = −kx1 − kx2 = −k(x1 + x2) = −kxtot.
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construct a statistical mechanical theory of neural networks and learning machines: in the
present thesis, will focus mainly on the Hop�eld neural network (as the archetype of an
associative memory able to perform pattern recognition) and its dual representation, the
(restricted) Boltzmann machine, harmonic oscillator of a learning architecture: note that
these are both pairwise Hamiltonian, hence we will work at the complex boundaries of the
statistical reductionism (that we control mathematically and conceptually in a satisfactory
way even from Hard Science perspective), leaving deep and dense generalization to future
investigations.

1.2 Simple Systems: The Curie-Weiss paradigm

The Curie-Weiss (CW) model is often introduced during the study of standard statisti-
cal mechanics, in particular in relation with the Ising model (1920), originally developed to
investigate magnetic properties of matter [1, 2]. Brie�y, in the one-dimensional Ising model,
each of the N nuclei (labelled with i) is schematically represented by a spin σi assuming
only two values (σi = −1, spin down and σi = +1, spin up). Only nearest neighbour
spins interact reciprocally with positive (i.e. ferromagnetic) interactions Ji,i+1 > 0, hence

the Hamiltonian of this system can be written as HN (σ) ∝ −∑N
i Ji,i+1σiσi+1 − h

∑N
i σi,

where h tunes the external magnetic �eld and the minus signs ensure that spins try to align
with the external �eld and to get parallel each other in order to ful�l the minimum energy
principle. Clearly, this model can trivially be extended to higher dimensions. However,
due to prohibitive di�culties in facing the metric (rather than topological) constraints of
considering nearest neighbour interactions only, soon shortcuts were properly implemented
to turn around this path. A (actually crucial for Arti�cial Intelligence) e�ective simpli�ca-
tion in the treatment of the Ising model is the so called �mean �eld approximation�, whose
simpli�ed model is termed the Curie-Weiss (CW) model.

The CW model occupies an important place in statistical mechanics literature and
its application to information theory. Indeed, it is a paradigm for simple systems, whose
de�nition (one out of many) is the requirement that their related amount of free energy
minima does not scale with the system size N : in particular, the CW free energy presents
only two minima, whatever volume of spins N (even if N →∞).1

1.2.1 The mean �eld ferromagnetic model

Let us start the analysis of the CWmodel: in this mean �eld approximation, where each
spin interacts with all the other spins in the network (regardless any de�nition of distance),
the �nite volume case is de�ned on a fully connected graph whose nodes host N Ising spins
σi ∈ {−1, 1} ∀i = 1, . . . , N . The interactions are speci�ed with a coupling matrix {Jij}
(i.e. the weighted adjacency matrix in a graph theoretical jargon) such that Jij = J > 0
∀i, j = 1, . . . , N and i 6= j, while the diagonal terms are null. Without loss of generality, we
shall assume J = 1. For simplicity, we will also require that there is no external �eld acting
on the system (as one body terms ∝∑i hiσi are always mathematically trivial to handle
with since their joint probability distribution factorizes over the sites [8]). Therefore, we
can give the following

1Moreover, the model can also be interpreted as a neural network in which now neurons replace what
were originally called spins, and the values that they acquire are now indicating whether the cell is spiking
(+1) or quiescent (−1) [11].
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De�nition 1.1. The Hamiltonian function HN (σ) of the mean �eld ferromagnetic model
(CW) is:

HN (σ) = − 1

N

∑

1≤i<j≤N
σiσj = − 1

2N

N∑

i,j=1

σiσj +
1

2
. (1.16)

Remark 1.3. In the last de�nition, the last term 1/2 can be ignored since it is irrelevant
in the thermodynamic limit.

Remark 1.4. From now on, through the whole thesis, we write
∑
σ intending that the

sum is carried over all the possible values that σ can take in the con�guration space
Ω = {−1,+1}N .

De�nition 1.2. The order parameter for the CW model is the (global) magnetization m
de�ned as

m(σ) := m =
1

N

N∑

i=1

σi ∈ [−1, 1]. (1.17)

Using this de�nition, we can also rewrite the Hamiltonian (1.16) as

HN (m) = −N
2
m2,

that is clearly minimized for m2 = 1, or equally for m = ±1. Note further that, as it
should, the intensive energy HN/N does not scale with N , since HN (m) ∝ N · const(N),
where const(N) means that the quantity is bounded in N .

De�nition 1.3. For a given inverse temperature β = 1/T , the partition function ZN (β)
is de�ned as

ZN (β) :=
∑

σ

BN (β) =
∑

σ

e−βHN (σ) =
∑

σ

e
β
2N

∑
ij σiσj , (1.18)

where BN := e−βHN is the Boltzmann factor.

De�nition 1.4. The Gibbs measure ωN (·) for a generic function F depending on σ is

ωN (F )
.

:=

∑
σ F (σ)BN (β)∑
σ BN (β)

. (1.19)

De�nition 1.5. The statistical pressure α(β) = −βf(β) is de�ned as

α(β) := lim
N→∞

αN (β) = lim
N→∞

1

N
lnZN (β),

where, as standard, f(β) = N−1(E − TS) is the (intensive) free energy, namely the
di�erence - at given noise level T - between the energy and the entropy related to the
system (normalized to the volume).

Following the statistical mechanics approach, we are interested in obtaining an explicit
expression for the thermodynamic limit of the (intensive) free energy (or, equivalently, of
the pressure function) in terms of the order parameter: by extremizing such an expression
w.r.t. the latter, we will access the equation of state of CW model. This equation allows
to inspect phase transitions and painting a phase diagram for the model.

We will solve the problem of writing explicitly the thermodynamic pressure function
in three ways: the �rst is the standard determination of an upper and lower bound for the
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�nite volume pressure; the second follows a Guerra's (one-parameter) interpolating proce-
dure; �nally, the third method that is achieved through another Guerra's (two parameters)
interpolating scheme, i.e. the Hamilton-Jacobi formalism. Although the latter method is
way more elaborated than necessary for the CW, we present also this method of resolution
as a preparatory step to its application to the mean �eld spin-glass and to the mean �eld
neural network. Furthermore, the latter will act as a guide - once facing an AI rationale
in the �nal chapters of this thesis - to suggest us how to overcome the actual state of the
art in this formalization of AI.

Overall this chapter is dedicated more to the techniques (at work on the elementary
CW model where every stage of calculation is trivial) than to the Physics (that is rather
poor and well-known), so to get the reader acquainted with the underlying mathematical
methodologies the thesis has been built on.

In general, as a �rst step (when possible), it is always mandatory to check the existence
of the thermodynamic limit for the free energy. Although it is obvious that it would be
rather embarrassing speaking about not-existing quantities, we will see that - in general
- for neural networks this knowledge is not yet available: let us start addressing this
calculation for the CW model.

1.2.2 The thermodynamic limit

As stated above, the �rst problem one should face is to prove the existence (and possibly
the uniqueness) of the limit of the free energy per site when the size of the system goes to
in�nity. Indeed, in principle this limit could depend on the particular sequence of system
sizes chosen to reach the thermodynamic limit, or, even worst, it could oscillate or simply
diverge.

As it is well-known, for translational invariant systems with short range interactions
the existence and uniqueness are proven by dividing the system into large subsystems:
the interaction energy among them is a surface e�ect, negligible with respect to the bulk
energy, so that the free energy per site does not change essentially when the system size
is increased [5]. When the model is disordered and �nite-dimensional with short range
interactions, if the disorder distribution is translational invariant, this approach still works:
the subsystems interact weakly, due to the short range character of the potential, and
the free energy of the blocks can be approximated as independent identically distributed
random variables. Then, the existence of the large N limit of the free energy per site
follows from the strong law of large numbers.

When dealing with mean �eld models, surface terms are actually of the same order as
the bulk terms, and the approach outlined above does not work. In this case, the proof
of the existence of the thermodynamic limit has been provided by Guerra and Toninelli
and it is based on a smooth interpolation between a large system, made of N spin sites,
and two similar but independent subsystems, made of N1 and N2 sites respectively, with
N1 +N2 = N .

We start by considering the trivial inequality

2mM −M2 ≤ m2,

holding for any M ∈ R, which shall be meant as a trial magnetization. Plugging it into
the partition function (1.18), we get

ZN (β) =
∑

σ

e
βN
2
m2 ≥

∑

σ

eβmMNe−
1
2
βM2N .
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The sum is easy to compute, since the magnetization appears linearly and therefore the sum
factorizes over each spin. Physically speaking, we replaced the two-body interaction, which
is generally di�cult to deal with, with a one-body coupling. Then, we try to compensate
this replacement by modulating the �eld acting on each spin with the help of a trial �xed
magnetization M and a correction term quadratic in the latter. The result is the following
bound:

1

N
lnZN (β) ≥ 1

N
ln
∑

σ

eβM
∑
i σi +

1

N
ln e−

1
2
βM2N ≥

≥ 1

N
ln
( N∏

i=1

∑

σ

eβMσi
)
− 1

2
βM2 ≥

≥ sup
M∈[−1,1]

{
ln 2 + ln cosh(βM)− 1

2
βM2

}
,

(1.20)

holding for any size of the system N .

The opposite bound needs a few more steps. Firstly, let us notice that the magneti-
zation m can take only N + 1 distinct values. Using the trivial identity

∑
M δmM = 1,

we can therefore split the partition function into sums over con�gurations with constant
magnetization in the following way:

ZN (β) =
∑

σ

∑

M

δmMe
1
2
βNm2

, (1.21)

where the sum over M is performed over the values −1,−N−1
N , . . . , N−1

N , 1. Now, inside
the sum the relation m = M holds, also implying that m2 = 2mM −M2. Plugging the
last equality into equation (1.21) and using the trivial inequality δmM ≤ 1, we get

ZN (β) ≤
∑

M

∑

σ

eβNmMe−
1
2
βNM2

.

With the same calculations performed in (1.20), we have the resulting upper bound:

1

N
lnZN (β) ≤ ln

N + 1

N
+ sup
M∈[−1,1]

{
ln 2 + ln cosh(βM)− 1

2
βM2

}
. (1.22)

The upper (1.22) and lower (1.20) bounds converge to the same value of the pressure per
site in the thermodynamic limit.

Let us now move to illustrate the idea behind the (much more general) Guerra and
Toninelli interpolative approach to prove the existence of this limit [12]. To do this, we
start by dividing the N spin system into two subsystems of N1 and N2 spins each, with
N = N1 + N2. Denoting by m1(σ) and m2(σ) the corresponding magnetizations in the
two subsytems, trivially de�ned as

m1(σ) =
1

N1

N1∑

i=1

σi, (1.23)

m2(σ) =
1

N2

N∑

i=N1+1

σi, (1.24)

we can easily the global magnetization m(σ) as a convex linear combination of the two:

m(σ) =
N1

N
m1(σ) +

N2

N
m2(σ). (1.25)
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Since the function x→ x2 is convex, we have

ZN (β) ≤
∑

σ

expβ
(
N1m

2
1(σ) +N2m

2
2(σ)

)
= ZN1(β)ZN2(β), (1.26)

hence

NfN (β) = − 1

β
logZN (β) ≥ N1fN1(β) +N2fN2(β). (1.27)

This is the well known property of superadditivity of the free energy in the system size
that guarantees the validity of the Fekete lemma, ensuring convergence of fN (β) → f(β)
as N → ∞. The existence of the limit then follows from standard methods: the only
other ingredient for the proof, in a nutshell, is that the free energy is bounded from above
uniformly in N , which can be easily seen by setting M = 0 in Eq. (1.22), to get fN (β) ≤
−β−1 log 2. The property of superadditivity is not only fundamental in proving that the
limit exists, but it also implies that the limit equals the supN fN (β).

Operationally, the strategy is to interpolate between the original system of N spins
and the two non-interacting subsystems with respectively N1 and N2 units, comparing
their free energies. To this task we introduce an interpolating parameter t ∈ [0, 1] and an
auxiliary partition function

ZN (β, t) =
∑

σ

expβ
(
NtJm2(σ) +N1(1− t)Jm2

1(σ) +N2(1− t)Jm2
2(σ)

)
. (1.28)

For the boundary values t = 0, 1, we have

− 1

Nβ
logZN (1) = fN (β), (1.29)

− 1

Nβ
logZN (0) =

N1

N
fN1(β) +

N2

N
fN2(β). (1.30)

Taking the derivative respect to t, we obtain

− d

dt

1

Nβ
logZN (β, t) = −ωt

(
m2(σ)− N1

N
m2

1(σ)− N2

N
m2

2(σ)
)
≥ 0, (1.31)

where ωt(·) denotes the Boltzmann-Gibbs thermal average corresponding to the t-dependent
partition function (1.28). Then, integrating over t between 0 and 1 and recalling the bound-
ary conditions (1.29, 1.30), one �nds again the superadditivity property (1.27).

1.2.3 Guerra's Interpolating scheme

Now that we know we are speaking about well de�ned quantities, in this Section we
obtain the pressure density function through a celebrated Guerra's interpolation technique:
this exploits the real essence of the mean-�eld nature of these models as we are interpolating
between the original system under consideration (i.e. the CW in the present case) and a
one-body model. The terms appearing in the latter will be suggested by the model itself
and by the mathematical experience collected in making the calculations tractable.

Given the CWHamiltonian (1.16) and the related partition function (1.18) we introduce
the following generalized partition function

ZN (β, t)
.

=
∑

σ

exp
{ βt

2N

N∑

i,j=1

σiσj + (1− t)ψ
N∑

i=1

σi

}
=

=
∑

σ

exp
{βt

2
Nm2 + (1− t)ψNm

}
,

(1.32)



1.2. SIMPLE SYSTEMS: THE CURIE-WEISS PARADIGM 17

withm de�ned in (1.17), t ∈ [0, 1] and ψ ∈ R is a tunable parameter that we will determine
later on. This new generalized partition function is an interpolation between the two-body
interaction, once evaluated at t = 1, and the much simpler one-body problem, described
by t = 01. We can then de�ne a generalized pressure αN (β, t) as

αN (β, t)
.

=
1

N
lnZN (β, t),

the Boltzmann factor BN (t) such that ZN (β, t) =
∑
σ BN (t), and the related generalized

Gibbs measure ωt(·) following the analogous de�nition (1.19). The key observation is
enclosed in the next

Proposition 1.1. The statistical pressure for a �nite volume N can be written in the
following way thanks to the fundamental theorem of calculus:

αN (β) ≡ αN (β, t = 1) = αN (β, t = 0) +

∫ 1

0
ds
[
∂tαN (β, t)

]
t=s
. (1.33)

The computation of each term is quite simple. For the one-body (i.e. t = 0) term we
have

αN (β, t = 0) =
1

N
lnZN (β, t = 0) =

1

N
ln
(∑

σ

eψ
∑
i σi
)

=

=
1

N
ln
( N∏

i=1

∑

σ

eψσi
)

= ln 2 + ln cosh(ψ),

(1.34)

while the derivative in (1.33) is

∂

∂t
αN (t) =

1

N

∂tZN (β, t)

ZN (β, t)
=

1

NZN (β, t)

[∑

σ

(βN
2
m2 − ψNm

)
BN (t)

]
=

=
β

2
ωt(m

2)− ψωt(m).

(1.35)

Now, let us go through the following considerations. We know that the average value of
the magnetization exists in the thermodynamic limit -let us call this value M ∈ [−1,+1]-
and, in that limit, P(m) = δ(m−M). Then, trivially we have

ωt
(
(m−M)2

)
= ωt

(
m2
)

+M2 − 2Mωt(m). (1.36)

Looking back at the �nal result of equation (1.35), we notice that we can manipulate the
expression as follows:

β

2
ωt
(
m2
)
− ψωt(m) =

β

2

(
ωt
(
m2
)
− 2ψ

β
ωt(m)

)
.

Therefore, setting ψ = βM and using equation (1.36), we can write a convenient expression
for the pressure derivative as

∂

∂t
αN (β, t) =

β

2

(
ωt
(
m2
)
− 2ψ

β
ωt(m)

)
=
β

2
ωt

(
(m−M)2

)
− 1

2
βM2. (1.37)

Finally, plugging the results of equations (1.34) and (1.37) into (1.33), we can state that
the pressure function is de�ned by the next

1The presence of the parameter ψ -rather than ψi- is due to the fact that we are working in a mean
�eld approximation, meaning that each spin is equally in�uenced by a uniform presence of the others.
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Theorem 1.1. The in�nite volume limit of the the Curie-Weiss statistical pressure α(β)
can be written in terms of the magnetization as

αN (β) = sup
M∈[−1,1]

{
ln 2 + ln cosh(βM)− 1

2
βM2 +

β

2
ω
(

(m−M)2
)}
, (1.38)

where the last term at the r.h.s. of the above expression converges to 0 in the thermodynamic
limit (since the order parameter is a self-averaging quantity). The free energy extremization
w.r.t. M ensures the requirement of maximum entropy and minimum energy principles,
and returns the celebrated self-consistency relation

M = tanh(βM), (1.39)

by which the phase diagram of the CW model becomes accessible.

1.3 Complex Systems: The Sherrington-Kirkpatrick paradigm

Spin glasses, besides constituting �a challenge for mathematician� [13], are among the
paradigmatic models in complex systems theory, whose distinctive feature is that the num-
ber of free energy minima sensibly grows with the system sizeN . Their �elds of applications
include optimization theory, computer science, biology, economics etc. [14, 15, 16] and,
last but not least, Arti�cial Intelligence [11, 17].
The expression spin glass was originally coined to designate some magnetic alloys with a
very peculiar behavior, in particular characterized by lack of long-range order and very
slow relaxational dynamics at low temperatures. Experimentally, in such alloys one can
observe, for example, a non-periodic arrangement of magnetic moments below a critical
temperature, and memory e�ects in susceptibility and residual magnetization. To un-
derstand some of these phenomena, Edwards and Anderson (EA) proposed in 1975 an
extension of the Ising model in which the interactions between couple of spins are random
variables assuming both positive and negative values. The next step was the introduction
of a simpler model by Sherrington and Kirkpatrick (SK), i.e. the mean �eld version [18] of
the EA model. Curiously, the title of the paper was �Solvable Model of a Spin-Glass� but,
even if the authors - using the famous replica trick in the replica symmetric approximation
- found an explicit form for the free energy, they realized that their solution was only valid
above a certain temperature. The correct answer to the problem was found in the '80s with
the seminal works by Parisi [19]. There, the author proposed a formula for the free energy
per site in the thermodynamic limit and a description of the pure states of the system.
However, a rigorous proof of the validity of Parisi formula was carried out only some years
ago, and it is splitted across two works by Guerra [20, 21] and Talagrand [22, 23]. Apart
from a few exceptions [4, 24, 25], most important rigorous results are quite recent. The ex-
istence of the thermodynamic limit for the free energy, for example, was proven by Guerra
and Toninelli after more than 20 years, in 2002 [12]. The techniques used for these recent
breakthroughs, which are mainly based on interpolation, found fruitful applications also
in neighboring �elds, such as for example optimization problems and diluted spin glasses,
�nite-range spin glasses, and neural networks [26, 27, 28, 29, 30], as we will extensively
deepen in this thesis.

Spin glasses can be simply de�ned as magnetic systems with a non-periodic freezing
of the spins at low temperatures. The �rst experiments which drew some attention to
these characteristics were performed on dilute solutions of magnetic transition metal im-
purities in noble metal hosts. In these systems, the impurity moments produce a magnetic
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polarization of the host metal conduction electrons, which is positive at some distances
and negative at others. Beneath a characteristic temperature, a Mössbauer line-splitting
in zero applied �eld was observed, indicating a local hyper�ne �eld due to local freezing
of the magnetic moments. Moreover, the absence of any corresponding magnetic Bragg
peak in neutron di�raction demonstrated that the freezing was not periodic. Another sign
of this non-ferromagnetic freezing came from earlier measurements of the susceptibility,
showing a peak at a similar temperature and therefore highlighting the presence of a phase
transition. Other remarkable features, such as preparation-dependence e�ects and a con-
siderable slowing-down of response to external perturbations, demonstrated the presence
of many metastable states in this new low-temperature phase, with signi�cant free energy
barriers separating these states. The �rst historical attempt to produce a theory of the
described transition is due to Edwards and Anderson (see e.g. [19, 31, 32]), who proposed
a Ising-like Hamiltonian, with the magnetic moments placed on the N sites of a hypercubic
lattice, and keeping only a single spin component σi = (~σi)z = ±1:

HN (σ|J) = −
∑

〈i,j〉

Jijσiσj , (1.40)

where the nearest neighbors interactions Jij are random independent and identically dis-
tributed variables (Gaussians, for example), with random signs. It is then clear that a key
ingredient is disorder : the Hamiltonian depends not only on the con�guration of the sys-
tem, which we denote by σ, and possibly on the strength of the external (magnetic) applied
�elds, but also on some random parameters (usually, the couplings among the elementary
degrees of freedom), whose probability distribution is supposed to be known. The random
parameters are collectively denoted as �quenched� or �frozen� disorder. From a physical
point of view, the word �frozen� means that we are dealing with a disordered system whose
impurities have a dynamics which is many orders of magnitude slower than the evolution
of the spin degrees of freedom. Therefore, the disorder does not reach thermal equilibrium
on the time scales of the spin relaxation and can be considered as �xed (this is somewhat
similar to the Born-Oppenheimer adiabatic approximation for dealing with electron and
nuclei dynamics in molecular systems). This fact has deep consequences on the way we
have to perform the averages over the couplings, compared to the con�gurations σ. The
second key ingredient, strongly related with the disordered nature of such systems, is frus-
tration, i.e., competition between di�erent terms in the Hamiltonian, so that they can not
all be minimizied simultaneously. More precisely, a system is said to be frustrated if there
exist a loop on which the product of the couplings is negative (see Fig. 1.1). We have seen
before (see Sec. 1.2) how in the Curie-Weiss model each spin-spin interaction is minimized
when the two spin are parallel, i.e., σiσj = +1 for all couples 〈i, j〉. In that case, there are
only two such con�gurations, one with all the spins equal to +1, the other with spins −1,
and they are connected by the global spin-�ip symmetry σi → −σi ∀ i. If the couplings
Jij have random sign (and possibly modulus), the ground state has a high degeneracy and
they are not connected to one another by elementary symmetry transformations.1

1.3.1 The mean-�eld spin glass model

The Edwards-Anderson (EA) model is already somewhat simpli�ed with respect to the
actual physical situation: a more realistic model could consider, for instance, interactions
J = {Jij} decaying with distance, instead of nearest-neighbors couplings, or Heisenberg

1Notice that frustration disappears when considering the system on graphs without loops, for example
a tree.
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Figure 1.1: A very simple example of a frustrated system. The spins tend to be
parallel when they interact with a positive coupling and anti-parallel when the interaction
is negative. Obviously, not all the conditions can be met simultaneously, meaning that
interaction is frustrated.

spins ~σi, with more than one component attached on each site. However, despite its
intrinsic limitation, it was already too di�cult to be attacked analytically, and suitable
approximation schemes were developed. In particular, the most important one (and also the
richest in surprises) was the mean-�eld approximation. In this case, while maintaining the
fundamental features of disorder and frustration, the geometrical structure of the lattice is
disregarded (as we already discussed for Ising and Curie-Weiss models), allowing for every
magnetic moment to interact with all the others, irrespective of the distance. The �rst
model with such requirements was introduced by Sherrington and Kirkpatrick (SK) (see
e.g. [19, 31]), whose Hamiltonian is given by the next

De�nition 1.6. The mean �eld spin glass is introduced by the following Sherrington-
Kirkpatrick Hamiltonian

HN (σ|h;J) = − 1√
N

∑

1≤i<j≤N
Jijσiσj − h

∑

1≤i≤N
σi. (1.41)

where the �rst term at the r.h.s. is a long range random two-body interaction, while the
second one represents the interaction of the spins with an homogeneous magnetic �eld h. In
the following, we will often consider the zero external �eld case, denoting the Hamiltonian
simply with HN (σ|J). The N(N − 1)/2 couplings Jij are assumed to be i.i.d. centered
unit Gaussians, so that, denoting with E the average on disorder, we have

EJij = 0 and EJ2
ij = 1.

Note that this choice of the coupling is a matter of convenience: in fact spin glasses
share the universality property [33], that guarantees that any other symmetric probability
distribution with �nite moments could be chosen for Jij without modifying the free energy
of the system, apart from error terms vanishing in the thermodynamic limit.
The case Jij = ±1 with equal probability 1/2, for instance, is often considered in the
literature. The normalization factor 1/

√
N guarantees that (intensive) energy, (intensive)

entropy and (intensive) free energy density do not scale with N in the thermodynamic
limit, as they should. One may point out that, in the Curie-Weiss model, the normalizing
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factor is stronger (namely 1/N , to be compared with 1/N1/2), but - in the SK case - the
random signs of the couplings Jij produce cancellations among the many terms of the
Hamiltonian HN . The correctness of this choice can be easily understood by checking the
linear extensivity of the (extensive) expectation value for the internal energy of the model:
this can be done elementary by considering a duplicated system with con�gurations σ1

and σ2, but with the same disorder (i.e. identical couplings), and computing

E(HN (σ(1)|J)HN (σ(2)|J)) =
1

N

1,N∑

i<j

1,N∑

k<l

E(JijJkl)σ
(1)
i σ

(1)
j σ

(2)
k σ

(2)
l

=
1

N

∑

1≤i<j≤N
σ

(1)
i σ

(1)
j σ

(2)
i σ

(2)
j

=
N

2

( 1

N

N∑

i=1

σ
(1)
i σ

(2)
i

)2
− 1

2
. (1.42)

The quantity

q12 = q(σ(1),σ(2)) =
1

N

N∑

i=1

σ
(1)
i σ

(2)
i , (1.43)

occurring in the previous equation is fundamental, since it is the order parameter for the
model (as we will see in the following), and it is called overlap. It measures the resemblance
between the con�gurations of the two copies (or replicas, as we will soon better specify)
σ(1) and σ(2), ranging from −1, when each spin of a replica is opposed to the corresponding
one of the other copy, to +1, when they are perfectly aligned. The fact that the overlap is a
resemblance measure is con�rmed by its relation with the Hamming distance d(σ(1),σ(2)),
which counts the number of non-aligned spins:

d(σ(1),σ(2)) =
1

2
(1− q12).

Then, taking two identical copies σ(1) = σ(2), we note that

E (HN (σ|J))2 =
N

2
− 1

2
, (1.44)

showing that the normalization factor is correct.

1.3.2 Quenched and annealed free energies

We now start with formalizing the thermodynamic observables for disordered systems.
First of all, for a given inverse temperature β = 1/T , we introduce the following

De�nition 1.7. The disorder-dependent partition function ZN (β, h;J), the quenched av-
erage of the free energy per site fN (β, h), and the disorder dependent Boltzmann-Gibbs
state ωJ read as

ZN (β|h;J) =
∑

σ

exp(−βHN (σ|h;J)), (1.45)

fN (β|h) = − 1

βN
E logZN (β|h;J), (1.46)

ωJ (A) = ZN (β, h;J)−1
∑

σ

A(σ) exp(−βHN (σ|h;J)), (1.47)

where A = A(σ) is a generic observable (for example the energy HN ), depending on the
spin con�guration σ.
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In some cases it will be more practical to deal, rather than with fN (β|h), with

αN (β|h) =
1

N
E logZN (β|h;J) = −βfN (β|h), (1.48)

namely the statistical pressure, as already seen for the CW model. As for the Hamilto-
nian, in the following we will shorten the notation in ZN (β|J), fN (β), αN (β) etc. when
considering the case of zero external �eld (h = 0). The quenched free energy is the correct
average if one looks for the free energy of a system where the disorder is frozen (i.e. its
dynamics is many orders of magnitude slower than the dynamics of the spin degrees of
freedom), like in real spin glasses.

Remark 1.5. A remark is in order here: it is mandatory to notice that - when mimicking
neural networks with statistical mechanical models - we will have to take into account that,
in the analogy, while the neurons will be modeled by the spins, while couplings play the
role of synapses. Since the latter can be both excitatory as well as inhibitory and they
must be accounted by the couplings Jij (or synaptic matrix in neural network jargon), it is
then clear that the correct reference framework must be a spin-glass and not the simplest
ferromagnet. Furthermore, the frustration that these random couplings introduce in the
network is the responsible for the proliferation of the free energy minima that is, in turn,
something that we will need in order to develop an extensive memory storage (we will
deepen these concepts in the following Chapters).

Moreover, the free energy per spin for a given realization of disorder

− 1

βN
logZN ,

is self-averaging [34], meaning that its deviations from the quenched value vanish in the
thermodynamic limit with probability one.

De�nition 1.8. One can also consider the so-called annealed free energy

fAN (β|h) = − 1

βN
logEZN (β|h;J), (1.49)

where the disorder averages is performed directly on the partition function.

From a physical point of view, this corresponds to the assumption that the couplings
relaxation characteristic timescales are on the same level of those relative to spins ther-
malization (in the landscape produced by the synapses - namely by the couplings - that
are e�ectively considered as frozen on the short timescale involved by neural dynamics),
and let them participate in the thermal equilibrium. This terminology comes from met-
allurgy and the thermal processing of materials: a �quench� corresponds in this jargon to
preparing a sample by quickly bridging it from high to low temperatures, so that atoms
do not change their positions, apart from small vibrations. In the �annealing� process, on
the contrary, the cooling down is slower and gradual, so that atoms can rearrange and �nd
favorable positions.

Remark 1.6. A quite interesting analogy between spin glasses and neural networks lies in
this adiabaticity of the timescales regarding spins (neurons) and links (synapses), hidden
behind the concept of quenched variables: indeed, in neural networks, in order to preserve
the learning ability of the net, it is pivotal that neurons and synapses evolve on very dif-
ferent timescales and, for the (well known) biological side, these are order 102 milliseconds
for the neural �ring rate and from days to months for synaptic plasticity, hence we can
safetly consider quenched the synapses while interested in neural dynamics, much as in
glassy physics couplings do not evolve while spins (try to) thermalize.
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The computation of the annealed free energy is trivial, since the Boltzmann factor in
this case can be written as the product of N(N −1)/2 statistically independent terms, one
for each pair of sites, so that

ZN (β|h;J) =
∑

σ

∏

1≤i<j≤N
exp

( β√
N
Jijσiσj

)
× exp

(
βh

∑

1≤k≤N
σk

)
,

and the disorder average factorizes as

EZN (β|h;J) =
∑

σ

exp

(
β2

2N

N(N − 1)

2

)
exp

(
βh

∑

1≤k≤N
σk

)

= 2N coshN (βh) exp
(β2

4
(N − 1)

)
.

Finally, the annealed free energy per site is

fAN (β|h) = − 1

β
log 2 cosh(βh)− β

4

N − 1

N
, (1.50)

and in the thermodynamic limit we have the next

Proposition 1.2. The in�nite volume limit of the annealed pressure of the SK model reads
as

fA(β|h) = lim
N→∞

fAN (β|h) = − 1

β
log 2 cosh(βh)− β

4
. (1.51)

Remark 1.7. Since the function x → log x is concave, by the Jensen inequality we can
immediately say that the quenched free energy is always greater or equal than the annealed
one

− 1

βN
E logZN (β|h;J) ≥ − 1

βN
logEZN (β|h;J).

Remark 1.8. It is also immediate to see that the annealed free energy cannot be the correct
one, at least at low temperatures, if we look at the corresponding annealed entropy. In the
zero-�eld case, in fact, this is given by

sA(β) = β2∂βf
A(β) = log 2− β2

4
, (1.52)

and in particular it becomes negative for β < β∗ = 2
√

log 2. But entropy is by de�nition
the logarithm of the number of con�gurations, and it cannot be negative for a discrete
system.

1.3.3 Replicas and overlap

Previously, we vaguely introduced the concept of overlap, as de�ned in Eq. 1.43, by
considering two copies (or more precisely replicas) of the system. In general, we can
consider a generic number n of independent copies of the system, characterized by the spin
con�gurations σ(1), ...,σ(n), distributed according to the product state

ΩJ = ω
(1)
J × ω

(2)
J × ...× ω

(n)
J , (1.53)

where each ω
(a)
J acts on the corresponding σ

(a)
i variables. We stress again that all the

replicas are all subject to the same sample J = {Jij} of the external disorder: These copies
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of the system are usually called replicas [19]. When considering such a replicated system,
the Boltzmann factor is simply given by the product of the corresponding Boltzmann factor
for the single n replicas

exp
(
−β
(
HN (σ(1)|h;J) +HN (σ(2)|h;J) + ...+HN (σ(n)|h;J)

))
. (1.54)

De�nition 1.9. Given a generic observable, represented by a smooth function A = A(σ)
of the con�guration of the n replicas, we de�ne the 〈·〉 averages as

〈A(σ(1),σ(2), ...,σ(n))〉 = EΩJ (A(σ(1),σ(2), ...,σ(n))). (1.55)

Replica overlaps are the quantities that one usually measures in numerical experiments.
It is important to note that if we consider Boltzmann averages ΩJ over di�erent groups of
replicas they factorize:

ΩJ (q12q34) = ΩJ (q12)ΩJ (q34).

It is instead the average over disorder which introduces correlations between them, since
in general

〈q12q34〉 6= 〈q12〉〈q34〉.
On the other hand, these averages are invariant under permutation of replica indices, for
instance

〈q12q23〉 = 〈q24q45〉.
The whole physical content of the theory is encoded in the distribution of overlap [19],
and the averages of many physical quantities can be expressed as 〈·〉 averages over overlap
polynomials. For example, let us consider the disorder average of the internal energy per
spin N−1ωJ (HN ) for h = 0. Using the integration by parts formula

E(JA(J)) = E
( ∂

∂J
A(J)

)
, (1.56)

which is valid for a centered unit Gaussian variable J and any smooth function A(J), it is
straightforward to check that the energy density does not scale with the system size N :

E ≡ 〈HN 〉
N

=
1

N
EωJ (HN ) = −β

2
(1− 〈q2

12〉). (1.57)

Another example is given by its β derivative, which can be easily evaluated as

N−1∂β〈HN 〉 = −N−1
(
〈H2

N 〉 − 〈HN 〉2
)

= −1

2

(
1− 〈q2

12〉
)

+
Nβ2

2

(
〈q4

12〉 − 4〈q2
12q

2
23〉+ 3〈q2

12q
2
34〉
)
.

1.3.4 The thermodynamic limit

The problem of proving the existence of the thermodynamic limit of the SK free energy
remained open for more than twenty years, until the work by Guerra and Toninelli [12].
In order to prove the existence of the thermodynamic limit, as for the Curie-Weiss model
we divide the N sites in two blocks N1, N2, with N1 + N2 = N , and de�ne the auxiliary
partition function

ZN (β, t) =
∑

σ

expβ
(√ t

N

∑

1≤i<j≤N
Jijσiσj +

√
1− t
N1

∑

1≤i<j≤N1

J ′ijσiσj

+

√
1− t
N2

∑

N1≤i<j≤N
J ′′ijσiσj

)
, (1.58)
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depending on the parameter t ∈ [0, 1]. The external disorder is represented by the inde-
pendent families of unit Gaussian random variables J , J ′ and J ′′. Let us stress that the
two subsystem are subject to an external disorder which is independent with respect to
the original system, but the probability distributions are the same. As in the previous
case, the boundary values of the auxiliary partition function correspond respectively to
the original system at t = 1, and to the two independent subsystems at t = 0:

ZN (β, 1) = ZN (β), (1.59)

ZN (β, 0) = ZN1(β)ZN2(β). (1.60)

Consequently, the free energies are realized as

E logZN (β, 1) = −NβfN (β), (1.61)

E logZN (β, 0) = −N1βfN1(β)−N2βfN2(β). (1.62)

Here, the disorder average is performed on all the variables J , J ′ and J ′′. The derivative
with respect to t of the auxiliary free energy is given by

− d

dt

1

Nβ
E logZN (β, t) = − 1

2N
E
( 1√

tN

∑

1≤i<j≤N
Jijωt(σiσj) (1.63)

− 1√
(1− t)N1

∑

1≤i<j≤N1

J ′ijωt(σiσj)−
1√

(1− t)N2

∑

N1≤i<j≤N
J ′′ijωt(σiσj)

)
,

where ωt(·) is the Gibbs average corresponding to the auxiliary partition function (1.58).
Using again the integration by parts formula on the previous expression, we have

− d

dt

1

Nβ
E logZN (β, t) = − β

4N2

∑

1≤i<j≤N
E
(
1− ω2

t (σiσj)
)

(1.64)

+
β

4NN1

∑

1≤i<j≤N1

E
(
1− ω2

t (σiσj)
)

+
β

4NN2

∑

N1≤i<j≤N
E
(
1− ω2

t (σiσj)
)

=
β

4
〈q2

12 −
N1

N
(q

(1)
12 )2 − N2

N
(q

(2)
12 )2〉t,

where we wrote 〈·〉t = Eωt(·) and de�ned the partial two-replica overlaps

q
(1)
12 =

1

N1

∑

1≤i≤N1

σ1
i σ

2
i , (1.65)

q
(2)
12 =

1

N2

∑

N1≤i≤N
σ1
i σ

2
i , (1.66)

corresponding to the two subsystems. The overlap plays here a role similar to the magne-

tization in the non-disordered case. Indeed, q12 is a convex linear combination of q
(1)
12 and

q
(2)
12 of the form

q12 =
N1

N
q

(1)
12 +

N2

N
q

(2)
12 , (1.67)

and, because of the convexity of the function x→ x2, we have the inequality

〈q2
12 −

N1

N
(q

(1)
12 )2 − N2

N
(q

(2)
12 )2〉t ≤ 0. (1.68)

Therefore, we can state as a preliminary result:
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Lemma 1.2. The quenched average of the logarithm of the interpolating partition function,
de�ned by (1.58), increases in t, i.e.

− d

dt

1

Nβ
E logZN (β, t) ≤ 0. (1.69)

Moreover, after integrating over t and recalling the boundary conditions (1.61, 1.62),
we get the �rst main result

Theorem 1.3. The free energy for the SK model is subadditive:

NfN (β) ≤ N1fN1(β) +N2fN2(β). (1.70)

It is interesting to compare this result with the corresponding (1.27) for the Curie-
Weiss model, whose free energy is superadditive. Of course, for the SK model it is the
pressure αN (β) = −βfN (β) which is superadditive because of the minus sign. Together
with an N -independent upper bound on the pressure, which is easy to obtain, one deduces
again the existence of the thermodynamic limit (for both the pressure and the free energy
density), therefore proving the following

Theorem 1.4. The in�nite volume limit for fN (β) exists and equals its in�mum:

f(β) ≡ lim
N→∞

fN (β) = inf
N
fN (β). (1.71)

Remark 1.9. Note that this result is easily extended to the p-spin models (in which
interactions are more than pairwise) since the overlaps to the square in (1.64) and (1.68)
are simply replaced by the overlap to the power p, and the (1.69) still holds: this observation
will be useful in the last Chapters of this thesis, when we will face how to overcome the
actual state of the art in modeling AI via statistical mechanics.

1.3.5 The replica trick and Parisi theory

Parisi Theory (that resulted in the Nobel Prize to Giorgio Parisi this year) has been
really a deep revolution in statistical mechanics, de facto opening the study of complex
systems with a totally new perspective. Since Parisi developed his theory working on the
SK model, it is impossible not to pay a minimal tribute and summarize his main results.
However, we must also say that, as the theory itself is really tricky and its usage has
not yet percolated in AI, we will not deepen it in all details and we remind the study of
replica symmetry breaking to excellent textbooks [19, 31, 35]. The natural starting point to
examine Parisi theory are the basic concepts of spontaneous symmetry breaking and phase
coexistence in statistical mechanics [2, 5, 36]. We consider a system on a d-dimensional
hypercubic lattice, de�ned by a Hamiltonian H(σ), depending on the con�gurations of all
spins σi, with i ∈ Zd. The system is initially restricted to a �nite subset Λ of the lattice
with partition function ZΛ(β), in order to deal with mathematically well-de�ned objects,
and its �nite volume free energy per site at the temperature T = 1/β is

fΛ(β) = − 1

|Λ|β logZΛ(β), (1.72)

where |Λ| is the cardinality of the subset Λ. Then, one lets Λ grow to the whole in�nite lat-
tice Zd in a suitable way imposing boundary conditions, i.e. the positions of the boundary
spins or their interaction with the external world (with a certain arbitrariness). It can be
proven that these conditions, if interactions have short range, do not a�ect the free energy
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per site in the limit Λ → Zd, but the equilibrium thermodynamic state of the system is
also determined by all the correlation functions

lim
Λ→Zd

〈σi1 ...σin〉Λ, (1.73)

for all �nite sets indices i1, ..., in, where 〈·〉 is the Boltzmann-Gibbs thermal average at the
temperature 1/β. The correlation functions in general depend on the choice of the bound-
ary conditions, also in the in�nite volume limit. Another usual and strictly related way
to select di�erent equilibrium states is to break a symmetry explicitly in the Hamiltonian,
i.e. by introducing proper auxiliary external �elds αi which are removed only after the
thermodynamic limit has been performed. More precisely, the thermodynamic limit for
the free energy and for the correlation functions are computed with the explicitly broken
symmetry Hamiltonian, and the external �elds are then put to zero. In the Curie-Weiss
model, for instance it is possible to select one of the two equilibrium states with positive or
negative magnetization by introducing a term −h∑i σi in the Hamiltonian which explic-
itly breaks the spin-�ip symmetry, and taking the limit h→ 0± after the thermodynamic
limit. The set of all equilibrium states forms a simplex, and every state can be written
in an unique way as a convex linear combination of certain extremal states, called pure
states or pure phases. They are characterized by the cluster property, or spatial decay of
correlations, meaning that their connected correlations functions vanish at large distance
(or for di�erent points in mean �eld models):

〈σi1 ...σinσj1 ...σjm〉 → 〈σi1 ...σin〉〈σj1 ...σjm〉, (1.74)

for
min
a,b
|ia − jb| → ∞.

Pure states correspond to our intuitive idea of an equilibrium state. For example, in the
Boltzmann-Gibbs state for water at zero Celsius the system has probability 1/2 of being
all water and 1/2 of being all ice, while in a pure state the whole sample is water or ice.
First order phase transitions are usually associated with the phenomenon of spontaneous
symmetry breaking: the Hamiltonian of the model (and the non-clustering Boltzmann-
Gibbs state) is invariant under the action of a symmetry group (for instance, the Z2 spin-
�ip transformation in the Curie-Weiss model, or rotational symmetry in the Heisenberg
model), but equilibrium states belong to smaller symmetry groups. Therefore, it is the
symmetry of the model suggesting the choice of the auxiliary external �elds (or boundary
conditions) which select the pure states, and applying the symmetry group transformation
to a particular symmetry-breaking state one obtains another equilibrium state.

Spin-glasses are much more complicated from this point of view, since at low temper-
ature there is an in�nite number of pure phases, and it is not clear a priori which should
be the right external �elds (or boundary conditions) to select them, since the broken sym-
metry in the phase transition is not obvious. Moreover, due to this in�nite number of
states, the Gibbs phase rule, which states that k − 1 thermodynamic parameters have to
be �xed in order to have k coexisting pure phases (e.g. temperature and pressure in the
triple point of a �uid), does not hold in this case. As Parisi showed, the spin glass phase
transition is associated to a very peculiar spontaneous symmetry breaking, i.e. the group
of permutations of a set of n identical replicas of the system in the limit n→ 0.

To explain this, we need to introduce the replica trick, which is the celebrated �rst method
developed for the calculation of the free energy in complex scenarios (mainly statistical
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mechanics of spin glasses and statistical �eld theory). The whole method is based on the
representation of the (quenched) free energy as

fN (β) = − 1

βN
lim
n→0

EZn − 1

n
. (1.75)

The integer moments EZnN of the partition function in the r.h.s. are simpler to compute
than the averaged logarithm E logZN , and the trick consists in considering their analytic
continuation to real n, and then taking the limit n → 0. For integer n, the moments are
nothing but the average of the partition function of a system of n identical (i.e. with the
same disorder) replicas of the original system

EZnN (β|h;J) = E
∑

σ(1)

...
∑

σ(n)

exp
(
− β

n∑

a=1

HN (σ(a)|h;J)
)
. (1.76)

The disorder average can be easily carried out since it involves only independent Gaussian
integrals, so we �nd

EZnN (β|h;J) = exp
(β2n(N − n)

4

)

∑

σ(1)...σ(n)

exp
( β2

2N

∑

1≤a<b≤n

(∑

i

σ
(a)
i σ

(b)
i

)2
+ βh

n∑

a=1

∑

i

σ
(a)
i

)
,

(1.77)

which involves the square overlaps between replicas. The sum over con�gurations of repli-
cated systems can be computed by linearizing each of these terms by Gaussian integrals.
To do this, we introduce a n × n symmetric matrix Qab with zeros on the diagonal, and
write the sum in (1.77) as

∑

σ(1)...σ(n)

∫ ∏

a<b

(√β2N

2π
dQab

)
exp

(
− β2N

2

∑

a<b

Q2
ab

+ β2
∑

a<b

(∑

i

σ
(a)
i σ

(b)
i

)
Qab + βh

∑

a

∑

i

σ
(a)
i

)
.

(1.78)

Since clearly there are no couplings between spins belonging to the same replica, it is
possible to de�ne new spin variables sa = ±1, with a = 1, ...n, and observe that

∑

σ(1)...σ(n)

exp
(
β2
∑

a<b

(∑

i

σ
(a)
i σ

(b)
i

)
Qab + βh

∑

a

∑

i

σ
(a)
i

)

=
(∑

{s}

exp
(
β2
∑

a<b

Qabsasb + βh
∑

a

sa

))N
.

Then, equation (1.77) becomes

EZnN (β|h;J) =

∫ ∏

a<b

(√β2N

2π
dQab

)
exp(−NA[Q]), (1.79)

A[Q] =
β2

2

∑

a<b

Q2
ab − log

∑

{s}

exp
(
β2
∑

a<b

Qabsasb + βh
∑

a

sa

)

−β
2n(N − n)

4N
, (1.80)
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with the functional A[Q] depending on Q, n, β and h. Since the exponent in the integrand
of (1.79) is proportional to N , in the limit of N going to in�nity the n-th moment of ZN
can be evaluated through the saddle point method. The in�nite volume free energy, once
the saddle point has been determined, is then obtained as

f(β, h) = lim
n→0

1

βn
A[Qsp]. (1.81)

SinceQ is a symmetric matrix with zeros on the diagonal, the model n(n−1)/2 independent
order parameters, and for a given choice of Q there are such many saddle-point equations
∂A/∂Qab = 0, which take the form

Qab =

∑
{s} sasb exp

(
β2
∑

a<bQabsasb + βh
∑

a sa
)

∑
{s} exp

(
β2
∑

a<bQabsasb + βh
∑

a sa
) (1.82)

In the limit n→ 0, it can be shown [19] that the r.h.s. of this equation is equivalent to

EΩJ (σ
(a)
i σ

(b)
i ) ≡ 〈σ(a)

i σ
(b)
i 〉,

whence, since all sites i are equivalent for large N , the saddle point equation (1.82) can be
written as

lim
n→0

Qab = 〈qab〉. (1.83)

This relation is valid for a replica symmetric solution (as we will shortly see). When this
symmetry is broken, if a particular choice of Q is a solution of the saddle point equation,
then any matrix obtained with a permutation of rows or columns of Q will also be a
solution. Therefore, in general one should divide the l.h.s. by n(n−1)/2. In the spin glass
phase, the average overlap is expected to be di�erent from zero, since it is the average of
the positive quantity ω2

J (σi) for di�erent realizations of the disorder (while ωJ (σi) can be
positive or negative depending on the particular realization of J , and its average vanishes).
On the other hand, in the high temperature phase the thermal average of magnetization

in each site is zero for every sample, so that 〈σ(a)
i σ

(b)
i 〉 = 0.

1.3.6 Replica Symmetric Ansatz

Before solving the saddle point equations, one has to choose a form for Q which is
symmetric with respect to permutation of row or columns (due to equivalence among
replicas). Then, the most natural idea seems to look for a replica symmetric (RS) saddle
point, corresponding to a matrix Q whose non-diagonal elements are all equal to the same
value q, while diagonal elements vanish identically. The integral in Eq. (1.79) then reduces
to an ordinary integral over the real variable q, and the quenched free energy is easily
computed as

−βfRS(β, h) = log 2 +

∫ +∞

−∞
dµ(z) log cosh(β

√
qz + βh) +

β2

4
(1− q)2, (1.84)

where dµ(z) = (2π)−1/2e−z
2/2dz is the Gaussian measure and q satis�es the saddle point

equation

q =

∫ +∞

−∞
dµ(z) tanh(β

√
qz + βh). (1.85)

At zero external �eld, this equation correctly predicts a phase transition at 1/βc = Tc = 1,
since it has solution q = 0 for β < βc and it admits a solution with q 6= 0 for β > βc.
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However, it is possible to see [19] that the replica symmetric free energy is not physically
acceptable for a temperature T < Tc(h), since it violates basic thermodynamic stability
conditions (such as, for example, the positivity of entropy [18]). The free energy (1.84)
can be expanded near the critical point, where the spin glass parameter q is expected to
be small. Then, the coe�cient for the q2 term, which according to Landau theory of phase
transitions vanishes at the critical point [2], is found to be proportional to β2− 1, so that,
consistently, βc = 1. It is interesting to note that this coe�cient is negative if β < βc, so
that the paramagnetic solution q = 0 maximizes (instead of minimizing) the free energy.
The same also holds for a spin glass solution with q > 0 in the low-temperature phase
β > βc. This is a consequence of the fact that the number n(n − 1)/2 of replica pairs
becomes negative in the limit n→ 0 [19, 31]. Since the RS solution is not physically valid
everywhere, one has to look for a form of the Q which breaks symmetry between replicas.
The correct solution was given by Parisi by means of a powerful Ansatz, i.e. the broken
replica symmetry ansatz.
We will now present a brief description of the basic philosophy behind it.
In the Ising model at low temperature and zero magnetic �eld, there is a symmetry breaking
with two pure phases, one with magnetization +m(β) and the other with −m(β). The
overlap (1.43) between two typical con�gurations belonging to the same phase equals

q++ = q−− = m2(β),

while, for two di�erent phases,
q+− = −m2(β).

We stress that symmetry breaking (as well as phase transitions) can be present, strictly
speaking, only in the thermodynamic limit. In the limit of in�nite volume, the distribution
function of the overlap q12 between the con�gurations of two replicas , picked according to
their Boltzmann weights, is given by the sum of two delta functions:

P(q) =
δ(q −m2(β)) + δ(q +m2(β))

2
. (1.86)

Above the critical temperature, on the other hand, there is just one pure phase with zero
magnetization, and in this case we have

P(q) = δ(q). (1.87)

This means that, looking at P(q), one is able to detect the phenomenon of non-uniqueness
of the state without introducing an explicitly symmetry breaking �eld or proper bound-
ary conditions. Since for spin glasses there is no obvious symmetry to be broken, with
associated order parameter and �eld, the natural way to proceed is to compute

P(q) = lim
N→∞

EP(N)
J (q),

where P
(N)
J (q) is the �nite volume probability distribution of the overlap for a given disorder

realization J . When P(q) is a single delta distribution the system is said to be replica
symmetric. The same holds when P(q), in absence of magnetic �eld, is the sum of two
deltas, with the two corresponding states related by spin-�ip symmetry. On the contrary,
if P(q) has more than two peaks, or it has a continuous part, replica symmetry is said to
be broken. Knowing the distribution P(q) is then equivalent to know the structure of pure
states. Given the average overlap

〈q12〉 =
1

N

∑

i

EΩJ (σ
(1)
i σ

(2)
i ),
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we can think to express the Boltzmann weights ΩJ = ω(1) × ω(2) in terms of pure states,
and this decomposition is encoded in the P(q):

〈q12〉 =

∫
dqP(q)q. (1.88)

This equation, combined with 1.83, tells us that in the language of replicas P(q) represents
the fraction of elements of the matrix Q assuming the value q [19].

1.3.7 Guerra's interpolating scheme

The idea behind the method precisely follows the same reasoning of the CW case
(exploited in Section 1.2.3), despite obvious mathematical di�erences: to make them clear,
we directly introduce the next

De�nition 1.10. The interpolating partition function and the interpolating quenched free
energy in the Guerra's scheme read as

ZN (β, t) =
∑

σ

exp
{√

t
β√
N

∑

i<j

Jijσiσj +A
√

1− t
∑

i

ziσi

}
, (1.89)

fN (β, t) = − 1

βN
E logZN (β, t). (1.90)

Of course, one can also de�ned the (disorder-dependent) Boltzmann factor BN (t) and
the Boltzmann-Gibbs state ωt(·) in perfect analogy to the CW model:

BN (t) = exp
{√

t
β√
N

∑

i<j

Jijσiσj +A
√

1− t
∑

i

ziσi

}
,

ωt(F ) =

∑
σ F (σ)BN (t)∑
σ BN (t)

.

Finally, one can de�ne the (thermodynamic limit of the) statistical pressure in the usual
way αN (β, t) = −βfN (β, t). Of course, the original system is reproduced at t = 1, while
for t = 0 we replaced the problem with a one-body interacting system. The quenched free
energy of the SK model (in the thermodynamic limit) is therefore given by the sum rule

f(β) ≡ f(β, t = 1) = f(β, t = 0) +

∫ 1

0
ds
[
∂tf(β, t)

]
t=s
. (1.91)

Some comments are in order here. First of all, the main di�erence w.r.t. the CW
interpolation scheme is that, here, each spin is subjected to a di�erent external �eld zi
(which is however chosen to share the same Gaussian distribution for all the sites). In
the CW model, this feature was not needed since all the couplings were equal (this can
be seen as Gaussian distributions collapsing to Dirac deltas). Then, in order to have a z-
independent partition function, we should also average over the z realizations. Moreover,
we also stress that, w.r.t. the CW model, the interpolating parameter appears through
square roots. This is needed because, in the computation, we should use the integration by
parts formula over quenched disorder, so this choice is used to precisely cancel unwanted
factors.1 The coe�cient A in the de�nition of the generalized partition function will be

1For a N(0, 1) variable X, we recall that the integration by parts formula is EXXf(X) = EX∂Xf(X).
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determined later. As a �nal note, we again omitted the dependence of previous quantities
on the quenched disored J and z to make the notation more compact.

The derivative of the generalized free energy with respect to the interpolating parameter
t is:

df(β, t)

dt
= − lim

N→∞

1

βN
E
( 1

2
√
t

β√
N

∑

i<j

Jijωt(σiσj)−
A

2
√

1− t
∑

i

ziωt(σi)
)
. (1.92)

Then, integrating by parts w.r.t. to the variables Jij and zi, we have

df(β, t)

dt
= − lim

N→∞

1

βN
E
( β2

4N

∑

ij

(1− ωt(σiσj)2)− A2

2

∑

i

(1− ωt(σi)2)
)
. (1.93)

The next point in the resolution is to note that the squares of spin correlation functions
can be linked to the order parameter of SK model by expressing them in terms of the 〈·〉
averages previously de�ned. Indeed, we have

∑

i

Eωt(σi)2 =
∑

i

Eω(1)
t × ω

(2)
t (σ

(1)
i σ

(2)
i ) = N〈q12〉t, (1.94)

∑

i

Eωt(σiσj)2 =
∑

i

Eω(1)
t × ω

(2)
t (σ

(1)
i σ

(2)
i σ

(1)
j σ

(2)
j ) = N2〈q2

12〉t. (1.95)

Therefore, the derivative of the interpolating free energy is

df(β, t)

dt
= −β

4
lim
N→∞

E
(

1− 〈q2
12〉t −

2A2

β2
(1− 〈q12〉t)

)
. (1.96)

Choosing now A = β
√
q, where q is the thermodynamic value of the overlap (meaning that

we are assuming the replica symmetric Ansatz since, in the thermodynamic limit, it does
not �uctuate), we have

df(β, t)

dt
=
β

4
lim
N→∞

E
(
〈(q12 − q)2〉t − (1− q)2

)
. (1.97)

In the thermodynamic limit and in the replica symmetry regime, the overlap assumes its
thermodynamic value q with probability 1. Therefore, the �rst term at the r.h.s. in the
last equation goes to zero, leaving only with

df(β, t)

dt
= −β

4
(q − 1)2. (1.98)

The computation of the t = 0 case is straightforward, since it is a one-body problem with
Gaussian disorder. Indeed, we easily get

f(β, 0) = − lim
N→∞

1

βN
E log

∑

σ

exp
(
A
∑

i

ziσi

)
=

= − lim
N→∞

1

βN

∑

i

E log 2 cosh(Azi).

(1.99)

In this last equation, the quenched average involves only the z variables. The result of this
integration is actually independent on the index i. Therefore, by recalling the choice for
the parameter A, this directly implies that

f(β, 0) = − 1

β
E log 2 cosh(β

√
qz). (1.100)

By putting everything together according to the sum rule (1.91) and making the Gaussian
integration explicit, we get the next
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Theorem 1.5. The explicit expression for the SK quenched free energy in terms of the two
replica overlap, in the thermodynamic limit and under the replica symmetric assumption,
reads as

fRS(β) = − 1

β

∫ +∞

−∞
dµ(z) log 2 cosh(β

√
qz)− β

4
(1− q)2. (1.101)

The latter equation precisely reproduce the replica trick prediction (1.84) with vanishing
external �eld h = 0.

So far we equipped ourselves with a methodology, statistical mechanics, and two
archetypal models (the Curie-Weiss and the Sherrington-Kirkpatrick), with the whole re-
lated package of concepts (e.g., replicas, overlaps, etc.): we collected the minimal knowledge
to tackle Theoretical Arti�cial Intelligence with these tools hence, in the next section, we
address one of the most famous neural network (that works both as an associative memory
and as a pattern recognition network), namely the Hop�eld model.
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1.4 Generalities on the Hop�eld neural network

Neural network models are complex systems designed on the basis on the associative
memory notion and on the principle that stable neural activities encode retrieved patterns
of information (e.g. images). By associative memory we mean the ability of cortical
modules in mammals' brain to remember names, objects, faces, schemes, etc. (i.e. patterns
of information generally speaking) starting from incomplete or corrupted data supply. Let
us illustrate hereafter a very minimal description about how the neural system works
(following the milestone by Amit [11]) obviously, still from a modelling perspective.

Neurons can be considered as big cells, called soma, covered by a membrane to which
are attached di�erent �bres emitting electrical spikes generated from the neuron itself. The
outgoing signal passes through a bigger �bre conduct called the axon. The latter splits
into smaller channels that are attached, through the dendrites, to the external membrane
of other neurons. The point of conjunction of the dendrites with the recipient neuron is
called synapse. When a neuron is active, it emits an electrical wave propagating across the
di�erent dendrites. At the end of this process, a new electrical potential on the synapse
of the recipient neurons. The emission of these packs happen when the total synaptic
potential, i.e. the sum of the potentials received from other neurons, is higher than a
certain activation threshold h̄ and are active at random times (asynchronous dynamic). In
1949, D. Hebb pointed out the fact that neural pathways are strengthened each time they
are used, a concept fundamentally essential to the ways in which humans learn. If two
nerves �re at the same time - he argued - then the connection between them is enhanced
[37]. The total number of neurons in the human brain is between 109 and 1010, and
each neuron is generally connected to 104/105 other neurons through dendrites. A bridge
between neuron dynamics and memory processes has been made thanks to Y. Miyashita's
experiments (1988) [38], in which a trained monkey showed neural activity in a well de�ned
region once a picture is presented for the �rst time. The same group of neurons reactivates
when the monkey sees the same typology of images.

The theoretical prototype for a wide class of associative memory models is the Hop�eld
network [39]. It is a strongly stylized version of a cortical module which is based on the
basic assumptions that

� There are essentially two types of variables: neurons (nodes in the neural network)
and synapses (links between the nodes). These variables live on very separate time
scales, so that we can question about neural dynamics and emerging properties of
networks of interacting neurons keeping quenched the synapses;

� There is just one type of neurons and it is represented as a binary variables (e.g.
Ising spins or Boolean variables), whose possible values represent respectively its
�ring (+1) or its quiescent (-1) states;

� The synapses are both excitatory and inhibitory. On average, the 50% of them are
positive (excitatory) and the remaining 50% negative, i.e. inhibitory, leaving the
bulk of the Hop�eld paradigm stable. While the di�erent nature of the synapses is
a biological must, the balanced ratio is instead biologically unreasonable, since we
know that there is a larger fraction in inhibitory contributions (but this simpli�cation
has been already overcome a long time ago [11]);

� The interactions are assumed to be symmetric, i.e. Jij = Jji. Again, this is false from
the biological point of view (Dale law actually states the opposite [37]). However,
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as masterfully discussed by Amit, this wrong assumption is one of the most clever
starting point in order to construct a reference framework: this is because - as long
as the couplings are symmetric - the detailed balance holds and any - reasonably
not pathological - stochastic neural dynamics converges to the Gibbs measure for an
opportune cost-function, e.g. the Hop�eld Hamiltonian [8].

In the �rst part of the present Section, we �rst give a mathematical glance at the Hop-
�eld network and the statistical mechanical quantities that we need to tackle its emergent
properties. After that, we illustrate the connection between the models that we studied in
the previous chapters (i.e. the Curie-Weiss model and the Sherrington-Kirkpatrick mean
�eld spin glass) and the Hop�eld network, thus justifying the previous discussion and there-
fore motivating the key role they (i.e. CW and SK) actually play as �limiting cases� for the
behaviour of the Hop�eld model (respectively, for too few and too many stored patterns).
Finally, we will address the problem of pattern storage via the signal-to-noise technique,
closing the descriptive part of the properties of the Hop�eld network. In the second part,
we will address the problem of obtaining a phase diagram for Hop�eld model by heavily re-
lying upon the statistical mechanical techniques we have shown so far (mainly replica trick
and interpolation method), focusing on various types of information processing (ranging
from storing digital to real patterns).

We consider a fully connected neural network consisting in N neurons. To each of them
i is assigned a dichotomic variable σi whose possible values represent the active (σi = +1)
or quiescent (σi = −1) states. It is worth noticing that the mean �eld approximation is
here not as rude as in Physics of many-body systems (since neurons are e�ectively highly
connected and each neuron in the cortex may share connections with up to O(104/105)
peers). Of course, we shall not consider this as a model of the brain network as a whole,
but rather of the small di�erent regions involved with the memorization of patterns.

We start our discussion by giving the following

De�nition 1.11. The synaptic potential hi that the i-th neuron receives from the other
N − 1 is de�ned as

hi =

N∑

j=1
j 6=i

Jijσj ,

where Jij , the synaptic matrix, codes the intensity of the synaptic action of neuron j over
neuron i.

Associative memory models are built to recognize a certain group of words or images or
concepts, i.e. patterns, so the next step is to formalize how the information is encoded in
neural networks. A pattern is de�ned as a sequence of random variables ξ = (ξ1, . . . , ξN ).
In this thesis, we will mainly work with Boolean and Gaussian patterns, namely pat-
terns whose entries are extracted according to a given probability distribution, respectively
P(ξi = +1) = P(ξi = −1) = 1/2 ∀i for the Boolean case and P(ξi) = N(0, 1) ∀i in the
Gaussian one. All the patterns we will deal with will share the same length N . Since we
want to store several patterns, we have to introduce another index -µ- for labelling di�erent
patterns: {ξ1, . . . , ξP }. In doing this, we shall assume that each ξµi is independent from
the others.

The choice of the synaptic coupling Jij ∀i, j = 1, . . . , N ensuring the local attractive-
ness of each pattern under the neural dynamics (see [34]) is the one incorporating Hebb's
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learning rule, i.e.

Jij :=
1

N

P∑

µ=1

ξµi ξ
µ
j . (1.102)

Once we speci�ed the nature of dynamical variables and the interaction matrix, we can
continue by introducing the Hamiltonian for the Hop�eld model.

De�nition 1.12. The Hamiltonian (or cost function in Machine Learning jargon) of the
Hop�eld model equipped with N neurons σi, i ∈ (1, ..., N) and P patterns ξµ, µ ∈ (1, ..., P )
is

HN (σ|ξ) := − 1

N

P∑

µ=1

∑

1≤i<j≤N
ξµi ξ

µ
j σiσj . (1.103)

The next step is to introduce a set of spin-dependent quantities measuring the resem-
blance of a given network con�guration with the stored patterns. These quantities will
clearly play the role of order parameters for the Hop�eld model and are provided in the
next

De�nition 1.13. We de�ne P overlaps mµ, µ ∈ (1, ..., P ) between the patterns and the
neurons, also called Mattis magnetizations, as

mµ(σ)
.

:= mµ =
1

N

N∑

i=1

ξµi σi ∈ [−1, 1]. (1.104)

Note that the Hamiltonian of the Hop�eld model can be nicely written in terms of
these order parameters as

HN (σ|ξ) ∼ −N
2

P∑

µ=1

m2
µ.

It is then crystal clear that, in order for the energy to be minimized, it is more convenient
for some mµ to equal to +1 (or −1 because of the spin-�ip symmetry σi → −σi) meaning
that the neurons are all parallel to the pattern, thus eventually indicating a retrieving
behaviour.

1.4.1 The CW and the SK limits

In this Section, we illustrate the crucial connection between the Hop�eld model and the
two already analyzed models, namely the Curie-Weiss and the Sherrington-Kirkpatrick.

The mathematical models of associative memory systems are built in such a way that
the distribution of neural activity at an equilibrium state is a codi�cation of a recognized
image or notion. In particular, the act of retrieving stored data from partial informations
is strictly correlated to �nding the minimum values of the system energy. The Sherrington-
Kirkpatrick model displays a large number of energy minima (as expected for a cognitive
system), yet it is not suitable to act as a associative memory model since its equilibrium
states are too �disordered�. The Hamiltonian introduced above presents global minima
which are not purely random like those in SK (since they must represent ordered stored
patterns, a feature which resembles the CW model), but the amount of these minima
must be possibly extensive in the number of spins/neurons N . Therefore, a reasonable
associative neural network should be designed in order to retain a �ferromagnetic �avor�
within a �glassy panorama�, i.e. we need something in between. Remarkably, the Hop�eld
model de�ned by (1.103) lies exactly in between a Curie-Weiss model and a Sherrington-
Kirkpatrick model. Let us clarify this point.
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From the CW to Hop�eld

By comparing (1.16) and (1.103), and in particular their expression through the order
parameters, we can �rstly observe that CW model can be interpreted as an (actually very
rudimental) model of a neural network where N neurons collaborate to store one pattern
of information (together with its spin-�ip symmetric partner). Such information patterns,
which are built of by all the same numbers (for instance, the sequences +1,+1, ...,+1 and
−1,−1, ...,−1), beyond containing no information by Shannon compression arguments, in
turn they represent pathological behaviours (since all the neurons are simultaneously �ring
or silent). This last criticism can be easily overcome thanks to the Mattis-gauge, namely
a re-de�nition of the neurons as

σi 7−→ ξiσi,

where ξi = ±1 are quenched random entries extracted with equal probability.

De�nition 1.14. The Mattis Hamiltonian reads as

HMattis
N (σ, ξ) = − 1

N

N∑

i=1

ξiξjσiσj .

The Mattis magnetization is de�ned as

mM =
1

N

N∑

i=1

ξiσi.

In order to inspect the network properties in its lowest energy minima, we perform a
comparison with the CW model in the noiseless case β → ∞. In terms of the (standard)
magnetization,the Curie-Weiss model reads as HN (σ) ' −Nm2/2 and, analogously for
HM
N (σ, ξ) we have

HM
N (σ, ξ) ' −N

2
m2
M .

It is then clear that, in the low noise limit (where collective properties may emerge),
as the minimum of free energy is achieved in the Curie-Weiss model for m → ±1, the
same holds in the Mattis model for mM → ±1. The only di�erence lies in the fact that,
in the latter case, spins tend to align in parallel (or anti-parallel) to the vector ξ. For
instance, if the pattern ξ is, say, ξ = (+1,−1,−1,−1,+1,+1) in a model with N = 6,
the equilibrium con�gurations of the network will be σ = (+1,−1,−1,−1,+1,+1) and
the spin-�ip symmetric partner σ = (−1,+1,+1,+1,−1,−1). Thus, the network relaxes
autonomously to a state where some of its neurons are �ring while others are quiescent,
as prescribed by the stored pattern ξ. We stress that, as the entries of the vectors ξ are
chosen randomly to be ±1 with equal probability, the retrieval of free energy minimum
now corresponds to a spin con�guration which is also the most entropic for the Shannon-
McMillan argument. Thus, both the most likely and the most di�cult to handle (as its
information compression is no longer possible).

Two remarks are in order. At this point, one would be tempted to call the spins σi
neurons, but it is de�nitely inconvenient to build a network via N spins/neurons, which
are further meant to be diverging (i.e. N →∞), in order to handle one stored pattern of
information only. Along the theoretical physics route, overcoming this limitation is quite
natural (as provides the Hebbian prescription): if we want a network able to cope with P
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patterns, the simplest Hamiltonian should simply be the sum of Mattis Hamiltonians over
these stored patterns, namely

HN (σ|ξ) = − 1

N

∑

1≤i,j≤N

( P∑

µ=1

ξµi ξ
µ
j

)
σiσj ,

thus recovering the de�nition (1.103) for the Hop�eld network Hamiltonian. Therefore,
we can conclude that the Curie-Weiss network can be interpreted as a Hop�eld neural
network where solely one trivial pattern can be handled.

From the SK to Hop�eld

Despite the extension to the case P > 1 is formally straightforward, the investigation
of the system as P grows becomes by far more tricky. Indeed, neural networks belong to
the so-called �complex system� realm. Complex properties can be distinguished by simple
behaviours with the fact fact that for the latter the number of free-energy minima of the
system does not scale with the volume N , while for complex systems the opposite feature
takes place according to a proper function of N . In particular, the Curie-Weiss/Mattis
model has two minima only, whatever N (even if N →∞), thus constituting the paradig-
matic example for a simple system. On the other side, we introduced the prototype of
complex systems, the Sherrington-Kirkpatrick model, that presents an amount of minima
scaling as ∼ ecN (with c not depending on N).

We showed above how, when P = 1 the Hop�eld model (with boolean patterns) re-
covers the Mattis model (which is nothing but a gauge-transformed Curie-Weiss model).
Conversely, when P →∞,

1√
N

P∑

µ=1

ξµi ξ
µ
j −→ N(0, 1),

by virtue of the standard central limit theorem, so that the Hop�eld model recovers the
Sherrington-Kirkpatrick one. To understand this point, we start by considering the Hebb
construction of the synaptic strength

Jij =
1

N

∑

µ

ξµi ξ
µ
j , (1.105)

where each pattern bit is extracted (in our analysis) with probability P(ξµi = ±1) = 1/2.
Since each pattern independently and identically distributed (i.i.d.), this directly implies
that P(ξµi ξ

µ
j = ±1) = 1/2 itself, meaning that E ξµi ξ

µ
j = 0 and Var(ξµi ξ

µ
j ) = 1. When

summing a large number of such variables, they should be described (in agreement with
the central limit theorem, CLT) with a Gaussian distribution. Indeed

Theorem 1.6 (Central Limit Theorem). Consider a set X1, . . . , Xn of i.i.d. random
variables with mean µi and variance σ2

i <∞, and call

s2
n =

n∑

i=1

σ2
i . (1.106)

If, for some δ > 0, the Lyapunov condition is satis�ed

lim
n→∞

1

s2+δ
n

n∑

i=1

E[|Xi − µi|2+δ] = 0 (1.107)

then the quantity s−1
n

∑
i(Xi − µi) converges (in distributional sense) to N(0, 1).
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The Hebb coupling matrix can be rewritten as Jij =
√

αN
N J̃ij , where

J̃ij =
1√
P

∑

µ

ξµi ξ
µ
j , (1.108)

and αN = P/N is the storage capacity (at �nite N).1 Now, since the variables ξµi ξ
µ
j have

zero mean and variance 1, we have sn = P−1/2. It is straightforward to verify that such
a sample of variables satisfy the Lyapunov condition for all δ > 0. Thus, for large P the
coupling matrix J converges in probability to N(0, 1).

Remark 1.10. These result is mathematically rigorous only if P is sent into in�nity
independently on the network size N .

The argument presented above suggests that, when the numbers of stored patterns is
too large with respect to the network size, the Hebb coupling matrix behaves (apart for a
constant prefactor) as

Jij ∼
1√
N
J̃ij , (1.109)

where P(J̃ij) = N(0, 1) for all i, j. This is indeed the form of the coupling matrix for
the Sherrington-Kirkpatrick model. Therefore, Hop�eld model with a too high stored in-
formation is expected to behave as a spin glass network. This naive argument turns out
to be true: for α high enough, Hop�eld model behaves as a spin glass model, with some
di�erences with respect to the SK case. Such a crossover between CW (or Mattis) and
SK models signals that, in order to investigate its statistical properties, we need both the
P Mattis magnetizations mµ (quantifying retrieval of the whole stored patterns, that is
the vocabulary), and the two-replica overlaps Qab (to control the glassiness growth if the
vocabulary gets enlarged). Moreover, we also a tunable parameter measuring the ratio be-
tween the stored patterns and the amount of available neurons, namely α = limN→∞ P/N ,
i.e. the storage capacity at large N . As far as P scales sub-linearly with N (i.e. in the
low storage regime with α = 0), the phase diagram is ruled by the noise level β only: for
β < βc the system is a paramagnet (with both mµ = 0 and Qab = 0), while for β > βc the
system performs as an attractor, with mµ 6= 0 for a given µ ∈ (1, . . . , P ). In this regime,
no dangerous glassy phase is lurking, yet the model is able to store only a tiny amount
of patterns. Conversely, when P scales linearly with N , i.e. in the high-storage regime
de�ned by α > 0, the phase diagram lives in the α, β plane. When α is small enough,
the system is expected to behave similarly to α = 0 case, hence as an associative network
(with a particular non-vanishing Mattis magnetization but also with the two-replica over-
lap slightly positive, since the glassy nature is intrinsic for α > 0). However, for α large
enough, the Hop�eld model collapses on the Sherrington-Kirkpatrick model as expected,
with the Mattis magnetizations brutally reduced to zero and the two-replicac overlap close
to one. The transition to the spin-glass phase is often called �blackout scenario� in neural
network community [11, 40, 41].

We can summarize the content of the Hop�eld model capabilities through its phase
diagram as follows.2 First of all, if the thermal noise T = β−1 and the storage capacity α
are su�ciently low, the system works with almost no errors as an associative neural network

1Notice that, throughout the rest of the thesis, we will use simply α also if we are working at �nite
size N , but the rigorous de�nition of the storage capacity is α := limN→∞ P/N .

2What follows is strictly true only in the thermodynamic limit, replica symmetric regime and uncor-
related patterns.
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(or pattern recognizer), meaning that the attractors associated to stored patterns are very
stable (they are global minima in the quenched free energy landscape). In particular, in the
noiseless case β →∞, the critical capacity bounding such a regime is αc ' 0.051. Outside
this region, the network could still work as an associative memory, but the stored patterns
are just local minima (with the spin glass states starting to dominate the landscape):
this is the scenario provided that the storage capacity 0.0051 ≤ α ≤ αc ' 0.138. For
α > 0.138, the minima related to the patterns are destroyed and solely the spin-glass
panorama remains stable.

Re-introducing the noise in the discussion, the network can escape from the retrieval
region in the phase diagram, essentially in one more way. If the noise in the network is
above the critical line Tc = 1 +

√
α, the network lies in its ergodic phase: making these

predictions quantitative is a non-trivial task in statistical mechanics as we will see in details
soon. With respect to the storage capacity α, we distinguish between the following two
regimes:

1.4.2 A heuristic digression about the phase space structure

Let us now get more acquainted with the statistical mechanical picture of the Hop�eld
model. To recall the notation, we have a set of P digital patterns ξµ with µ = 1, . . . , P of
length N , and we want to store them in a network composed by N boolean spins σi = ±1
for i = 1, . . . , N . According to the Hebb rule, the memory is allocated in the synaptic
strength by building up the coupling matrix as

Jij =
1

N

P∑

µ=1

ξµi ξ
µ
j . (1.110)

Then, if we assume that the network evolves sequentially according to the update rule1

σi(t+ 1) = sign(tanh(β
∑

j 6=i
Jijσj(t)) + ηi), (1.111)

then, thanks to symmetry of its interaction (ultimately to convergence theorem in Markov
processes guaranteed by Detailed Balance), its dynamics will end in an equilibrium con-
�guration, which is described by the probability distribution P(σ) ∼ exp(−βHN (σ|ξ))
with

HN (σ|ξ) = −
N∑

i,j<i

( 1

N

P∑

µ

ξµi ξ
µ
j

)
σiσj . (1.112)

The whole thermodynamical properties of Hop�eld neural networks are therefore com-
pletely determined and derived starting from this Hamiltonian (or cost function in neural
network jargon).

1.4.3 Stored patterns as attractors

As we said, the basic principle lying behind the functionality of Hop�eld networks as
associative memory prototype is that stored patterns are associated to system con�gura-
tions which are attractors for the network dynamics. To make it simple, the situation
is the following. Once the P pattern are stored according to the Hebb rule, the system

1Here, we set the thresholds for �ring hi = 0 since we want to deal only with spontaneous magnetization
properties.
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should associate the input with the corresponding stored pattern. However, in general the
presented input is a�ected by some external (and not removable) noise, or it is an imperfect
realization of the corresponding pattern. Because of the noise, it is easy to understand that
an associative memory could not work by comparing each bit in the input with those of
all possible stored patterns. There should be a dynamics (internal to the network) �nding
out the nearest pattern associated to the prescribed input. This motivates the attracting
character of stored patterns. If the system receive a (su�ciently low) noisy input, then -
by autonomous dynamics - the network is able to reconstruct the pattern we want to be
retrieved. This is the pattern recognition or reconstruction capability of Hop�eld model.

In the theory of dynamical systems, the concept of attractor can be introduced in
various ways. The de�nition we will use requires a metric characterization of the phase
space. To ful�ll this requirement, one should endow the con�guration space of the Hop�eld
network with the Hamming distance:

De�nition 1.15. Given two network con�gurations σ1 and σ2, the Hamming distance is
de�ned as

d(σ1,σ2) =
1

2N

N∑

i=1

|σ1,i − σ2,i|. (1.113)

Remark 1.11. It is easy to show that this de�nition clearly ful�ls all the requirements for
a distance. Moreover, when the network size is large, it is possible to de�ne the concept of
arbitrarily near con�gurations. This makes the concept of neighbourhood mathematically
well-de�ned (at least in the thermodynamic limit).

Then, by looking at the previous discussion about pattern recognition, we can introduce
the concept of attractor with the following [42]

De�nition 1.16. Given a dynamical system whose dynamics is parametrized by a (con-
tinuous or discrete) time t and a dynamical function Tt,

1 a set A of the phase space is
attracting if it has a neighbourhood U 6= ∅ (called the attraction basin) such that

� For every neighbourhood V of A, then Tt(U) ⊂ V for su�ciently large t;

� It is dynamically invariant, i.e. Tt(A) = A for all t.

To go deeper in the characterization of stored patterns as attractors for the network
dynamics, let us write the Hamiltonian as

HN (σ|ξ) ∼ −1

2

N∑

i,j=1

( 1

N

P∑

µ=1

ξµi ξ
µ
j

)
σiσj = −N

2

P∑

µ=1

m2
µ, (1.114)

where we used the symbol ∼ as �apart for a O(1/N)� error. Now, let us randomly extract
con�guration σ which is uncorrelated to the patterns for all µ = 1, . . . , P . This means that
each term in the sum are boolean variables with probability P(ξµi σi = ±1) = 1/2. Then,
the evaluation of the associated Mattis magnetizations is equivalent to the computation
of the displacement in a one-dimensional random walk. Since the net displacement has
zero mean (because of the independence of random steps), one should estimate the Mattis
magnetization with the square root of its variance, meaning that

mµ ∼
√

Em2
µ =

√
1

N2

∑

ij

Eξµi ξ
µ
j σiσj =

1√
N
, (1.115)

1Here, the notation T stands for the �transfer� map, which is endowed with semi-group properties:
T0 = I and Tt · Ts = Tt+s, where in the case under consideration t ∈ Z+.
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Figure 1.2: Set of P = 6 patterns stored in a Hop�eld network of N = 625
spins. Patterns are black and while images: the network is dealing with digital storage of
information [8].

since E(ξµi ξ
µ
j σiσj) = δij , with E being the average of the random walk. Then, we can

evaluate the Hamiltonian for network con�gurations which are uncorrelated to all the
patterns as

HN (σ|ξ) = −N
2

P∑

µ=1

m2
µ ∼ O(1), (1.116)

provided that the number of patterns P is �nite. On the other hand, let us assume now
that the network con�guration is strongly correlated to a stored pattern (say for example
σ = ξ1) and uncorrelated to all the others, meaning that m1 = 1 and mµ ∼ N−1/2 for
µ ≥ 2. Then, the Hamiltonian can be estimated as

HN (ξ1|ξ) ' −N
2

+ O(1). (1.117)

Then, con�gurations aligned to the patterns are very convenient from an energetic point of
view, with their stability growing with the network size. Moreover, they are the most stable
con�gurations, since 0 ≤ |mµ| ≤ 1. This implies that (if the number of stored patterns is
�nite), such con�gurations are global minima for the energy. Now, since the Hamiltonian
is a Lyapunov function for the network dynamics (meaning that its temporal derivative is
always non-negative, and vanishing at the equilibrium points), as a consequence they are
�xed point, and the network evolves towards such con�gurations: they are attractors for
the network dynamics.

An example of attractive power of stored patterns is reported in Fig. 1.3. Here, we
consider a Hop�eld network consisting in N = 625 spins in which we stored the set of
P = 6 patterns reported in Fig. 1.2, organized in square lattices of 25×25 size. According
to the previous discussion, such con�gurations are associated to attractors for the network
dynamics, meaning that, if the network is prepared su�ciently near to a given pattern (i.e.
in its attraction basin), then the network dynamics will end in a �xed point coincident with
that pattern. To verify this statement, we initially prepared the network aligned to the
�rst pattern (the smiling face), then we �ip each spin with probability 0.2 (which means
that we have a 20% noise level in the presented input). In the �rst row of Fig. 1.3, it
is resumed the recognition of the �rst pattern for di�erent evolution time steps starting
from a noisy initial condition. In particular, we see that at t = 1800 the original pattern is
almost reconstructed. In the plot below in the same �gure, we see the time evolution of the
Mattis magnetizations. The order parameter m1 starts from an initial value ∼ 0.6, and -
as time �ows - it approach the value 1, while all the other Mattis magnetization are always
close to zero. What we discussed so far could lead to an optimistic overestimation of the
associative power of Hop�eld model. Indeed, by simple performances/processing resources
arguments, one could be tempted to store more and more patterns for a given network size.
However, as we already said, Hop�eld networks behave very well for P < 0.051N (and
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moderately well for P < 0.138N).1 The reason behind this limitations are however clear
to researchers working in the �eld, and it is two-fold. First of all, the energetic arguments
presented above are strictly true for a �nite number of patterns for given N . On the other
side, when the number of patterns is extensive in N (meaning that P = αN), they are no
longer valid, so a detailed analysis of equilibrium statistical mechanics of Hop�eld model is
needed (and this will be the subject of the following Sections). Furthermore, we said that
such con�gurations are global minima for the energy function. However, it is not excluded
that others �xed point arises when applying the Hebb learning rule. Indeed, this turns out
to be the case, also if the information stored is low (P/N � 1). These additional minima
have no counterpart in terms of stored patterns, so they are traditionally called spurious
�xed points. An example of spurious attractor is given by the con�guration

ξ̃ = sign(ξ1 + ξ2 + ξ3). (1.118)

The Achille's heel of Hop�eld network is that the number of such con�gurations grows
very fast with the number of stored patterns (indeed, the growth is exponential in P , to be
compared to the linear abundance of pure �xed points). From the dynamical point of view,
this is suddenly a tragedy, since it means that, storing more patterns, the probability for
the network dynamics to be trapped in the attraction basins of spurious states gets higher
and higher. As a consequence, the attracting power of pure �xed points is dramatically
downsized. A pictorial representation of this situation is reported in Fig. 1.5.

1Again, we stress that it is valid for a huge number of neurons in the network.

Figure 1.3: Example of pattern reconstruction in a Hop�eld network of N = 625
spins that stored P = 6 patterns. Starting with a corrupted information, the Hop�eld
network is able to retrieve the associated pattern. We observe that, among the six Mattis
magnetizations dedicated to quantify the retrieval of the six stored patterns, just one out
of them grows up to one and its corresponding pattern is indeed retrieved by the network.
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Figure 1.4: Example of dynamics ending in a spurious state in a Hop�eld network

of N = 625 spins that stored P = 6 patterns. In this example, it is possible to observe
that several (three) Mattis magnetization raise sensibly over the noise due to the �nite size
e�ects and, correspondingly, the network has not been able to properly retrieve a single
pattern, rather obtaining a useless mixture of the stored patterns.

An example of dynamics ending in spurious con�gurations is reported in Fig. 1.4. In
this case, we prepared the network in the spurious con�guration (1.118), then we �ip again
each spin with probability 0.2 and let the network evolve for a su�cient long time. In the
�rst row, we see that the system reaches a con�guration which is not in the stored patterns
set, and which is indeed a �xed point since all of the order parameters settle on constant
values (the Mattis magnetizations with highest equilibrium values are those associated to
the �rst three patterns used to build up the spurious con�guration). At this point, it is
strongly needed a more careful understanding of pure and spurious �xed points for the
network dynamics. This is possible with the so-called signal/noise analysis.

1.4.4 Signal-to-noise for Hebbian Storing

To get started with this analysis, we need to go back the Hamiltonian (1.103). By
preparing the system near a given pattern, say ξ1, we can express it as (again including
self-interactions)

HN (σ|ξ) = − 1

2N

N∑

i,j=1

ξ1
i ξ

1
jσiσj −

1

2N

∑

µ≥2

N∑

i,j=1

ξµi ξ
µ
j σiσj . (1.119)

It is clear that the �rst term tends to align the network con�guration with the �rst pattern,
and can therefore be interpreted as a signal contribution. On the other hand, since in
general interactions are frustrated, the second term has the e�ect to destroy the correlation
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1
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Figure 1.5: Pictorial representation of minima landscape for the Hop�eld model.

Starting with a noisy initial condition (1), the Hop�eld network succeeds if the internal
dynamics ends in a pure state con�guration (with the evolution 1→ 2b→ 3b). However,
the network could end in a metastable state 2a, therefore failing to retrieve the desired
pattern.

of the con�guration σ and the �rst pattern. Therefore, it can be interpreted as an intrinsic
noise contribution. Thus, the goal of signal/noise analysis is to establish under which
conditions a given network con�guration is stable with respect to the intrinsic noise (in
doing this, external thermal noise is set to zero: β → ∞). The condition for a given
con�guration to be dynamically stable is

hiσi ≥ 0 for each i, (1.120)

where hi =
∑

j 6=i Jijσj = 1
N

∑
j 6=i
∑

µ ξ
µ
i ξ

µ
j σj is the internal �eld acting on the i-th neuron.

First of all, we would like to analyze the stability of pure attractors, so we set σ = ξ1.
In this case, we have

h1ξ
1
1 =

1

N

∑

j>1

∑

µ

ξµ1 ξ
µ
j ξ

1
j ξ

1
1 =

N − 1

N
+

1

N

∑

j>1

∑

µ>1

ξµ1 ξ
µ
j ξ

1
j ξ

1
1 , (1.121)

where we separated the signal and the noise contributions and used the dichotomic nature
of the patterns. The same analysis can be carried out for all the other spins i. Clearly,
the former term is, in the thermodynamic limit, equal to 1. On the other hand, the noise
term is a sum of (N − 1)(P − 1) ' N(P − 1) variables taking values ±1 with equal
probability.1 Therefore, the noise term is a random walk of N(P − 1) unitary steps. With
this observation, we can evaluated the displacement of the random walk with the square
root of the variance, which leads to

∣∣∣ 1

N

∑

j>1

∑

µ>1

ξµ1 ξ
µ
j ξ

1
j ξ

1
1

∣∣∣ ∼
√
P − 1

N
. (1.122)

1This fact holds since each bit of di�erent patterns at the same site i and of the same pattern µ at
di�erent sites are uncorrelated.
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From this simple computations, we arrive to an important conclusion: the pure attractor
con�gurations are stable (i.e. the intrinsic noise of the network is negligible) provided that
P � N (this also holds in the thermodynamic limit). This is no longer that the high storage
regime (P = αN), which thus requires a separate analysis. A similar results holds also if
we �ip a fraction d of the spins in the initial con�guration, giving hiσi ∼ 1− 2d+noise. In
the low storage regime, the noise is still of order N−1/2, then the system will quickly align
to the pattern in order to increase the signal term (i.e. lower the energy), ending therefore
in the pure attractor. This implies that pure attractors have a large attraction basins for
P � N .

A similar analysis can be carried out also for spurious attractors, but a little more
cumbersome since they are particular combinations of the stored patterns. To illustrate
this point, let us consider the 3-symmetric mixture con�guration (1.118). Without loss
of generality, we can consider only a single spin i = 1 and �x ξ1

1 = 1, so we have four
possibilities corresponding ξ2,3

1 = ±1. Among these, only three would give σ1 = 1, therefore
we have P(σ1 = 1) = 3/4 (recall that patterns are supposed to be uncorrelated). Thus, in
general

P(σ1 = ξµ1 ) =
3

4
, P(σ1 = −ξµ1 ) =

1

4
for µ = 1, 2, 3. (1.123)

This implies that, in the thermodynamic limit, we have 3N/4 spins aligned with each of
the µ = 1, 2, 3 pattern and N/4 with opposite orientation. Then

mµ =
1

N

N∑

i=1

ξµi σi =
1

N

(3N

4
− N

4

)
=

1

2
, µ = 1, 2, 3, (1.124)

while mµ ∼ O(N−1/2) for µ > 3. This result should be compared with the numerical
results reported in Fig. 1.4. The stability of the spurious con�guration in this case is given
by

h1σ1 =
∑

µ

mµξ
µ
1σ1 = σ1(m1ξ

1
1 +m2ξ

2
1 +m3ξ

3
1 +

∑

µ>3

mµξ
µ
1 ). (1.125)

Again, we have a signal contribution (given by the explicit terms in brackets) and a noise
term (the sum over µ > 3). For the former, we have

Signal = 0.5
(
ξ1

1 + ξ2
1 + ξ3

1

)
sgn

(
ξ1

1 + ξ2
1 + ξ3

1

)
= 0.5|ξ1

i + ξ2
i + ξ3

i |. (1.126)

The lowest value of the signal is 0.5 (corresponding to the case in which two of the bits
have the same orientation while the other has opposite sign). Clearly, spurious attractors
have a lower signal contribution with respect to the pure ones, making smaller the relative
attraction basins (despite they are still large, as can be seen again from Fig. 1.4). However,
in order for the initial state to be in the attraction basin of these particular 3-mixture states,
the former has to present a large overlap with all the three patterns rather than a single
one (which is possible only if the patterns are strongly correlated or when they are high in
number). Concerning the intrinsic noise term, it is again a one-dimensional random walk
with N(P − 3) values. Therefore, with the same arguments as above, it is evaluated to be
of the order of

√
(P − 3)/N , with the same conclusions as before.

Of course, spurious attractors can have more intricated structure, given by combination
of all possible subsets of the patterns. If we consider combinations of the form ξ̃n ∼∑n

µ=1 ξ
µ, the taxonomy of the associated energies do respect the following classi�cation

[11]
E1 < E3 < E5 < · · · < E∞ < . . . E4 < E2. (1.127)
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1.4.5 High storage of Boolean patterns

It is time to turn to the complex case, which is the high storage limit P = αN with
α ∈ R+. Before focusing on the explicit expression of the quenched free energy for the
Hop�eld model in the high load regime, let us stress a little detail on the energy function,
rewriting it as

HN (σ|ξ) = − 1

N

∑

i,j<i

P∑

µ=1

ξµi ξ
µ
j σiσj = − 1

2N

∑

ijµ

ξµi ξ
µ
j σiσj +

P

2
. (1.128)

In the high storage case, also the last term is of order O(N) and contributes to the free
energy. However, this contribution is constant and equals α/2, so we can forget about
it during the calculations (thus including also self-interactions during the calculations)
and then correcting the obtained expression at the end by reintroducing this term. Of
course, the de�nitions (1.114) hold also in this case, so we avoid to repeat them here. The
only di�erence is that, here, we make explicit the dependent on the storage capacity α
(previously, it was not needed because α = 0 in the low storage regime).

Rather, we would like to stress an important point on methodology we will use in the
following. Since we are interested in the retrieval regime, in which at least one pattern (as
usual, we suppose it is ξ1) is candidate to be retrieved, we will separate a ξ1-dependent
signal term from all the other P −1 contributions by the not-retrieved patterns accounting
for the genesis of the intrinsic slow noise in the network. As a consequence, we should
not average over all possible pattern realizations, but only on those contributing to the
internal noise: in other words, we should consider (taking into account the self-interactions
correction) the quenched free energy

f(β, α) = − lim
N→∞

1

βN
E′ logZN (β, α) +

α

2
, (1.129)

where the average over quenched disorder is

E′ ≡ Eξ2 . . .EξP . (1.130)

Thus, in the replica trick approach (where the logarithm of the partition function is repre-
sented as a limit of zero replica of the replicated partition function) the relevant quantity
is E′ZnN (β, α). Introducing the replica index a running over di�erent equivalent realization
of the same system, we can write it as

E′ZnN (β, α) = E′
∑

σ(1)

. . .
∑

σ(n)

exp
( β

2N

∑

ijaµ

ξµi ξ
µ
j σ

(a)
i σ

(a)
j

)
=

= E′
∑

σ(1)

. . .
∑

σ(n)

∫ (∏

aµ

dµ(z(a)
µ )
)

exp
(√ β

N

∑

iµa

ξµi σ
(a)
i z(a)

µ

)
,

(1.131)

where in the last line we linearized the spin-dependence by using a Gaussian representation
of the partition function. Here, we have of course

∫
dµ(z) =

∫ +∞

−∞

dz√
2π

exp(−z2/2). (1.132)

Since the average over the quenched disorder only involves not-retrieved patterns, we can
split the replicated Boltzmann factor in two distinct factors, incorporating respectively the
signal and the intrinsic noise. Thus, we can write

E′ZnN (β, α) =
∑

σ(1)

. . .
∑

σ(n)

zsignal[σ]znoise[σ], (1.133)
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where

zsignal[σ] =

∫ ( n∏

a=1

dµ(z
(a)
1 )
)

exp
(√ β

N

∑

ia

ξ1
i σ

(a)
i z

(a)
1

)
,

znoise[σ] =

∫ ( ∏

a,µ≥2

dµ(z(a)
µ )
)
E′ exp

(√ β

N

∑

ia,µ≥2

ξµi σ
(a)
i z(a)

µ

)
.

(1.134)

The signal contribution is easy to handle with, so we start by considering the noise factor.
On the latter, we can easily perform the average over not-retrieved patterns. This produces

a log cosh(
√
β/N

∑
a σ

(a)
i z

(a)
µ ) in the exponential. The argument of this function is a

quantity of order O(N−1/2), since the sum involves only the replica index, so we can
therefore expand the function at the leading order. After some trivial rearrangements, the
whole noise factor can be therefore rewritten as

znoise[σ] =
∏

µ≥2

∫ (∏

a

dµ(z(a)
µ )
)

exp
( β

2N

∑

iab

σ
(a)
i σ

(b)
i z(a)

µ z(b)
µ

)
. (1.135)

The crucial point in this expression is that the argument of the exponential accounts for

two kind of overlaps: the �rst one ∼ ∑i σ
(a)
i σ

(b)
i is the overlap of di�erent spin replicas;

the second one ∼∑µ z
(a)
µ z

(b)
µ is an analogous quantity for replicas of the hidden variables

zµ (to use a Machine Learning jargon). We can therefore introduce these overlaps directly
into the partition function by insertion of multiple Dirac deltas, therefore obtaining

znoise[σ] =
∏

µ≥2

∫ ( n∏

a=1

dµ(z(a)
µ )
)(∏

ab

dQabδ(Qab − 1
N

∑

i

σ
(a)
i σ

(b)
i )
)
·

· exp
( β

2N

∑

ab

Qabz
(a)
µ z(b)

µ

)
.

(1.136)

The integral over the z variables is Gaussian, so we can easily evaluate it. Using the Fourier
representation of the Dirac deltas, we �nally found the following form for the noise term:1

znoise[σ] =

∫ (∏

ab

dQab
NdPab

2π

)
exp

(
iN
∑

ab

PabQab − i
∑

iab

Pabσ
(a)
i σ

(b)
i

− P

2
log det(1− βQ)

)
.

(1.137)

where 1 and Q are respectively the n × n identity and overlap matrices. Again, we note
here that - as in the SK case - there are no couplings between spins belonging to the same
replicas, so that we can reintroduce new spin variables sa = ±1 with a = 1, . . . , n. This
allows to further simplify the expression. Including the singal term, with some manipula-

tions we arrive (after some trivial rescalings z
(a)
1 → √βNm(a)

1 , Pab → iαβ
2

2 Pab) at the �nal
result

E′ZnN (β, α) =

∫
dµ(m1,Q,P ) exp(−NA[m1,Q,P ]), (1.138)

1Note that, to be precise, since we have P − 1 integration variables z, the prefactor of the last term
should be P − 1. However, since we want to deal with the high storage limit, the di�erence between P and
P − 1 is negligible in the thermodynamic limit.
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where

A[m1,Q,P ] =
β

2

∑

a

(m
(a)
1 )2 +

αβ2

2

∑

ab

PabQab +
α

2
log det(1− βQ)

− E log
∑

s

exp
(
β
∑

a

ξ1m
(a)
1 sa +

αβ2

2

∑

ab

Pabsasb

)
,

(1.139)

and dµ(m1,Q,P ) is the measure over the order parameters (apart for constant factors, it
is simply given by the Euclidean measure). Of course, the free energy of Hop�eld model is
recovered by taking the limit

f(β, α) = lim
n→0

1

βn
A[m1,Q,P ]. (1.140)

At this point, we can no longer proceed without assuming a precise form for the overlap
order parameters.

The replica symmetric solution

In the Hop�eld model, the RS Ansatz is realized by taking the value of the Mattis
magnetization independent on the replica realization. On the other side, the overlap are
suppose to have equal non-diagonal elements. Moreover, we set the diagonal entries of the
Q matrix equal to 1 (meaning that each replica has maximal overlap with itself), while for
the P overlap we can set it to zero.1 In mathematical terms, this leads to the choice

m
(a)
1 = m1 ∀a,
Qab = δab + q(1− δab),
Pab = p(1− δab).

(1.141)

Therefore, we are left only with three order parameters. With this Ansatz, it is possi-
ble to compute the replica symmetric free energy fRS(β, α). Although the �rst terms in
A[m1,Q,P ] are actually easy to evaluate in the n→ 0 (and we refer to [8] to an exhaus-
tive description), we stress that the last one (involving the quenched averaged E) can be
estimated as

−αβ
2

2
np+ nE

∫
dµ(z) log 2 cosh(βm1ξ

1 + βz
√
αp) + O(n2). (1.142)

Putting everything together and including the correction term α/(2β) as prescribed above,
we are �nally able to state the following [43]

Theorem 1.7. The replica symmetric free energy for the Hop�eld model in the high storage
regime is

fRS(β, α) =
m2

1

2
+
αβ

2
p(1− q) +

α

2β

(
β + log[1− β(1− q)]− qβ

1− β(1− q)
)

− 1

β

∫
dµ(z) log 2 cosh

(
βm1 + βz

√
αq

1− β(1− q)
)
,

(1.143)

1In general, one can choose to set the diagonal entries of the P equal to a �xed value pD. However,
it is possible to show that, under the RS assumption, when extremizing the free energy such an order
parameter is not dynamical (meaning that its self-consistency equation is trivial), so one can consistently
set it to 0.
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where the order parameters satisfy the self-consistency equations

m1 =

∫ +∞

−∞
dµ(z) tanh

(
βm1 + βz

√
αq

1− β(1− q)
)
,

q =

∫ +∞

−∞
dµ(z) tanh2

(
βm1 + βz

√
αq

1− β(1− q)
)
.

(1.144)

at the equilibrium states.

Remark 1.12. We highlight here two points. First of all, the self-consistency equation
for the overlap p is algebraic, so it can be easily eliminated on the saddle point when
evaluating the free energy. Therefore, we are left only with two order parameters satisfying
coupled integral equations. The second point is that it was possible to directly evaluate
the quenched average E since we assumed from the beginning that we are working with
only one pattern ξ1 candidate to be retrieved. In this way, because of the invariance of
Gaussian measure under parity transformation and since the function log cosh is even, we
can trivially compute the quenched average. The extension of this equations to the case
of l condensed patterns ξµ (with µ ∈ (1, . . . , l)) is

mµ =

∫ +∞

−∞
dµ(z)E ξµ tanh

(
βm · ξ + βz

√
αq

1− β(1− q)
)
,

q =

∫ +∞

−∞
dµ(z)E tanh2

(
βm · ξ + βz

√
αq

1− β(1− q)
)
.

(1.145)

Remark 1.13. Solving the Hop�eld model in the high storage case beyond the replica
symmetric assumption is a very hard task. At present time, the best knowledge we have
about it stops at the 2RSB step [44]. However, it has been shown that the modi�cation
to the value of the critical capacity due to the replica symmetry breaking is negligible to
a �rst approximation (we refer to [8, 45] for further details).

Of pivotal importante for a mature development of Theoretical Arti�cial Intelligence,
and as the main reward in approching neural networks by the statistical mechanical per-
spective lies the concept of phase diagram, see Figure 1.6: the knowledge of the phase
diagram of the network allows optimal setting of the system a priori -before any training
or retrieval is tried (for instance it is pointless using the Hop�eld network loaded at α ∼ 0.5
as, whetever the noise level in the network, its collective computational capabilities are lost
for such a strong load). This is eventually one of the two the main rewards in the usage of
this approach to Theoretical Arti�cial Intelligence because it allows for an Optimized AI,
the other main reward lying in XAI eXplainable AI as, as we will deepen in the next two
Chapters, by tracing clear bridges between arti�cial and biological information processing,
cracking the black box (i.e. explaining the behavior of neural networks) ultimately results
comprhensibe thanks to these parallelisms.

1.5 Generalities on the restricted Boltzmann machine

The restricted Boltzmann machine (RBM) is a two-layer network, where one layer
-referred to as visible- receives input data from the outside world, while the other layer
-referred to as hidden- is dedicated to �gure out correlations in these input data (see Figure
1.7). Typically, a set of M > 0 data vectors {σ1, σ2, ..., σM} (i.e., the so-called training
set [46]) is presented to the machine and, under the assumption that these data have been
generated by the same probability distribution Q(σ), the ultimate goal of the machine is
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Figure 1.6: Phase diagram of the Hop�eld network. As the noise (T := 1/β) in the
network is tuned and the storage α = P/N varied, the network's behavior changes, being
split into four macroscopic regions: a paramagnetic one (where mµ = 0 and q = 0), a spin
glass region (where mµ = 0 and q ∼ 1) and two regions where the network properly works
as a pattern recognition associative memory, namely the two retrieval regions (one stable
and one meta-stable): in both these regions q ∼ 1 but also mµ ∼ 1 (in the stable retrieval
region the patterns are global free energy minma, while in the metastable retrieval region
the patterns are just local free energy minima).

to make an inner representation of Q(σ), say P (σ|ξ, θ), that is as close as possible to the
original one. Clearly, in order to get a good representation, the more complicated Q(σ),
the larger the training set1.
Each layer is composed by spins (also called neurons in this context), N for the visible
layer and P for the hidden layer, and these spins can be chosen with high generality,
ranging from discrete-valued (e.g., Ising spins), to real-valued (e.g., Gaussian spins). The
thermodynamic limit of the ratio between the layer sizes, denoted as α = limN→∞ P/N , is a
control parameter2 and usually one splits the case α = 0 (possibly yielding to under-�tting)
and the case α ∈ R+ (possibly yielding to over-�tting) [46], the latter being mathematically
much more challenging.
Analogously, the entries of the weight matrix can be either real or discrete. Generally
speaking, continuous weights allows for learning rules (e.g., the contrastive divergence
involving weight derivatives) which are more powerful than their discrete counterparts
(the typical learning rule for binary weights is the Hebbian one [11]) and are therefore
more convenient during the learning stage; on the other hand, binary weights are more
performing in the so-called retrieval phase, that is, once the machine has learnt and is
ready to perform the task it has been trained for. This trade-o� gave rise to a number of
variations on theme within the world of RBMs, where the extremal cases are probably given
by a machine with binary (i.e., Boolean) versus real (i.e., Gaussian) weights, equipped with

1Actually, in order to optimize the training stage, one should also properly set the internal parameters
of the machine such as the ratio between the sizes of the visible and hidden layer, the kind of the neurons,
etc. [46, 47].

2It is not a case that the ratio between the layers is called α and that the two layer sizes are sharply P
and N respectively: we will see along the manuscript that RBM and Hop�eld networks are two archetypale
faces (the former arti�cial, the latter biological) of the same coin that is shallow information processing

networks.



1.5. GENERALITIES ON THE RESTRICTED BOLTZMANN MACHINE 52

a binary visible layer and a real hidden layer: in the present work we will focus on both
these cases and we will try to highlight equivalences (but also crucial di�erences) among
these extrema.

It is useful to summarize the mechanisms underlying the functioning of a standard
RBM and, to this aim, we now introduce its de�nition.

De�nition 1. The Hamiltonian (or �cost function� in a machine learning jargon) of the
restricted Boltzmann machine -equipped with a digital (Boolean) visible layer and an analog
(Gaussian) hidden layer- reads as

HN (σ, z|ξ, θ) = − 1√
N

N∑

i=1

P∑

µ=1

ξµi σizµ −
N∑

i=1

θiσi, (1.146)

where σi (i ∈ [1, ..., N ]) denotes the state of the i-th visible unit, zµ (µ ∈ [1, ..., P ]) denotes
the state of the µ-th hidden unit, ξµi denotes the weight associated to the link connecting
the neurons labelled i and µ, and the factor 1/

√
N ensures the linear extensivity of the

Hamiltonian with respect to the system volume.

The scalars θi (i ∈ [1, ..., N ]) can be interpreted as external �elds acting on the visible
units and provide thresholds for neuron �ring: given a certain internal �eld

∑
µ ξ

µ
i zµ/

√
N

over σi, the larger θi and the more likely for the i-th neuron to �re, namely to be in an
active state σi = +1.
Now, this system is made to evolve by applying algorithms mimicking cognitive processes
[39, 48]. More precisely, one splits cognition into two separate acts, namely distinguishing
between learning (information) and retrieval (of the learnt information). The former oc-
curs on a slower time scale and implies a synaptic dynamics which is modeled by properly
rearranging the set of weights and thresholds. The latter occurs on a faster time scale
and implies a neuronal dynamics which is modeled by properly rearranging the spin con-
�guration, while keeping the weights quenched. Given the gap between the time scales
characterizing these dynamical processes1, one can treat them adiabatically, as done in the
following subsections: the next one is dedicated to synaptic dynamics (i.e., rearrangement
of the weights), while the successive one to neural dynamics (i.e., rearrangement of the
spins).

1.5.1 A brief digression on slow variable's dynamics: learning

In this subsection we focus on the algorithms underlying the learning stage and which
imply the dynamic of weights (we refer to [8] for a more extensive treatment). As mentioned
in the beginning of Sec. 1.5, the goal is to obtain an inner representation P (σ|ξ, θ) which
approximates Q(σ); this is usually achieved by the minimization of the Kullback-Leibler
cross entropy D(Q,P ), de�ned as

D(Q,P ) =
∑

σ

Q(σ) ln

[
Q(σ)

P (σ)

]
, (1.147)

where the sum runs over all the possible con�gurations of the visible layer and we have
dropped the dependence on the parameters (ξ, θ) of P (σ|ξ, θ) to lighten the notation. To
the same purpose we also introduce ξ̃µi =̇ξµi /

√
N , ∀i, µ. Notice that D(Q,P ) is minimal

1In the biological scenario the time scale for neuronal spikes is order of 50 ms, while the time scale for
synaptic rearrangement is order of hours and it takes order of weeks to consolidate.
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(and equal to zero) if and only if P (σ) and Q(σ) are identical. Now, by updating the
weights and the thresholds by a gradient descent rule

∆ξ̃µi = −ε∂D(Q,P )

∂ξ̃µi
, (1.148)

∆θi = −ε∂D(Q,P )

∂θi
, (1.149)

where ε is a small parameter (also called learning rate), we get

∆D(Q,P ) =
∑

i,µ

∂D(Q,P )

∂ξ̃µi
∆ξ̃µi +

∑

i

∂D(Q,P )

∂θi
∆θi (1.150)

= −ε


∑

i,µ

(
∂D(Q,P )

∂ξ̃µi

)2

+
∑

i

(
∂D(Q,P )

∂θi

)2

 ≤ 0,

that is the cross-entropyD(Q,P ) decreases monotonically until a stationary state is reached
(which, still, does not necessarily correspond to D(Q,P ) = 0). Now, in order to make this
learning rule an explicit, operational, algorithm a bit of work is still necessary. A key
point is that weights in the RBM are symmetric (i.e., its graph is undirected) and this, for
(non-pathologic) stochastic dynamics, implies detailed balance which, in turn, ensures that
the invariant measure is the Gibbs one given by

P (σ, z) =
e−βHN (σ,z|ξ,θ)

ZP,N (β|ξ, θ) , (1.151)

where ZP,N (β|ξ, θ) is a normalization factor (or �partition function� in a Statistical Me-
chanics jargon [8, 11]) and β ∈ R+ encodes for the noise (in Physics β plays as an inverse
temperature, in proper units). Now, marginalizing P (σ, z) over the hidden layer z, we
get P (σ). Therefore, the internal representation of the probability distribution is formally
known and this allows the construction of explicit learning algorithms, among which the
contrastive divergence that we are going to derive is probably the most applied [46]. In
order to proceed with the construction of a learning algorithm we explicitly de�ne

ZP,N (β|ξ, θ) =

∫ +∞

−∞

P∏

µ=1

dµ(zµ)
∑

σ

e−βHN (σ,z|ξ,θ), (1.152)

ZP,N (β|σ, ξ, θ) =

∫ +∞

−∞

P∏

µ=1

dµ(zµ)e−βHN (σ,z|ξ,θ), (1.153)

P (σ) =

∫ +∞

−∞

P∏

µ=1

dµ(zµ)P (σ, z) =

∫ +∞

−∞

P∏

µ=1

dµ(zµ)
e−βHN (σ,z|ξ,θ)

ZP,N (β|ξ, θ)

=
ZP,N (β|σ, ξ, θ)
ZP,N (β|ξ, θ) , (1.154)

P (z|σ) =
P (σ, z)

P (σ)
=

e−βHN (σ,z|ξ,θ)

ZP,N (β|σ, ξ, θ) ,

where, summations are meant over all possible spin con�gurations and dµ(zµ) is the Gaus-
sian measure (dµ(zµ) = exp(−z2

µβ/2)
√
β/(2π), for µ = 1, ..., P ). Thus, ZP,N (β|ξ, θ)

is the partition function of a system where both variable sets are free to evolve, while
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ZP,N (β|σ, ξ, θ) is the partition function of a system where the visible layer is �clamped�,
namely forced to be in the con�guration {σ} encoded by one of the input data. Also, P (σ)
is the marginalized distribution and P (z|σ) is the distribution for the con�guration of the
hidden layer being the visible layer clamped. At this point we have to evaluate each single
term inside (1.150):

∂D(Q,P )

∂ξ̃µi
= −

∑

σ

Q(σ)
∂ lnP (σ)

∂ξ̃µi

= −
∑

σ

Q(σ)
∂

∂ξ̃µi
(lnZP,N (β|σ, ξ, θ)− lnZP,N (β|ξ, θ))

= β
∑

σ

Q(σ)

(∫ +∞

−∞

P∏

µ=1

dµ(zµ)P (z|σ, ξ, θ)∂HN (σ, z|ξ, θ)
∂ξ̃µi

−
∫ +∞

−∞

P∏

µ=1

dµ(z′µ)
∑

σ′

P (z′, σ′|ξ, θ)∂HN (σ′, z′|ξ, θ)
∂ξ̃µi

)

= −β
(∫ +∞

−∞

P∏

µ=1

dµ(zµ)
∑

σ

Q(σ)P (z|σ, ξ, θ)σizµ

−
∑

σ

Q(σ)

∫ +∞

−∞

P∏

µ=1

dµ(z′µ)
∑

σ′

P (z′, σ′|ξ, θ)σ′iz′µ

)
,

= −β (〈σizµ〉clamped − 〈σizµ〉free) , (1.155)

where, in the �rst passage we used the de�nition (1.147), recalling that Q(σ) does not
depend on ξ; in the second passage we used (1.154); in the third passage we used (1.152) and
(1.153); in the fourth passage we recalled that ∂HN (σ, z|ξ)/∂ξ̃µi = −σizµ and the subscript
clamped means that the averages of the two-points correlation functions must be evaluated
when the visible layer is forced to assume data values, while free means that the averages
are the standard, statistical-mechanical ones. For the updating rule of the thresholds
θi(i = 1, ..., N), one performs analogous calculations and, recalling ∂HN (σ, z|ξ)/∂θi = −σi,
one gets

∂D(Q,P )

∂θi
= −β (〈σi〉clamped − 〈σi〉free) . (1.156)

Thus, the learning rule (1.150) ultimately tries to make the theoretical one-point and two-
point correlation functions as close as possible to the empirical ones1. Under this rule the
machine will eventually be able to reproduce the statistics of the training data correctly,
and this means that the parameters (ξ, θ) have been rearranged such that, if the machine
is now asked to generate vectors with P (σ), the statistical properties of these vectors will
coincide with those of the input data generated by Q(σ). In this case we say that the
machine has learnt a representation of the reality it has been fed with. Note that this
approach allows a proper statistical reproduction of mean averages and variances, hence,
when Q(σ) violates the central limit theorem, a two-layer RBM is no longer suitable for
statistical inference and deep or dense networks are preferred.

1This argument can be expanded up to arbitrarily N -points correlation functions by paying the price
of adding extra hidden layers and this kind of extension is a basic principle underlying Deep Learning [49].
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1.5.2 A brief digression on fast variable's dynamics: retrieval

After the learning stage, the machine undergoes a �nal check over another bulk of
data, referred to as test set, which stems from the same distribution that has generated
the training set [46]. To �x ideas, let us assume that the machine was trained for retrieval
tasks: if the trained machine is able to retrieve correctly the items in the test set, then the
test is passed and the machine is ready for the usage. In order to move from the learning
mode to the retrieval mode, the hidden layer is marginalized over: as we are going to show,
following this procedure we end up with a Hop�eld model (that is the standard model for
pattern retrieval [39]), where each feature learnt by the hidden layer corresponds to one of
the learnt patterns and the optimal parameters (ξ, θ) store information about the whole
set of learnt patterns.

To see this duality between the RBM and the Hop�eld model we look at the temporal
evolution of the neurons which can be described by the following stochastic di�erential
equation and map (to �x ideas we take hidden units as continuous and visible units as
binary, as before)

dzµ(t)

dt
= −zµ(t) +

1√
N

N∑

i=1

ξµi σi +

√
2

β
ηµ(t), (1.157)

σi(t) = sign


tanh


 β√

N

P∑

µ=1

ξµi zµ + βθi


+ η̃i(t)


 . (1.158)

In the previous equation we used t to denote the time and we set the typical timescale of
the variables (σ, z) as unitary; also, we denoted with η, η̃ standard Gaussian white noises
with zero mean and covariance 〈ηµ(t)ην(t′)〉 = δµνδ(t − t′). Notice that, in the temporal
evolution of the visible (respectively hidden) units, the hidden (respectively visible) units
are taken as �xed (see also [8]).
Let us now focus on the hidden layer dynamics: the �rst term in the right-hand side
of eq. (1.157) is the standard leakage term and the second term is the input signal over
the hidden layer. This dynamics overall de�nes an Ornstein-Uhlembeck process, whose
equilibrium distribution, at �xed σ's, reads as

P (zµ|σ) =

√
β

2π
exp


−β

2

(
zµ −

1√
N

N∑

i=1

ξµi σi

)2

 . (1.159)

Since the hidden units are independent in the RBMs under study, we can write P (z|σ) =∏P
µ=1 P (zµ|σ).

As for the dynamics of the visible layer, each spin perceives an e�ective �eld (that is the
sum of the overall signal and the threshold for �ring) that is compared with the noise in
such a way that if the signal prevails over the noise the neuron spikes. Hence, for the σ's,
we can write

P (σi|z) =
e

β√
N
σi

∑P
µ ξ

µ
i zµ+βθiσi

2 cosh
(
β
∑P

µ ξ
µ
i zµ/

√
N+βθi

) , (1.160)

and, again, P (σ|z) =
∏N
i=1 P (σi|z). In order to get the joint distribution P (σ, z) and

the marginal distributions P (σ), we use Bayes' Theorem, i.e. P (σ, z) = P (σ|z)P (z) =
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Figure 1.7: Schematic representation of the (restricted) Boltzmann machine (left

panel) and its corresponding dual, the Hop�eld network. Left panel: example of
a RBM equipped with six neurons in the visible layer, σ1, ..., σ6 and three neurons in
the hidden layer z1, ..., z3. The weights among the two layers are coded by the N × P
matrix ξµi . Right panel: dual example of the corresponding Hop�eld model, obtained by
marginalization over the hidden variables. This network uses solely the σ1, ..., σ6 neurons,
whose links however are now arranged according to the Hebb prescription for learning,
that is Jij =

∑3
µ=1 ξ

µ
i ξ

µ
j .

P (z|σ)P (σ), hence getting

P (σ, z) ∝ exp


−β

2

P∑

µ=1

z2
µ +

β√
N

N∑

i=1

P∑

µ=1

ξµi σizµ


 , (1.161)

P (σ) ∝ exp


 β

2N

N∑

i,j=1




P∑

µ=1

ξµi ξ
µ
j


σiσj


 . (1.162)

Remarkably, one can see that the features learnt by the machine (see eq. (1.159)) cor-
respond to the patterns that the machine will successively be able to retrieve (see eq.
(1.162)), as this last equation is nothing but the Gibbs probability distribution for the
original Hop�eld model [11, 39].

Remark 1.14. We presented the RBM architectyre equipping the hidden layer with real-
valued neurons with a Gaussian prior because, starting from this architecture, to prove
the duality between RBMs and Hop�eld networks we just need to integrate out already
factorized Gaussian integrals, hence we preferred this choice to guarantee simplicitly in the
calculations while briding the two worlds of biological and arti�cial information processing
neworks, but the duality (between RBMs in general and generalized Hebbian networks)
continues to hold whatever the details of the networks, it is just more tricky to prove
without the Gaussian setting for the hidden neurons. In the next Chapter for instance,
that is dedicated to our research �ndings in Theoretical Arti�cial Intelligence, we will use
a fully binary RBM, where both the layers -visible and hidden- are equipped with digitial
neurons (i.e. Ising spins).

We close this section pointing out that for discrete weights/patterns the contrastive di-
vergence algorithm shown in the learning section can not be applied as it requires stochas-
tic descent over the weights that must therefore be real (and di�erentiable). For discrete
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pattern's entries, given the outlined duality between Restricted Boltzmann machines and
Hop�eld neural networks, the most natural learning rule would probably be the Hebbian
learning from examples: calling Jij the e�ective coupling between the two neurons σi and
σj , given M examples -labelled with a ∈ (1, ...,M)- for any given µ of the P patterns ξµ,a,
namely P vectors of length N of binary entries, such a prescription results in

Jij =
M∑

a=1

P∑

µ=1

ξµ,ai ξµ,aj , (1.163)

that, formally at least, resembles the coupling emerging from the duality between RBMs
and Hop�eld networks, yet -as we have seen in this �rst Chapter- the Hop�eld network
does not learn from examples ξµ,a, rather it stores already de�ned patterns ξµ hence we
have to entirely prove our assertion, namely that the above learning rule is truly a learning
rule and that the learning objects -inferred by the inspections of the examples ξµ,a- are
e�ectively the patterns ξµ (that in turn would coincide with the weights of the dual RBM
representation): this will be the starting point of the new research results I present in this
thesis as investigated in the next Chapter.



Chapter 2

Part 2: Theoretical Arti�cial

Intelligence

From now on we report results from our research experience during the Ph.D. training
time. As we assumed the reader to be familiar with Statistical Mechanics concept during
the �rst Chapter, in this Chapter we shall assume that the reader has familiarity with
Machine Learning concepts. The a-priori knowledge of the minimal data-set size to ensure
a successful learning, is not yet known in general, despite the pivotal importance of such
information en route toward optimized arti�cial intelligence. Given the duality between
Boltzmann machines and Hop�eld networks we presented in the closure of the last Chapter,
yet, in this thesis we propose a novel approach to quantify the goodness of the learning stage
that completely bypasses Bayesian posterior evaluation (i.e. the standard route in classical
machine learning): this evaluation is again heavily biologically inspired (and ultimately
suggested by the fact that learning and retrieval of information are two inseparable faces
of a unique phenomenon that is cognition) and we can rely on this observation as follows:
once a RBM has accomplished learning, the learnt information will shine when tested the
machine in pattern recognitions problems (where its retrieval capabilities are guaranteed
by its dual representation in terms of the Hop�eld network) and -forcing the network in
the retrieval region- if the Mattis magnetizations that we obtain di�erent from zero are
the expected ones we can conclude that the training stage has been succesfull, otherwise
a plethora of possibilities can be evaluated to overcome the partial achieved learning (e.g.
we can consider larger and less noisy data-sets or we can change the architecture of the
network, relying on more sophisticated models as those that will be deepened in this
research chapter): indeed in this chapter we try to contribute towards this goal and -for
the sake of simplicity- we wil restrict to the simplest random data-sets scenario, where
shallow networks su�ce and a general theory can be worked out.
First, we prove that the supervised Boltzmann learning based on the grandmother cell
setting mirrors unsupervised Hop�eld learning: the grand-mother cell scenario [50, 51]
was also originally introduced in a biological context (and adopted here to the machine
learning counterpart) and it assumes that one single neuron (here one single hidden neuron
in the hidden layer of the RBM) gets active when a pattern is presented to the network
(here when a pattern is presented to the visible layer); while this theory was criticized
in the biological context (as it presents �aws for structured datasets because multiple
hidden neurons typically rise dealing with structured information), this simple setting
naturally works here for structureless data-sets as all the patterns are equivalent under
permutations and we can arbitrarily associate any of the patterns to be learnt to any of
the hidden neurons, hence we have that the maximal storage capacity αc ∼ 0.14 for the

58



2.1. HEBBIAN LEARNING: EXISTENCE OF A DATASET THRESHOLD SIZE 59

Hop�eld model sets also the maximal ratio between visible and hidden layer in machine
learning before pushing the Boltzmann machine toward a glassy phase, where inference is
still possible but more tricky (for instance decisional majority rules could be implemented).
The unsupervised Hop�eld learning generalizes the standard Hop�eld model in the case
where, instead of having a set of de�nite patterns (archetypes), only a sample of blurred
versions are available and these are overall combined in a Hebbian kernel as proposed at
the end of the previous Chapter.

2.1 Hebbian Learning: existence of a dataset threshold size

Indeed we closed the last Chapter questioning on the duality between Restricted Botz-
mann machines (RBM) and Hop�led neural networks that, given the manifest rewards we
achieve if properly established, must be faced now and in detail. Before starting to deepen
such an equivalence, let us brie�y comment on the rewards: as Machine Learning became
pervasive in countless aspects of societal and working habits of our lifes, there is an urgent
need in several worldwide research group's agenda toward both eXplainable AI (XAI) and
Optimized AI (OAI). The former is due to crack the black box as understading machine
learning is a central question in ethics concerning AI (if a self-driving car is in an Aut-Aut
and it has to decide if invest an old man or a child we need to know how and why it took
an option rather than the other) and the latter is pivotal for a safe massive usage of AI
without contributing to global warming as, at present, machine learning algorithms are far
from being optimized and, even worse, often we require the machine to accomplish learning
that can not simply be achieved given the amount of information provided to the network
or due to its inner architectural organization: in these regards, providing phase diagrams
where di�erent operational modes of the machines are presented as regions in this plot
split by computational phase transitions, would allow us to set the machine in the optimal
operational mode a priori, without high energy consumption empirical trials.
Hence, in this Chapter, at �rst (in this section) we show numerically that a RBM trained
over a sample of blurred examples and a Hop�eld model learning from the same sample
of blurred examples are eventually (as the dataset gets large enough) able to generalize,
namely, the former can be used as an archetype classi�er/generator and the latter as an
archetype retriever. Remarkably, we rigorously obtain a threshold M× in the dataset size
for the emergence of such a skill and this threshold turns out to be sharply the same for
both models, yet -as a matter of presentation- in the following subsections we will address
the two problems separately, starting with RBM and then moving to Hop�eld networks.

2.1.1 RBM learning from blurred samples

We denote with {ξµ}µ=1,...,K the K archetypes, namely the patterns that we would

like to see learnt by the RBM and with S = {ηµ,a}a=1,...,M
µ=1,...,K the related examples that the

machine is actually supplied with. These objects are codi�ed in terms of binary vectors of
length N ; pattern entries are Rademacher random variables drawn with probability

P(ξµi = +1) = P(ξµi = −1) = 1/2, ∀i, µ (2.1)

while example entries are de�ned, ∀i, µ, a, as

ηµ,ai = ξµi χ
µ,a
i , (2.2)

with P(χµ,ai = 1) = 1− P(χµ,ai = −1) = p ∈ [1/2, 1],
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in such a way that the closer p gets to 1/2, the farther from the pattern gets the example1.
We also introduce

r := 2p− 1 ∈ [0, 1], (2.3)

as an index for the dataset quality: r ranges from 0 (any example and the related archetype
are uncorrelated) to 1 (any example coincides with the related archetype).
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Figure 2.1: The larger panels provide a picture of the performance of a trained RBM used
as a classi�er (panel a) and as a generative model (panel b); in particular, the logarithm
of P(zE |σ = ξE)/P(z|σ = ηE) and the logarithm of 〈m〉/〈n〉, respectively, are shown
versus M , for di�erent choices of the parameters r (as explained by the common legend
in panel a), which quanti�es the dataset quality. The threshold value M× corresponds to
the interception between the curves and the horizontal axis. In both panels the vertical
dashed lines are obtained analytically by studying the dual Hop�eld network and asking
for the minimum value of M such that archetype retrieval prevails over example retrieval
(i.e., m̄ > n̄, see Sec. 2.1.2 and SM); this estimate is obtained for di�erent choices of r,
as reported. Note that the vertical lines intersect the experimental curves always when
they also cross the horizontal line, showing that the threshold size is the same for these
machines. The smaller panels provide a picture of the training routine for the RBM. As
epochs run, we show the evolution of the classi�cation probabilities (panel c) P(zE |σ = ξE)
and P(zE |σ = ηE) (respectively, solid and dashed lines) and of the overlaps (panel d) 〈m〉
and 〈n〉 (respectively solid and dashed lines), distinguishing between the case M > M×
(bright color) and M > M× (dark color), as explained in the legend.

The machine is made of two layers: the visible one made of N binary neurons σi =
±1, i ∈ (1, ..., N) and a hidden one built of by K binary neurons zµ = ±1, µ ∈ (1, ...,K);
we denote with (σ, z) ∈ {−1,+1}N×K the overall con�guration. Note that there are as
many hidden neurons as archetypes and, as we will explain in the following, this architec-
ture allows us to allocate one hidden neuron per archetype, con�guring the network in the
grandmother cell scenario [50, 51].
We also introduce the weight matrix w ∈ RN×K , whose entry wµi represents the weight as-
sociated to the connection between neurons i and j belonging to di�erent layers. The cost
function (or Hamiltonian to keep a physical jargon) HN,K(σ, z|w) related to this RBM

1Although here we are working with random data-sets, for intuition guidance, we could look at a
certain pattern ξ as the archetype of, say, a German Shepherd, while the set ηa would be a set of pictures
of this dog, and similarly for the other patterns.
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reads as

HN,K(σ, z|w) = − 1√
N

K∑

µ=1

N∑

i=1

wµi σizµ, (2.4)

where the factor
√
N ensures the linear scaling of the cost function with respect to the size

in the thermodynamic limit N → ∞. The equilibrium distribution for such a system is
given by the Boltzmann-Gibbs measure

P(σ, z|w) =
1

ZN,K
e−βHN,K(σ,z|w), (2.5)

where ZN,K is the suitable normalization factor obtained by summing the exponential term
over all possible con�gurations (σ, z) ∈ {−1,+1}N×K .

We train this machine in a supervised mode, that is, during the training phase the
clamped setting involves both the visible and the hidden degrees of freedom, namely σ is
set to one of the examples in the dataset, say the (ν, a)-th one, i.e., σi = ην,ai for i = 1, ..., N ,
while z is set to a one-hot vector where the entry related to the correct archetype is 1 and
the others 0, i.e., zµ = δµ,ν for µ = 1, ...,K; we call Z the set of all possible K one-hot
vectors. This kind of setting can be interpreted as a grandmother-cell setting, namely we
establish a one-to-one correspondence between hidden neurons and archetypes and � in the
clamped state � we force solely one hidden neuron per archetype to be active, whence the
constraint on the number of archetypes equal to the number of hidden neurons.

More speci�cally, the machine training is accomplished by means of the following Hin-
ton's scheme of contrastive divergence that we derived in Section 1.5.1 (see eq. 1.168):

∆wµi ∝ (〈σizµ〉clamped − 〈σizµ〉free) , ∀(i, µ) ∈ (N ×K),

where for each training step the �free� average is sampled via a single step of alternative
Gibbs sampling, i.e. a random training example (σE , zE) ∈ S × Z is selected, then the
free mean is calculated single shot via a pair (σfree, zfree) sampled using the Gibbs-chain
zE → σfree → zfree; the �clamped� average is also evaluated single shot using the same
pair (σE , zE).

The trained machine can be used as a classi�er (i.e., as a pattern recognition device,
by feeding the machine a noisy σ con�guration and letting the machine recover the z
con�guration whose entries indicate how the input signal has been classi�ed), or as a gen-
erative model (by feeding the machine a z con�guration and letting the machine output
the σ con�guration of the corresponding archetype). We inspect the success of the learning
procedure by testing the machine as a classi�er and as a generative model, as reported in
panels a and b of Fig. 2.1. More precisely, we choose as performance measure for classi�-
cation the logarithm of P(zE |σ = ξE)/P(zE |σ = ηE), where P(zE |σ = ξE) (respectively
P(zE |σ = ηE)) is the probability of reaching a correct hidden state zE given a visible state
clamped as σ = ξE (respectively σ = ηE); the ratio between the two terms allows us to
assess when one prevails over the other (see Fig. 2.1, panel a). To evaluate computationally
P(z|σ = ξ) (and analogously P(z|σ = η)) we provide the network with, respectively, the
archetype and the example on the visible layer and we study the distribution of activa-
tions within the hidden layer (i.e., the entries of the z vector): as training followed the
grandmother-cell setting we expect to have just one positive entry � the hidden neuron
coupled to the selected archetype � if learning has been properly accomplished.
When looking at the Boltzmann machine as a generative model, we use a di�erent per-
formance measure: having trained the machine as speci�ed above, we clamp the hidden
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layer on a certain one-hot vector zE ∈ Z and we let the machine thermalize allowing visi-
ble neurons to evolve freely; we expect that the system relaxes to con�gurations where σ
corresponds to the related archetype ξE . To check whether this is the case we measure
the overlap between the visible neuron con�guration σ and ξE and compare it with the
overlap between σ and the examples corresponding to the class of ξE . To �x ideas, let us
set ξE = ξν , then we introduce nν,a as the overlap between σ and the (ν, a)-th example
ην,a for a = 1, ...,M , namely

nν,a :=
1

N

N∑

i=1

ξνi χ
ν,a
i σi, (2.6)

and mν as the overlap between σ and the ν-th archetype ξν , namely

mν :=
1

N

N∑

i=1

ξνi σi. (2.7)

To evaluate computationally these overlaps we �rst evaluate nν,a and mν as normalized
dot product between the thermalized con�guration σ and, respectively, ην,a and ξν as per
de�nitions (2.6) and (2.7), then we average over di�erent choices of clamped states (namely
by varying ν ∈ [1,K]) and over di�erent realizations of archetypes (this is the analogous
of a quenched average). These mean values are denoted as 〈n〉 and 〈m〉. Their comparison
allows us to evaluate whether the system is more prone to generate one of the examples it
has been exposed to or to generate the unseen archetype (see Fig. 2.1 , panel b).

For both operational modes we see that, if the number of examples provided to the
network is relatively small, the system fails, that is the system can classify examples better
than archetypes (i.e., P(zE |σ = ηE) > P(zE |σ = ξE)) or the system generates examples
rather than archetypes (i.e., 〈n〉 > 〈m〉). However, if the number of examples is relatively
large, the system succeeds, that is the system can classify archetypes better than examples
or the system generates archetypes rather than examples. The threshold between a �small�
and a �large� dataset is denoted withM× and, as expected,M× grows as the sample quality
r decreases. Empirically, we �nd that M× ∼ r−1. On the other hand, the two extreme
cases M = 1 and M →∞ are trivial as for M = 1 there is no di�erence between examples
and archetypes (the example is also the archetype) while forM →∞ the archetype always
prevails over examples by a standard central limit theorem argument.

Analogous remarks can be drawn also from Fig. 2.1 panels c, d where we show the
evolution of the classi�cation probabilities P(zE |σ = ξE) and P(zE |σ = ηE) and of the
mean overlaps 〈m〉 and 〈n〉 as the training is running. Interestingly, as long as M <
M×, the saturation values for P(zE |σ = ηE) and 〈n〉 are larger than those obtained for
P(zE |σ = ξE) and 〈m〉; the opposite holds as M > M×.

We conclude this section recalling that we can recast the problem of archetypes gener-
ation and classi�cation exploiting the duality between Boltzmann machines and Hop�eld
networks: as largely discussed in the past decade [52, 53, 54, 55, 56, 57, 58, 59], we have
so far understood that by marginalizing the probability distribution P(σ, z|w) over the
hidden layer, we end up with the probability distribution of a Hop�eld network as long
as we identify the weights wµi in the former with the entries of the patterns stored by the
latter, and we suitably rescale the temperature; in formulae

P(σ, z|w) =
2N∑

σ

2K∑

z

e
β√
N

∑K
µ=1

∑N
i=1 w

µ
i σizµ (2.8)

→ P(σ|w) ∝
2N∑

σ

e
β2

2N

∑N,N
i,j

∑K
µ (wµi w

µ
j )σiσj .
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Figure 2.2: Schematic representation of the emergence of the archetype minimum in the
energy landscape. The network is supplied with M examples of the pattern ξ, which,
instead, is never presented to the network. As M grows, from left to right, the network
at �rst stores each single example but it is unable to retrieve ξ (left, M < M×), then,
in the energy landscape, new minima, close to ξ, appear and coexist with the minima
corresponding to examples (center, M > M×) and, �nally, a unique stable minimum
corresponding to the archetype emerges (right, M ≈Mc).

From this perspective we may want to check the ability of the system to retrieve an
archetype, namely if we initialize the Hop�eld network in a con�guration σ corresponding
to an example, say ην,a, and let it thermalize towards equilibrium, does it eventually end
up �close� to the archetype ξν? This problem is faced in the next section.

2.1.2 Hop�eld network learning from blurred samples

Let us consider a Hop�eld neural network made of N binary neurons, whose overall
con�guration is denoted with σ = (σ1, σ2, ..., σN ), and supplied with the sample S made of
K ×M examples ηµ,ai = ξµi χ

µ,a
i as de�ned in (2.2). We want to apply Hebb's rule to this

sample and check whether the resulting system is able to generalize, namely to retrieve
the archetype {ξµ}µ=1,...,K once provided with an example1. We write the coupling Jij
between the neurons i and j as

Jij =
1

N

K∑

µ=1

M∑

a=1

ηµ,ai ηµ,aj . (2.9)

Notice that, in this de�nition, we are simply summing over all the instances making up
the sample S, without caring of the class each term belongs to, in this sense, this kind of
Hebbian learning is unsupervised. The cost function (or Hamiltonian to keep a physical
jargon) HN,K,M (σ|χ, ξ) of the model reads as follows

HN,K,M (σ|χ, ξ) = − 1

2N

K,M∑

µ,a

( N∑

i=1

ξµi χ
µ,a
i σi

)2
= −N

2

M∑

a=1

(na)2, (2.10)

1When this can be accomplished we say that also the Hop�eld network can generalize because, starting
from the inferred archetype, it generates variations on theme by taking advantage of the fast noise β
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where na = (n1,a, ..., nK,a) with entries de�ned in (2.6). Analogously, we pose m =
(m1, ...,mK) with entries de�ned in (2.7). In this context, we shall also refer to na andm
as Mattis magnetizations related to, respectively, examples and archetypes.
As we will see, these quantities play as key order parameters to quantify how (and what kind
of) pattern recognition is accomplished by the network, implicitly quantifying the goodness
of its learning too. In the following we will denote with m̄ and n̄ their expectations with
respect to the Boltzmann-Gibbs distribution related to the cost function (2.10), namely

P(σ|χ, ξ) =
1

ZN,K,M
e−

β
2N

HN,K,M (σ|χ,ξ), (2.11)

where ZN,K,M is the suitable normalization factor obtained by summing the exponential
term over all possible con�gurations σ ∈ {−1,+1}N .

As detailed in the next sections, this model can be addressed analytically and we can ob-
tain � in the thermodynamic limit and in the high-storage regime (i.e., α = limN→∞K/N
�nite) � self-consistent equations for its order parameters that can be then solved numeri-
cally. Following this route, we can compare n̄ and m̄ and check whether m̄ > n̄ �nding that
for this condition to hold, M must be larger than a certain threshold, represented by the
vertical dashed lines in Fig. 2.1: remarkably, this threshold corresponds to the threshold
value M× of the RBM.

Before proceeding we anticipate that the analytical investigation performed on the
Hop�eld model (2.10) highlights a rich phenomenology that here we try to summarize
by means of Fig. 2.2 that sketches the evolution of (a cross section of) the cost-function
landscape E := HN,K,M (σ|χ, ξ) as the dataset size is made larger; in this landscape, we
especially care of minima since they play as attraction basins for the neural con�guration σ.
When M is small the landscape exhibits K ×M minima1 corresponding to the examples
provided; as M is made larger, minima get denser and their attraction basins possibly
overlap; when M > M× the minima corresponding to examples are only local while new
and deeper minima emerge, whose location is closer to the archetype rather than any other
example; asM is further increased local minima get less and less stable while global minima
get closer and closer to the archetypes; �nally when M is large enough, con�gurations
corresponding to archetypes become stable. As we will see in the next section, the last
passage can be related to a critical value forM , that scales with r and that we denote with
Mc. Interestingly, we also �nd out that setting M = Mc determines the onset of a critical
phase transition.
Therefore, for the Hop�eld network de�ned in (2.10), in addition to the traditional tuneable
parameters, namely the fast noise β and the load α = limN→∞K/N , we have the sample
size M and the sample quality r; we expect the system to correctly retrieve archetypes
as long as α < αc(β) and as long as M > Mc(r). When translating this knowledge into
the RBM scenario, we derive restrictions in the data-dimensionality reduction ability of
Boltzmann machines (note that α corresponds to the ratio between the sizes of the hidden
and the visible layers in RBM) [60] and an interplay between dataset quality and quantity.

2.1.3 Signal-to-Noise for Hebbian Learning

As anticipated, our analytical investigations shall focus on the Hop�eld counterpart for
which we can rely on solid mathematical methods.

We start with the signal-to-noise analysis to check for local stability of the con�gura-
tions σ = ηµ,a and σ = ξµ, for arbitrary µ and a, in the noiseless limit β → ∞. This is

1The number of minima is actually 2×K ×M due to the gauge symmetry.
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accomplished by studying if the internal �eld hi =
∑N

j=1 Jijσj , experienced by the neuron
i, is aligned with the neural activity σi and by monitoring the evolution of the relative
energies associated to these con�gurations (see Figure 2). We �nd that by increasing M ,
archetypes (examples) progressively gain (loose) stability at a rate depending on r. In par-
ticular, as for archetypes, the stability threshold Mc increases according to the following
scaling

Mc ∼ (2p− 1)−4, (2.12)

To get sharper estimates and a characterization of a possible phase transition, we need
to solve for the quenched free-energy of the model and inspect the related self-consistent
equations for order parameters. In the limit of in�nite volume N , but �nite dataset size
M , the quenched pressure (i.e., −β times the free energy) of the model (2.10) is de�ned as

AM (α, β) := lim
N→∞

1

N
E lnZN,K,M (β|χ, ξ), (2.13)

where E := EχEξ averages over both the quenched variables χ, ξ, and ZN,K,M is the
partition function given by

ZN,K,M (β|χ, ξ) :=
2N∑

σ

exp
[ β

2N

M∑

a=1

K∑

µ=1

( N∑

i=1

ξµi χ
µ,a
i σi

)2]
. (2.14)

Note that by a trivial Hubbard-Stratonovich transformation, this partition function coin-
cides with that of a RBM equipped with Gaussian prior. At the replica symmetric level of
description, keeping M �xed but sending both K and N to in�nity in such a way that α is
�nite, and focusing on the retrieval of ξ1 with no loss of generality, we reach the following
expressions for the quenched statistical pressure

A = log 2− βαM

2
p̄(1− q̄)− βM

2
n̄2 − αM

2

(
log[1− β(1− q̄)]

− βq̄

1− β(1− q̄)
)

+ Eφχ log cosh
(
n̄β

M∑

a=1

χa +
√
αβp̄Mφ

)
,

where φ is an auxiliary, mute, Gaussian �eld, while p̄, q̄ and n̄ are, respectively, the
expectation values for the order parameters p12, q12, n1,a, being p12 and q12 overlaps
between di�erent replicas of the system. These expectation values can be obtained by
looking for the stationary points of the quenched pressure ∇n̄,q̄,p̄AN,M (α, β) = 0 and turn
out to ful�l the following self-consistent equations

n̄ = Eφχ

(
1

M

M∑

a=1

χa

)
tanh

(
βn̄

M∑

a=1

χa +
√
αβp̄Mφ

)
, (2.15)

q̄ = Eφχ tanh2
(
βn̄

M∑

a=1

χa +
√
αβp̄Mφ

)
, (2.16)

p̄ =
βq̄

[1− β(1− q̄)]2 . (2.17)

Note that, the example magnetization n is embedded right in the expression of the model
cost-function (see (2.10)), much as the Mattis magnetization for the standard AGS theory.
On the other hand, m does not play as a natural observable for the model as the system



2.1. HEBBIAN LEARNING: EXISTENCE OF A DATASET THRESHOLD SIZE 66

Figure 2.3: Left: Contour plots for the magnetization of the archetype m̄ (left panels) and
of the examples n̄ (right panels), obtained by solving the self-consistencies in eqs. (2.15)
and (2.18) for α = 0 and for M = 1, 3, 10 (from top to bottom), versus p (x-axis) and
β−1 (y-axis); analogous results are obtained for α > 0, see the SM. By comparing the
values of m̄ and n̄ we see that, as the number of examples exceeds a bound M×(r), the
archetype retrieval dominates over the example retrieval. Right: the condition m̄ = n̄ is
recognized as the boundary between a fuzzy regime where the sample size is not enough
for the archetype to be inferred and the network is only able to retrieve the examples it
has been presented to, and a concept-formed regime where the network �forgets� about
the examples and can retrieve the archetype. Consistency between the theoretical (dashed
line) and the empirical (bullets, solid line is a guide for eyes) estimates is provided. Notice
that, at α = 0, the function M×(r) is temperature independent.

is, in principle, unaware of the archetypes. Having access to the archetypes, a practical
way to compute m̄ is to insert in the model a small �eld J coupled to m and then evaluate
∂JAN,M (α, β, J) as J → 0. More interestingly, in the limit of large M , m̄ spontaneously
emerges and occurs to be directly related to n̄; in particular, the two magnetizations, m̄
and n̄, get related as

n̄ =
m̄r

1− β(1− q̄)(1− r2)
. (2.18)

In the next subsections we analyze the self-consistent equations under di�erent condi-
tions and try to derive analytically the existence of a threshold size M× and of a critical
sizeMc that determine the onset of di�erent regimes as for the system ability to generalize.

Finite dataset size

Let us resume eqs. (2.15)-(2.17) and let us focus on the zero fast noise limit β → ∞.
Recalling that M is large, we can introduce the random variable S := 1

M

∑M
a=1 χa =

r +
√

1−r2
M Z with Z ∼ N(0, 1), and, posing

δQ̄ = EZ
2√
π

exp

[
−
( n̄MS(Z)

δQ̄+
√

2αM

)2
]
, (2.19)
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where EZ denotes the expectation over Z, the self-consistency equations for the magneti-
zations m̄ and n̄ become

n̄ = EZS(Z) erf

(
n̄MS(Z)

δQ̄+
√

2αM

)
, (2.20)

m̄ = EZ erf

(
n̄MS(Z)

δQ̄+
√

2αM

)
. (2.21)

Via these equations it is possible to obtain an analytic expression for the threshold M×:
by requiring m̄ > n̄, we obtain the following inequality

EZ [1− S(Z)] erf

(
n̄MS(Z)

δQ̄+
√

2αM

)
> 0 (2.22)

which, to �rst order in n̄, is satis�ed if EZ [1− S(Z)]S(Z) > 0, namely, recalling the
de�nition of S,

EZ

[
1− r −

√
1− r2

M
Z

][
r +

√
1− r2

M
Z

]
> 0, (2.23)

whence (1− r)r − 1−r2
M EZZ2 > 0. The latter inequality yields to

M >
1 + r

r
= M×. (2.24)

Therefore, as expected, in order for the archetype magnetization to prevail over the example
magnetization, the dataset size needs to be larger and larger as the sample gets more and
more blurred, according to the above scaling. This �nding is corroborated by extensive
computational checks and its robustness with respect to the fast noise is also tested, as
we solved numerically the self-consistency equations for arbitrary, �nite β and derived an
estimate of M× by comparing the solutions of m̄ and n̄ obtaining analogous results as
reported in Fig. 2.3.

Finally, we tested the validity of these results in the RBM framework, also exploring
the robustness with respect to di�erent loads. In the left panels of Fig. 2.4 we compare the
classi�cation probabilities P(zE |σ = ξE) and P(zE |σ = ηE) versus M and for di�erent
choices of r. The two probabilities display a monotonical behaviour as a function of M
that is, respectively, increasing and decreasing. This can be intuitively explained invoking
the central limit theorem and recalling Fig. 2.2: as M increases, minima in the energy
landscape become denser and denser in such a way that the system may eventually fall
into a state other than η, and this gets more and more likely as the dataset quality r is
lower. In the right panel of Fig. 2.4 the threshold values obtained for di�erent loads α,
analytically (i.e., investigating the Hop�eld network, see Eq. (2.24)) and numerically (i.e.,
investigating the RBM) are shown to be perfectly consistent.

In�nite dataset size

Let us now retain a �nite noise β and apply the rescaling of the noise β → β
r2+β(1−q)(1−r2)

to eqs. (2.15)-(2.17), thus, we reach expressions for the magnetization and the overlap whose
content �nally shines:

m̄ = EZ tanh

[
βm̄M + Zβ

√
M

1− r2

r2
m̄2 +

αp̄

r4β
M

]
(2.25)

q̄ = EZ tanh2

[
βm̄M + Zβ

√
M

1− r2

r2
m̄2 +

αp̄

r4β
M

]
,
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Figure 2.4: Each plot shows the probability of correctly classifying either an example or an
archetype: blue lines are computational and drawn from Boltzmann machine learning (dark
blue for the archetype, i.e. P(zE |σ = ξE), light blue for the example, i.e. P(zE |σ = ηE))
while red lines are theoretical and draft from Hop�eld network learning. Di�erent plots
show di�erent noise r = 2p− 1 levels and the vertical red line is evaluated via the relation
M× = (1 + r)/r. Right: This phase diagram shows two regions split by the threshold line
M× = (1 + r)/r (where m̄ = n̄) and above that threshold the concept of the archetype
emerges (and the network can successfully generalizes) while below a fuzzy misture where
all the examples still preserve their characteristics persists. The threshold is shown to be
universal: di�erent values of α are computationally simulated for Boltzmann learning and
shown as spots (di�erent blue circles), while the theoretical prediction by the Hop�eld
network is presented as a continuous red line and the two perfectly coincide as expected.
On the vertical axes we report the critical size of the training set required for a successful
learning while on the horizontal axes we report the degree of noise in the data-set.

where Z ∼ N(0, 1) and p̄ was given in (2.17). As arguments of the hyperbolic tangent there
are now three contributions and no longer just two as in the standard AGS theory. Indeed,
beyond the signal carried by m̄ there are two sources of (slow) noise: a classic one, propor-
tional to α, stemming from the other patterns not retrieved (pattern interference), and a
new one stemming from the examples making up the sample related to the pattern (example
interference). Note that, as consistency check, if the network is not provided with datasets,
but just noiseless patterns (i.e. M = 1 and r = 1), the whole theory collapses over the
standard AGS one of the Hop�eld model as it should. Further we stress that at α = 0 there
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Figure 2.5: Left panel: Phase diagram in the (β, ρ) plane obtained by solving numerically
equations (2.27)-(2.28). The outer, darkest line corresponds to the onset of a non-null
magnetization m̄ > 0, the remaining contour lines, in brighter and brighter colors, corre-
spond to larger and larger values of magnetization. Right panel: the main plot shows a
comparison between the numerical solution of the self-consistency equation (2.27) in the
noiseless limit (thin and darkest solid line), and zero-temperature Monte Carlo runs at
di�erent sizes (from brighter to darker nuances, N = 25, 50, 100, 200, 400, as shown by
legend), while the inset shows the same �nite-size-scaling for the susceptibility; in both
�gures, we set α = 0.08, M = 80, and r2 =

√
α/(Mρ), and, to determine each point, a

quenched average over 50 independent coupling matrices was performed.

is not a real phase transition (as a glance at these self-consistencies reveal), rather we need
α > 0 (namely examples of di�erent archetypes produce reciprocal attenuation of their re-
trieval, promoting as a result the emergence of the archetypes themselves). We now inspect
in more details the self-consistency for m̄ and we check when the signal contribution pre-
vails over the noise, namely we require that βMm̄ > β

√
M |Z|

√
m̄2(1− r2)/r2 + αp̄/(r4β)

holds almost surely. A solution to this inequality is given by

M >
γ2

r2

[
1− r2 +

q̄

m̄2(1− β(1− q̄))2

α

r2

]
, (2.26)

where γ assesses the con�dence level (in fact, the last condition implies |Z| < γ which
can be satis�ed up to an exceedingly small probability at �nite M). Setting β → ∞ this
result recovers the scaling in (2.12)) obtained via signal-to-noise analysis. Therefore, a
large enough database ensures the stability of the archetype.

In order to evidence a possible, genuine phase transition, we have to study the limit
(N,M,K)→∞, r → 0 and rephrase the whole theory intensive. In this limit we �nd that
ρ := α/(Mr4) is a suitable control parameter (ruling the overall slow noise) able to trigger
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a phase transition and the self-consistency equations can be recast as

m̄ = EZ tanh(βm̄+ βZ
√
ρq̄)

β→∞−−−→ erf

(
m̄√
2ρ

)
, (2.27)

q̄ = EZ tanh2(βm̄+ βZ
√
ρq̄)

β→∞−−−→ 1. (2.28)

The numerical solution of eq. (2.27) is sketched in Figure 2.5 (left panel), where we highlight
a region in the (β, ρ) plane where m̄ is non null.

Focusing on the fast noiseless limit β →∞ and expanding at m̄ = 0, a critical behavior

is found at ρc = 2
π with the critical exponent 1/2 (i.e., m̄ ∼

√
3
π

√
2− πρ near the critical

point): the concept is not abruptly formed, rather it stems gradually by a continuous
contribution provided by all the examples.
The scenario painted above is corroborated by numerics: in Figure 2.5 (right panel) we plot
a �nite-size-scaling of the Mattis magnetization of the archetype, along with the related
susceptibility, obtained via Monte Carlo simulations. Signatures of criticality just occur at
ρ ≈ ρc, according to the theory.
We remark that we dedicate the whole appendix to report in detail the whole statistical
mechanical treatment of the network.

At this point we have a minimal satisfactory theory for the simpest Arti�cial Intelli-
gence, namely shallow networks at work on random settings: indeed working with random
datasets (to have a general theory, despite the limitation that this implies) shallow net-
works su�ce (as there are no correlations functions longer than two-points to be inferred)
hence Hop�eld neural networks and restricted Boltzmann machines alone should be able
to handle a minimal process of cognition (thought of as learning from experience some in-
formation and then using the latters for some pourposes) restricting to a world respecting
what we have called the statistical reductionism. Indeed we have seen that machine learning
(e.g. a RBM trained via contrastive divergece) produces information storage very similar
to biological learning (e.g. an Hop�eld network fed by examples via the generalization of
the Hebbian kernel we proposed), further, once something has been learnt by the neural
network (whatever it is, arti�cial or biological), later on the network can use the learnt
experience to generalize toward other examples, to accomplish pattern recognition, etc.
A positive aspect of what we have so far achieved is indeed the resemblance between arti-
�cial and biological information processing (that is something somehow wanted, en route
toward an eXaplainable Arti�cial Intelligence, XAI), yet the negative aspect is that the
maximal trhesholds these networks must respect are far from optimal (for instance, the
critical storage is αc ∼ 0.14, much less than the value 1 -for symmetric networks- or even
2 -for general non symmetric networks, that is an upper bound information-theory derived
a long time ago by Elisabeth Gardner [67]). Persisting in a biologically-driven approach
to Arti�cial Intelligence (to guarantee eXplainable AI) and by keeping the usage of statis-
tical mechanics of complex systems (to guaranteed Optimized AI via the production of its
related phase diagrams), in the next Section (focusing directly on archetypes rathen than
examples for the sake of simplicity) we want to show that -by taking inspiration regarding
sleeping mechanisms of mammals- it is possible to force the Hop�eld network to sleep and
in this way the network learns while on-line and optimizes while o�-line thus reaching the
upper critical storage of αc ∼ 1: we called this properly ultra-memory for -at this point-
obvious reason.
Finally, in the ultimate section of this Chapter devoted to Theoretical Arti�cial Intelli-
gence, we will remove another strong limitation of the standard Hop�eld reference, namely
the requirement that the signal must prevail over the noise (or, at worst, they must have
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the same intensity) in order for the pattern to be detected: again inspired by biological
information processing, we will show that if we equip the RBM with two identical in-
put layers (thought of as eyes of a human), they vehiculate redundant information to the
cortical (i.e. hidden) neurons: this redundancy of representation (that mathematically
-quite naturally- will pushes away from pairwise Hebbian coupling toward dense networks
its modeling) allows the network to enjoy a tunable signal-to-noise threshold for pattern
recognition, a phenomenon that we named ultra-detection, but let us start deepening the
�rst extension, toward a by-far-enhanced storage capacity (i.e. ultra-memory) that we will
obtain by forcing the Hop�eld model to take a nap.
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2.2 Neural networks equipped with Ultra-Memory

The idea beyond this sleeping mechanism is old and it has been driven in Neural
Network's Literature by the works of Personnaz, Guyon, Dreyfus [61] and of Dotsenko et al.
[62, 63] in the late 80s and early 90s. Yet, at that time, the importance of remotion of spure
states was clear (and was the driving force of that research at that time when modeling
was focused on stylized implementation of random eye moviments REM-like mechanisms)
but the importance of the consolidation of pure memories was not yet understood (while
in this manuscript we will consider also this aspect of sleep, by suitably schematizing slow
wave sleep SWS-like mechanisms). From the physical side, the partial knowledge of the
�rst wave of modeling sleeping mechanisms gave rise to tentative cost-functions whose
phase diagrams resulted persistently in lackage of a stable retrieval phase, further, from
the mathematical counterpart, the Guerra's interpolation technique appeared later in the
Literature, at the beginning of the present century and with just heuristic methods it was
much harder to deal with the models, hence the interest for the �eld of research dedicated
to unlearning protocols diminished in the closure of the past century. In a nutshell, the
core idea behind unlearning is to overcome the following limitation of the standard always
awake Hop�eld model: a linear increase in N of patterns to be stored (e.g. P = αN)
implies also an exponential proliferation of metastable spurious states (in other words,
the price to pay to have these patterns as minima is a huge generation of spurious local
minima or saddles that eventually push the network in the spin-glass state). However, if
we thermalize from an uncorrelated input at random in this landscape -namely if we do a
quench from high temperature to zero temperature at random- with high probability we
end up in one of these spurious states -say σspurious- and, once we know it, we can remove
it by an unlearning rule, such as Jij ∼

∑K
µ ξ

µ
i ξ

µ
j − 〈σ

spurious
i σspuriousj 〉 (here the random

quench that selects the spurious states to discard somehow mimicks the inconscious action
of the random eye movement during sleep in mammals). Viceversa, if we luckily end
up in a true pattern σpattern after the quenching, we aim at consolidating that memory
generalizing the Hebbian scheme toward Jij ∼

∑K
µ ξ

µ
i ξ

µ
j + 〈sigmapatterni σpatternj 〉: this

feature was not implemented in past trial models and we called the algorithm of this
sleeping neural network the consolidation -of pure states- and remotion -of spurious states.
In [64] we introduced the following generalization of the standard Hop�eld paradigma [39],
referred to as �reinforcement&removal� (RR) algorithm, that was �nally working, i.e. the
critical threshold for storage shifts from αc ∼ 0.138 to saturation αc = 1 while the network
preserves robustness w.r.t. fast thermal noise, providing an enlarged retrieval region w.r.t.
the always awake Hop�eld reference framework.

Consider a network composed byN Ising neurons {σi}i=1,...,N and P patterns {ξµ}µ=1,...,P

(i.e., random vectors of the same length N), and denote with t ∈ R+ the sleep extent (such
that for t = 0 the network has never slept, while for t→∞ an entire sleeping session has
occurred), we can then introduce the following

De�nition 2. The Hamiltonian of the reinforcement&removal model reads as:1

H
(RR)
N,P (σ|ξ, t) := − 1

2N

N∑

i=1

N∑

j=1

P∑

µ=1

P∑

ν=1

ξµi ξ
ν
j

(
1 + t

I + tC

)

µ,ν

σiσj , (2.29)

where σi = ±1 ∀i ∈ (1, ..., N), ξ1 -that is the pattern candidate to be retrieved- has binary
entries ξ1

i ∈ {−1,+1} drawn from P (ξµi = +1) = P (ξµi = −1) = 1
2 , while the remaining

1As a matter of notation, we stress that the denominator 1/(I+tC) in the generalized kernel is intended
as the inverse matrix (I+ tC)−1.
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P − 1 patterns {ξµ}µ=2,...,P , have i.i.d. standard Gaussian entries ξµi ∼ N[0, 1], and the
correlation matrix C is de�ned as

Cµ,ν :=
1

N

N∑

i=1

ξµi ξ
ν
i .

remark 1. We stress that we used the universality property of spin glasses for the sake of
mathematical convenience. As deepened in [26], while we de�ned all the pattern entries to
be digital (i.e. ±1), during the calculations involved in the statistical mechanical treatment
of the network, we keep digital solely the pattern candidate for retrieval (i.e. the signal),
while all the remaining ones (acting as slow noise on the retrieval) are chosen as standard
Gaussian Z[0, 1]: although neural networks, in general, do not exhibit the universality
properties of spin glasses [65], this is no longer true if we con�ne our focus solely to the
structure of the slow noise generated by not-retrieved patterns.

remark 2. Note that the matrix ξT
(

1+t
I+tC

)
ξ, encoding the neuronal coupling, recovers

the Hebbian kernel for t = 0 , while it approaches the pseudo-inverse matrix for t → ∞
(see [64] for the proof). Accordingly, the model described by the Hamiltonian (2.29) spans,
respectively, from the standard Hop�eld model (t → 0) to the Kanter-Sompolinksy model
[66] (t→∞).
During the sleeping session, both reinforcement and remotion take place: oversimplifying,
in the generalized synaptic coupling appearing in (2.29), the denominator (i.e., the term
∝ (1+ tC)−1) yields to the remotion of unwanted mixture states, while the numerator (i.e.,
the term ∝ 1 + t) reinforces the pure memories.

We are interested in obtaining the phase diagram of the model coded by the cost func-
tion (2.29), solely in the thermodynamic limit and under the replica symmetric assumption.
To achieve this goal the following de�nitions are in order.

De�nition 3. Using β ∈ R+ as a parameter tuning the level of fast noise in the network
(with the physical meaning of inverse temperature, i.e. calling T the temperature, β ≡ T−1

in proper units,), the partition function of the model (2.29) is introduced as

ZN,P (σ|ξ, t) :=
∑

{σ}

e−βH
(RR)
N,P (σ|ξ,t) =

∑

{σ}

exp


 β

2N

N,N∑

i,j=1

P,P∑

µ,ν=1

ξµi ξ
ν
j

(
1 + t

I + tC

)

µ,ν

σiσj


 .

(2.30)

De�nition 4. Denoting with Eξ the average over the quenched patterns, for a generic
function O(σ, ξ) of the neurons and the couplings, we can de�ne the Boltzmann 〈O(σ, ξ)〉
as

〈O(σ, ξ)〉 :=

∑
{σ}O(σ, ξ)e−βH

(RR)
N,P (σ|ξ,t)

ZN,P (σ|ξ, t) , (2.31)

(2.32)

such that its quenched average reads as Eξ〈O(σ, ξ)〉.
De�nition 5. Once introduced the partition function ZN,P (σ|ξ, t), we can de�ne the in-
�nite volume limit of the intensive quenched free-energy FN (α, β, t) and of the intensive
quenched statistical pressure A(α, β, t) associated to the model (2.29) as

−βF (α, β, t) ≡ A(α, β, t) := lim
N→∞

1

N
E lnZN,P (σ|ξ, t). (2.33)
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Figure 2.6: Stylized representation of the generalized Hop�eld network (left) and its dual
generalized (restricted) Boltzmann machine (right), namely the three-partite spin-glass
under study: in machine learning jargon these parties are called layers and, here, they
are respectively the visible, hidden and spectral layers. Note further that, as it should,
when t → 0 the duality above reduces to the standard picture of Hop�eld networks and
restricted Boltzmann machines [26, 52].

remark 3. The partition function de�ned in (2.30) can be represented in Gaussian integral
form as

ZN,P (σ|ξ, t) :=
∑

{σ}

∫ ( P∏

µ=1

dµ(zµ)
)( N∏

i=1

dµ(φi)
)
·

· exp



√
β

N
(t+ 1)

P,N∑

µ,i

zµξ
µ
i σi + i

√
t

N

P,N∑

µ,i

zµξ
µ
i φi


 ,

(2.34)

where dµ(zµ) and dµ(φi) are the standard Gaussian measures.

This relation shows that the partition function of the reinforcement&removal model is
equivalent to the partition function of a tripartite spin-glass -a generalized RBM- where
the intermediate party (or hidden layer to keep a machine learning jargon) is made of real
neurons {zµ}µ=1,...,P with zµ ∼ N[0, 1],∀µ, while the external layers are made, respectively,
of a set of Boolean neurons {σi}i=1,...,N (the visible layer) and of a set of imaginary neurons
with magnitude {φ}i=1,...,N , being φi ∼ N[0, 1],∀i (the spectral layer), see Fig. 2.6.

2.2.1 Guerra's interpolating framework for the free energy

Plan of this subsection is to �nd out an explicit expression of the free energy in terms
of the order and control parameters of the theory. En route toward the generation of
the self-consistencies for the order parameters we then have to extremize the free energy
w.r.t. them and, �nally, by ispecting the evolution of the order parameters -by studyig
numerically the solutions of the self-consistencies- in the space of the control parameter we
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can work out the phase diagram of the reinforcement & removal algorithm.
From a methodological point of view we rely upon the Guerra's interpolation technique,
as presented for the Sherrington-Kirkpatrick model in Section 1.3.7, suitably adapted to
the case. To this task we start our treatmet by introducing the next

De�nition 6. Once expressed the partition function (2.30) in its integral representation
(2.34), we can de�ne the related tripartite spin glass Hamiltonian as

HN,P :=
a√
N

N∑

i=1

P∑

µ=1

zµξ
µ
i ki, (2.35)

where we introduced the �multi-spin� ki = σi + bφi and where

a =
√
β(t+ 1), b = i

√
t

β(t+ 1)
. (2.36)

remark 4. Note that the cost function (2.35) and the one associated to the original model
(2.29) share the same partition function and therefore exhibit the same Thermodynamics.
By a practical perspective, as we will see soon, the latter is more suitable for understanding
the retrieval capabilities of the network, the former for dealing with its learning skills [52,
53].

In the following we consider the high storage case with P = αN for large N and we
aim to obtain an expression for the quenched statistical pressure (2.33) in terms of the
order parameters introduced in the next

De�nition 7. The natural order parameters for the neural network model (2.29) -as sug-
gested by its integral representation (2.35)- are the overlaps qab and pab between the k's
and the z's variables, respectively, as functions of two replicas (a,b) of the system, and the
generalized Mattis overlap1 m1, namely

qab :=
1

N

N∑

i=1

k
(a)
i k

(b)
i , (2.37)

pab :=
1

P

∑

µ≥2

z(a)
µ z(b)

µ , (2.38)

m1 :=
1

N

N∑

i=1

ξ1
i ki. (2.39)

remark 5. The replica symmetric approximation (RS) is imposed by requiring that the
order-parameters of the theory do not �uctuate in the thermodynamic limit2, i.e.

qab
RS→ Wδab + q(1− δab), (2.40)

pab
RS→ Xδab + p(1− δab), (2.41)

m1
RS→ m, (2.42)

where we called, respectively, W, q,X, p,m the replica symmetric values of the diagonal and
o�-diagonal overlap q, the diagonal and o�-diagonal overlap p and the Mattis magnetization
m1.

1We arbitrarily (but with no loss of generality) nominated the �rst pattern as the retrieved one.
2This request is obviously perfectly consistent with the replica-symmetric ansatz when approaching

the problem via the replica trick [8, 64].
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Now the plan is to get an explicit expression for the pressure (2.33) in terms of these
order parameters, to extremize the former over the latter and get a phase diagram for
the network. To reach this goal we generalize a Guerra's interpolation scheme [20] as
exposed in Section 1.3.7 for the SK model: the idea is to compare the original system, as
represented in eq. (2.35) (namely a three-layer correlated spin glass), with three random
single-layers, where each layer experiences, statistically, the same mean-�eld that would
have been produced by the other layers over it. To this aim we introduce the following

De�nition 8. Being s ∈ [0, 1] an interpolating parameter, {ηi}i∈(1,...,N) a set of N i.i.d.
Gaussian variables, {λµ}µ∈(2,...,P ) a set of P − 1 i.i.d. Gaussian variables, and the scalars
C1, C2, C3, C4, C5 to be set a posteriori, we use as interpolating pressure the following quan-
tity

A(s) :=
1

N
E ξ, η, λ ln

∑

σ

∫
dµ (z, φ) exp

[√
s
a√
N

∑

i,µ≥2

zµξ
µ
i ki +

√
s
a√
N

∑

i

z1ξ
1
i ki (2.43)

+
√

1− s
(
C1

N∑

i

ηiki + C2

∑

µ≥2

λµzµ

)
+

1− s
2

(
C3

∑

µ≥2

z2
µ + C4

∑

i

k2
i + C5a

∑

i

ξ1
i ki

)]
.

remark 6. When s = 1 we recover the original model, namely A(α, β, t) = limN→∞A(s =
1), while for s→ 0 we are left with a one-body problem, and, consequently, the probabilistic
structure of A(s = 0) is more tractable.

remark 7. We note the importance of splitting the sum on the ξ's into ξ1 (i.e. the sig-
nal) and the ξ2 · · · ξP (i.e. the quenched noise) since the quenched average treats them
di�erently, and so we will need to address them separately.

Proposition 1. The in�nite volume limit of the quenched pressure related to the model
(2.29) can be obtained by using the Fundamental Theorem of Calculus as

A(α, β, t) ≡ lim
N→∞

A(s = 1) = lim
N→∞

(
A(s = 0) +

∫ 1

0

dA(s)

ds
ds

)
. (2.44)

To follow this approach, two calculations are in order: the streaming dsA(s) (and its
successive back-integration) and the evaluation of the Cauchy condition A(s = 0). Let us
start with dsA(s):

dA(s)

ds
=

1

2N
E ξ, λ, η

[ a√
sN

∑

i,µ≥2

ξµi ωs(zµki) +

− 1√
1− s

(
C1

∑

i

ηiωs(ki) + C2

∑

µ≥2

λµωs(zµ)
)

+

+
a√
sN

∑

i

ξ1
i ωs(z1ki)− C3

∑

µ≥2

ωs(z
2
µ) +

−C4

∑

i

ωs(k
2
i )− C5a

∑

i

ωs(ξ
1
i ki)

]
.

We can proceed further by using Wick's Theorem [ExxF (x) = Ex(x2) · Ex∂xF (x)] on the
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�elds z1, ξ2···P , λµ, ηi, obtaining

dA(s)

ds
=

1

2N
E ξ, λ, η

[a2

N

∑

i,µ≥2

(
ωs(z

2
µk

2
i )− ωs(zµki)2

)
+
a2

N
ωs(
(∑

i

ξ1
i ki
)2

) +

− C2
1

∑

i

(
ωs(k

2
i )− ωs(ki)2

)
− C2

2

∑

µ≥2

(
ωs(z

2
µ)− ωs(zµ)2

)
+ (2.45)

− C3

∑

µ≥2

ωs(z
2
µ)− C4

∑

i

ωs(k
2
i )− C5a

∑

i

ωs(ξ
1
i ki)

]
.

Using the de�nition of the order parameters (2.39) we can write dsA(s) as

dA(s)

ds
=

1

2
E ξ, λ, η

[
a2αωs(q11p11) + a2ωs(m

2
1)− a2αωs(q12p12)− C2

1ωs(q11) +

+C2
1ωs(q12)− C2

2αωs(p11) + C2
2αωs(p12)− αC3ωs(p11) + (2.46)

−C4ωs(q11)− aC5ωs(m1)
]
.

It is now convenient to �x the free scalars C1,..,5 as

C2
1 = a2αp, C2

2 = a2q, C3 = a2(W − q), C4 = a2α(X − p), C5 = 2ma, (2.47)

such that we can recast the streaming dsA(s) as

dA(s)

ds
=

1

2
E ξ, λ, η

[
a2αωs((q11 −W )(p11 −X)) + a2ωs((m1 −m)2) +

−a2αωs((q12 − q)(p12 − p))
]

+
αa2

2
(qp−WX)− a2

2
m2. (2.48)

remark 8. When requiring replica symmetry, we have that 〈q11〉 → W , 〈p11〉 → X,
〈m1〉 → m, 〈q12〉 → q and 〈p12〉 → p, hence the evaluation of the integral in eq. (3.174)
becomes trivial as the r.h.s. of eq. (2.48) reduces to

dsA(s) =
αa2

2
(qp−WX)− a2

2
m2 (2.49)

that does not depend on s any longer.

We must now evaluate the one-body contribution A(s = 0): this can be done by directly
setting s = 0 in (2.43)

A(s = 0) =
1

N
E ξ, η, λ ln

∑

σ

∫
dµ (z, φ) exp

[
C1

∑

i

ηiki +
C4

2

∑

i

k2
i +

C5a

2

∑

i

ξ1
i ki+

+ C2

∑

µ≥2

λµzµ +
C3

2

∑

µ≥2

z2
µ

]
.

(2.50)

Performing standard Gaussian integrations we obtain

A(s = 0) =− α

2
ln(1− C3)− 1

2
ln(1− C4b

2) +
α

2

C2
2

1− C3
+
C4

2
+ E η ln cosh

[C1η + C5a
2

1− C4b2

]
+

+ b2
C2

1 + C2
4 +

C2
5a

2

4

1− C4b2
+ ln 2.

(2.51)
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Keeping in mind the expressions for the parameters C1, ..., C5 as prescribed in the relations
2.47, by plugging eq. (2.49) and eq. (3.114) into the sum rule (3.174) we �nally get an
expression for the quenched pressure of the model (2.29) in terms of the replica-symmetric
order parameters

ARS(α, β, t) = αa2

2

(
qp−WX

)
− a2

2 m
2 − α

2 ln
[
1− a2(W − q)

]
− 1

2 ln
[
1− a2b2α(X − p)

]
+

+α
2

a2q
1−a2(W−q) + αa2

2

(
X − p

)
+ a2b2

2 ·
αp+m2a2+a2α2(X−p)2

1−a2b2α(X−p) + (2.52)

+ ln 2 + E η ln cosh
[
aη
√
αp+ma2

1−αa2b2(X−p)

]
.

To match exactly the notation in [64] there is still a short way to go: it is convenient to
re-scale m, p and X as

X → β2

a2
X, p→ β2

a2
p, m→ β

a2
m, (2.53)

as this allows us to introduce the composite order parameter ∆ = 1− αβ2b2(X − p) used
in [64].
After these transformations, remembering the de�nition of the free energy (see (2.33)) and
the de�nition of (a, b) (see (2.36)), we obtain exactly the same expression for the quenched
free energy as that achieved in [64] via the replica trick, as stated by the next main

theorem 1. In the in�nite volume limit, the replica symmetric statistical pressure related
to the neural network de�ned by eq. (2.29) can be expressed in terms of the natural order
parameters of the theory (see def.s (2.39)) as

FRS(α, β, t) =− βm2

2(1 + t)

(
1 +

t

∆

)
− (1 + t)(∆− 1)

2t
βW − αβ2

2
p(W − q)

− α

2

(
log[1− β(1 + t)(W − q)] +

qβ2(1 + t)

1− β(1 + t)(W − q)
)

− log ∆

2
− αβpt

2(1 + t)∆
+ E η log cosh

[ β
∆

(m+
√
αpη)

]
+

+ log 2− (1 + t)(1−∆)β

2t∆
.

(2.54)

Proposition 2. Using the standard variational principle ~∇FRS = 0 on the statistical
pressure (2.54), namely by extremizing the latter over the order parameters, we obtain the
following set of self-consistent equations for these parameters, whose behavior is outlined
in the plots of Fig. 2.7.

m =
1 + t

∆ + t
E η tanh

[ β
∆

(m+
√
αpη)

]
, (2.55)

p =
q(1 + t)2

[1− β(1 + t)(W − q)]2 , (2.56)

∆ = 1 +
αt

1− β(1 + t)(W − q) , (2.57)

q = W +
t

β(1 + t)∆
− 1

∆2
E η cosh−2

[ β
∆

(m+
√
αpη)

]
, (2.58)

W∆2 = 1− t∆

β(1 + t)
+
αpt2 −m2t(t+ 2∆)

(1 + t)2
(2.59)

− 2αβpt

(1 + t)∆
E η cosh−2

[ β
∆

(m+
√
αpη)

]
.
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Figure 2.7: Retrieval state solution for the order parameters and free energy

at t = 1000. First row: on the left, the plot shows the Mattis magnetization m as a
function of the temperature for various storage capacity values (α = 0, 0.05, 0.2 and 0.5,
going from the right to the left). The vertical dotted lines indicates the jump discontinuity
identifying the critical temperature Tc(α) which separates the retrieval region from the
spin-glass phase; on the right, the plot shows the solutions of the non-diagonal overlap q
(normalized to the zero-temperature value q0 = q(T = 0)), for the same capacity values.
The solution is computed in the retrieval region (i.e. T < Tc(α)). Second row: on the
left, the plot shows the solution for the diagonal overlap −W in the retrieval region for
α = 0, 0.05, 0.2 and 0.5, �nally, on the right the plot shows the free-energy as a function
of the temperature for various storage capacity values (α = 0.05, 0.2 and 0.5, going from
the bottom to the top) for both the retrieval (red solid lines) and spin-glass (black dashed
lines) states.

remark 9. We stress that we obtained exactly the same self-consistencies previously ap-
peared in [64], thus all the consequences stemming by them, as reported in that paper, are
here entirely con�rmed.

2.2.2 Replica symmetric phase diagram

In order to contribute to OAI (Optimized Arti�cial Intelligence), statistical mechanics
of complex systems provided one of the main rewards, namely it allows painting phase
diagrams for the various neural architectures under study, where the operational regimes
of the machine appear in the space of the tunable parameters (e.g. storage load, noise,
etc.) split by computational phase transitions much as the various regimes of water (e.g.
solid, liquid, vapour) shine in its relative phase diagram lying in its space of its tunable
parameters (pressure, temperature and volume in that scenario). In these regards, the
Hop�eld model able to sleep (or alternatively equipped with the reinforcement-&-remotion
algorithm) is accompained as well with a phase diagram (see Figure 2.8), obtaied by
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Figure 2.8: Critical line for the transition between retrieval and spin-glass phases for various
values of the unlearning time. From the left to the right: t = 0 (Hop�eld, black dashed
line), 0.1, 1 and 1000. The inset shows two curves tracing the boundary of the maximal
retrieval regions where patterns are global free energy minima (inner boundary) or local
free energy minima (outer boundary) in the long sleep limit.

inspecting the solution of the above self-consistencies (see eq.s (2.55)): the most striking
property of this network is that the retrieval region extendes from αc ∼ 0.14 up to the
maximal one as prescribed by bounds in Information Theory namely αc = 1 (one bit per
binary neuron, a quite intuitive saturation) and the convergence to this value is quite fast
in the sleeping time -we plotted various retrieval regions as the sleeping time is smoothly
increased (suggesting that also a simple �nap� can signi�cantly help the network to optimize
its storage). Further, we do not deepen the way in which this order takes place, but it is
(tricky yet) possible to show that this form of dreaming concretely implements the Gram-
Smidth ortonormalization in the space of the patterns (that are ortogonal solely in the
in�nite volume limit as they are build at random, hence limN→∞〈ξµξν〉 = δµ,ν but at �nite
N �uctuations (going to zero as 1/

√
N do contribute and the sleeping mechanism ensures

that -also at �nite volume- the storage of the patterns is always kept ortogonal (hence
optimal in this random setting).

A far from trivial consequence of this optimization in the space of the patterns that the
network achieves by sleeping is that the spin-glass states are completely destroyed as we
show by a �uctuation analysis and an inspection of criticality as performed in the next two
subsections): roughly speaking, the way in which this network stores the patterns guar-
antees minimal frustration level in the network, that in turn preserve its behavior to get
stuck into unwanted spurious spin-glass metastable states. Finally, we remark that -beyond
Optimized AI- thanks to a continuous bridge with biological information processing- the
explanation of the optimal storage in terms of the Gram-Smidth technique signi�cantly
helps also our understanding of arti�cial information processing, also in this more chal-
lenging case.

2.2.3 Study of the overlap �uctuations

As proved in the previous section, the reinforcement&removal algorithm makes the
retrieval region in the (α, β) plane wider and wider as t is increased (see Fig. 2.8). As the
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retrieval region pervades the spin-glass region, one therefore naturally wonders whether the
opposite boundary of the spin-glass region (namely the critical line depicting the transition
where ergodicity breakdowns) is as well deformed. To address this point, we now study the
behavior of the overlap �uctuations, suitably centered around the thermodynamic values
of the overlaps and properly rescaled in order to allow them to diverge when the system
approaches the critical line. In fact, they are meromorphic functions and their poles identify
the evolution of the critical surface βc(α, t) (if any).
It is worth recalling that the critical line for the standard Hop�eld model [39] as predicted
by the AGS theory [11] is βc(α, t = 0) = (1 +

√
α)−1.

The idea is the same exploited in the previous sections, namely to use the generalized
Guerra's interpolation scheme (see eq. (2.43)) to evaluate the evolution of the order param-
eter's correlation functions from s = 0 (where they do not represent the real �uctuations
in the system, but their evaluation should be possible) up to s = 1 (where they reproduce
the true �uctuations). To achieve this goal for the generic correlation function O, we need
to evaluate the Cauchy condition 〈O(s = 0)〉 and the derivative ∂s〈O(s)〉. However, in
contrast with the previous section where we imposed replica symmetry, here -as we just
want to infer the critical line- we impose ergodic behavior, namely, we assume that the
system is approaching this boundary from the high fast-noise limit. This allows us to set
all the mean values of the overlaps to zero and to achieve explicit solutions.

De�nition 9. The centered and rescaled overlap �uctuations θlm and ρlm are introduced
as

θlm =
√
N
[
qlm − δlmW − (1− δlm)q

]
(2.60)

ρlm =
√
P
[
plm − δlmX − (1− δlm)p

]
. (2.61)

remark 10. As we will address the problem of the overlap �uctuations in the ergodic region,
the signal is absent, thus there is no need to introduce a rescaled Mattis order parameter:
only the boundary between the ergodic region and the spin-glass region is under study here.

Proposition 3. It is convenient to introduce the r−replicated interpolating pressure Ar
J(s),

where we further added a source �eld J , coupled to an observable O (that is a smooth
function of the neurons of the r-replicas) as

Ar
J(s) = Eξ,η,λ ln

∑

σR

∫
dµ (zR, φR) exp

[a√s√
N

r∑

l=1

∑

i,µ

z(l)
µ ξ

µ
i k

(l)
i

+
√

1− s
(
C1

r∑

l=1

∑

i

ηik
(l)
i + C2

r∑

l=1

∑

µ

λµz
(l)
µ

)
(2.62)

+
1− s

2

(
C3

r∑

l=1

∑

µ

(z(l)
µ )2 + C4

r∑

l=1

∑

i

(k
(l)
i )2

)
+ JÔ

]
.

where ki is the same as in De�nition 5 and the interpolation constants C1,2,3,4 are the same
given in the previous section (see eq. ( (2.47))).

By de�nition

ωs(O(s)) =
∂Ar

J(s)

∂J

∣∣∣∣
J=0

, ∂sωs(O(s)) =
∂(∂sA

r
J)

∂J

∣∣∣∣
J=0

. (2.63)
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Therefore, in order to evaluate the �uctuations of O we need to evaluate �rst ∂sA
r
J and,

by a routine calculation, we get

∂sA
r
J =

1

2

√
αβ(1 + t)

r∑

l,m=1

[
ωs(gl,m)− ωs(gl,m+r)

]
, gl,m = θl,mρl,m. (2.64)

To evaluate the �uctuations of a general operator O, function of r−replicas, we must use
the results (2.63) and perform the same rescaling that we did in the previous section,
namely

(X, p)→ β2

a2
(X, p). (2.65)

Overall this brings to the next

Proposition 4. Given O as a smooth function of r replica overlaps (q1, . . . , qr) and
(p1, . . . , pr) , the following streaming equation holds:

dτωs(O) =
1

2

r∑

a,b

ωs(O · ga,b)− r
r∑

a=1

ωs(O · ga,r+1)+

+
r(r + 1)

2
ωs(O · gr+1,r+2)− r

2
ωs(O · gr+1,r+1),

(2.66)

where we used the operator dτ de�ned as

dτ =
1

β(1 + t)
√
α

d

ds
, (2.67)

in order to simplify calculations and presentation.

2.2.4 Criticality and ergodicity breaking

To study the overlap �uctuations we must consider the following correlation functions
(it is useful to introduce and link them to capital letters in order to simplify their visual-
ization):

ωs(θ
2
12)s = A(s), ωs(θ12θ13)s = B(s), ωs(θ12θ34)s = C(s), (2.68)

ωs(θ12ρ12)s = D(s), ωs(θ12ρ13)s = E(s), ωs(θ12ρ34)s = F (s), (2.69)

ωs(ρ
2
12)s = G(s), ωs(ρ12ρ13)s = H(s), ωs(ρ12ρ34)s = I(s), (2.70)

ωs(θ
2
11)s = J(s), ωs(θ11ρ11)s = K(s), ωs(ρ

2
11)s = L(s), (2.71)

ωs(θ11θ12)s = M(s), ωs(θ11ρ12)s = N(s), ωs(ρ11θ12)s = O(s), (2.72)

ωs(ρ11ρ12)s = P (s), ωs(θ11ρ22)s = Q(s), ωs(θ11θ22)s = R(s). (2.73)

ωs(ρ11ρ22)s = S(s), (2.74)

Since we are interested in �nding the critical line for ergodicity breaking from above we can
treat θa,b, ρa,b as Gaussian variables with zero mean (this allows us to apply Wick-Isserlis
theorem inside averages) as we can also treat both the ki and zµ as zero mean random
variables in the ergodic region (thus all averages involving uncoupled �elds are vanishing):
this considerably simpli�es the evaluation of the critical line (as expected since we are
approaching criticality from the trivial ergodic region [68]).
We can thus reduce the analysis to

ωs(θ
2
12)s = A(s), ωs(θ12ρ12)s = D(s), ωs(ρ

2
12)s = G(s), (2.75)

ωs(θ
2
11)s = J(s), ωs(θ11ρ11)s = K(s), ωs(ρ

2
11)s = L(s), (2.76)

ωs(θ11ρ22)s = Q(s), ωs(θ11θ22)s = R(s), ωs(ρ11ρ22)s = S(s). (2.77)
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According to (2.66) and to the previous reasoning we obtain:

dτA = 2AD, (2.78)

dτD = D2 +AG, (2.79)

dτG = 2GD. (2.80)

Suitably combining A and G in (2.80) we can write

dτ ln
A

G
= 0 =⇒ A(τ) = r2G(τ), r2 =

A(0)

G(0)
. (2.81)

Now we are left with

dτD = D2 + r2G2, (2.82)

dτG = 2GD. (2.83)

The trick here is to complete the square by summing dτD + rdτG thus obtaining

dτY = Y 2, (2.84)

Y = D + rG, (2.85)

dτG = 2G(Y − rG). (2.86)

The solution is trivial and it is given by

Y (τ) =
Y0

1− τY0
, Y0 = D(0) +

√
A(0)G(0). (2.87)

So we are left with the evaluation of the correlations at s = 0: namely the Cauchy
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Figure 2.9: Ergodicity breaking critical line. The plot shows a comparison between
the theoretical predictions (black dashed lines) for the ergodicity breaking critical line
according to Eq. (2.97) and numerical solutions for spin glass states (red markers). The
latter are evaluated by solving the self-consistency equations with m = 0 with α �xed and
searching for the temperature T above which the solution has q = 0. Going from top to
bottom of the plot, the sleep extent is t = 0.1, 1 and 2.
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conditions related to the solution coded in eq. (2.87). To this task we introduce a one-
body generating function for the momenta of z, k: this can be done by setting inside
(2.62) s = 0, r = 1 and adding source �elds (ji, Jµ) coupled respectively to (ki, zµ), with
i ∈ (1, ..., N), µ ∈ (1, ..., P ). Since we are approaching the critical line from the high fast
noise limit we can set m, p, q = 0 (when we explicitly make use of the coe�cients (2.47)),
overall writing

F (j, J) = ln
∑

σ

∫
dµ (z, φ) exp

[∑
i jiki +

∑
µ Jµzµ + a2W

2

∑
µ z

2
µ + 1−∆

2b2
∑

i k
2
i

]
.(2.88)

Clearly, we took great advantage in approaching the ergodic region from above, since even
the one-body problem (for the Cauchy condition) has been drastically simpli�ed: showing
only the relevant terms in j, J we have

F (j, J) =
b2∆ + 1

2∆2

∑

i

j2
i +

1

2(1− a2W )

∑

µ

J2
µ +O(j3). (2.89)

As anticipated, all the observable averages needed at s = 0 can now be calculated simply
as derivatives of F (j, J), thus the s = 0 correlation functions are �nally given by

D(0) =
√
NP

(
∂jF

)2(
∂JF

)2∣∣∣
j,J=0

= 0, (2.90)

A(0) =
(
∂2
jF
)2∣∣∣

j,J=0
=
[β(1 + t)− t∆
β(1 + t)∆2

]2
= W 2, (2.91)

G(0) =
(
∂2
JF
)2∣∣∣

j,J=0
= (1− β(1 + t)W )−2. (2.92)

Inserting this result in (2.87), we get

Y (τ) =
W

1− β(1 + t)W − τW . (2.93)

Upon evaluating Y (τ) for τ = β(1 + t)
√
αs, s = 1 and reporting the relevant ergodic

self-consistent equations we obtain the following system:

Y (s = 1) =
W

1− β(1 + t)W (1 +
√
α)
, (2.94)

W∆2 = 1− t∆

β(1 + t)
, (2.95)

∆ = 1 +
αt

1− β(1 + t)W
. (2.96)

Since we are interested in obtaining the critical temperature for ergodicity breaking, where
�uctuations (in this case Y ) grow arbitrarily large we can check where the denominator at
the r.h.s. of the �rst eq. (2.94) becomes zero and recast this observation as follows

theorem 2. The ergodic region of the model de�ned by the cost function (2.29) is delimited
by the following critical surface in the (α, β, t) space of the tunable parameters

βc =
1

1 + t

[ ∆2

1 +
√
α

+ t∆
]

with ∆ = 1 +
√
α(1 +

√
α)t. (2.97)

remark 11. At t = 0, where the model reduces to Hop�eld's scenario, the critical surface
correctly collapses over the Amit-Gutfreund-Sompolinsky critical line βc = (1 +

√
α)−1, but
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Figure 2.10: Critical lines for ergodicity breaking (dotted curves) and retrieval region
boundary (solid curves) for various values of the unlearning time. From the top to the
bottom: t = 0 (black lines, i.e. the Hop�eld phase diagram), t = 0.1 (red lines), 1 (blue
lines) and 1000 (green lines).
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Figure 2.11: The phase diagram is depicted for di�erent choices of t, namely, from left to
right, t = 0, 0.1, 1, 1000. Notice that, as t grows, the retrieval region (blue) and the ergodic
region (yellow) get wider at the cost of the spin-glass region (red) which progressively
shrinks up to collapse as t → ∞. Also notice the change in the concavity of the critical
line which separates ergodic and spin-glass region.

in the large t limit the ergodic region collapses to the axis T = 0: this may have a profound
implication, namely that the ergodic region -during the sleep state- phagocytes the spin-
glass region.
Since we have already seen that also the retrieval region phagocytes the spin-glass region
1 this means that spurious states are entirely suppressed with a proper rest, allowing the
network to achieve perfect retrieval, as suggested in the pioneering study by Kanter and
Sompolinsky [66].

1Note that the ergodic line does not a�ect the retrieval region, they simply fade one into the other.
This is because the critical surface is calculated assuming an ergodic regime (hence, it does not takes into
account the signal) and, more importantly, the retrieval region is delimited by a �rst order phase transition,
that is not detected by a second order inspection as that needed for criticality.
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2.2.5 Discussion on ultra-memory as an emergent skill

Summarizing the current Section where we reported on our research �ndings on Theo-
retical Arti�cial Intelligence to overcome the huge storage limitation of the bare Hop�eld
reference, we extended the previous schemes and architectural designs of sleeping mech-
anisms for neural networks as modeled by Crick & Mitchinson [69], Hop�eld himself [70]
and by many others in the Neuroscience Literature, see e.g [71, 72, 73, 74]) by accounting
-beyond forgetting spurious memories via REM-like mechanisms- also the consolidation of
pure memories by accounting also for SWS-like mechanisms. Mathematically we described
the phenomenon of sleeping via a novel algorithm, the reinforcement & removal generaliza-
tion of the Hop�eld network: interestingly, such mechanisms have been evidenced to lead
to a severe improvement of the retrieval capacity of the system, reaching the theoretical
bound of symmetric networks prescribed by αc = 1. In particular, we showed that the Hop-
�eld network able to take some rest reaches the expected upper critical capacity αc = 1,
still preserving robustness with respect to fast noise. To paint this scenario we extended a
Guerra's interpolation scheme [20], originally developed to deal with the standard Hop�eld
model (i.e. equipped with the canonical Hebbian synaptic coupling), to deal with this gen-
eralization: at �rst we showed the equivalence of this model with a three-layer spin-glass
where some links among di�erent layers are cloned (hence introducing correlation in the
network and in the random �elds required for the interpolation) and the third, and novel
(w.r.t. the standard equivalence between Hop�eld models and two-layers Boltzmann ma-
chines we built in the �rst Chapter), layer is equipped with imaginary real-valued neurons
(best suitable to perform spectral analysis1). As a consequence, the resulting interpolat-
ing architecture is rather tricky, by far richer than its classical limit yet it turns out to
be managable and actually a sum rule for the quenched free energy related to the model
can be written and even integrated, under the assumption of replica symmetry, proving
the saturation of the theoretical bound to αc = 1. We further systematically developed a
�uctuation analysis of the overlap correlation functions, searching for critical behaviour,
in order to inspect where ergodicity breaks down and in this investigation we found a
very interesting result: as long as the Hop�eld model is awake, the critical line is the one
predicted by Amit-Gutfreund-Sompolinksy (as it should and as it is known by decades).
However, as the network sleeps, the ergodic region starts to invade the spin glass region,
ultimately destroying the spin glass states entirely, thus allowing the network (at the end
of an entire sleep session) to live solely within a -quite large- retrieval region, surrounded
by ergodicity: noticing that at this �nal stage of sleeping the network approached the
Kanter-Sompolinsky model [66], it shines why these Authors called their model associative
recall of memory without errors.
Let us also remark the importance nowadays of an OAI (Optimized Arti�cial Intelligence)
and how, in these regards, statistical mechanics allows painting the phase diagram of the
machine, information that -in turn- allows setting the machine in its optimal operational
regime for a given task: this kind of information has been provided by the present research
for this sleepy Hop�eld network (see Figure 2.11) and deepened in the relative section (see
Section 2.2.3).
While somehow this extension closes the discussion on the storage capacity for symmetric
networks, yet -continuously driven by the inspection of biological information processing
(en route also for XAI, eXplainable Arti�cial Intelligence)- it is still questionable that the
signal-to-noise threshold in the standard Hop�eld model (or equivalently in its dual repre-
sentation in terms of the RBM) has to be order one, namely the signal has to shine a bit

1We plan to report soon on the learning algorithms for this generalized restricted Boltzmann machine,
where the properties of the spectral layers will spontaneously shine.
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in the sea of the �uctuating noise, a rather unsatisfactory limitaton that in humans is not
present: for instance, if we have to recognize a signal in the fog or in the dark, we can adapt
our signal-to-noise threshold by suitably changing the focus of our eyes... yet we have two
eyes while the input layer for the RBM we studied is just one. In the next Section the
last generalization of the Hop�led reference we achieved during my PhD research time will
be presented: networks that can tune their signal-to-noise threshold for pattern detection,
achieving ultra-detection.
As we will see, starting by the Boltzmann machine dual representation, we will equip the
latter with two input layers (namely one input and one mirror layer) rather than just
one input layer to prove that the resulting redundancy of information stemming from
this doubled source allows for tunable signal-to-noise thresholds. To understand this re-
sult the duality between standard RBM and Hop�eld networks will be extended beyond
the statistical reductionism, toward a three-layer RBM (often called Sejinowski machine),
whose dual network is a dense Hebbian kernel -namely a P-spin Hop�eld network with
P=4. Crucially, while the latter is known to store a maximal amount of patterns K scal-
ing as K ∼ γ(P )NP−1 (and the standanrd Hop�eld limit is recovered for P = 2 where
γ(2)→ αc), it could however sacri�ce memory storage and handle just N1 patterns (rathen
than the maximal amount ∝ N3) and -in this relatively low-storage setting- it can lower
its signal-to-noise threshold, as -intuitively- by dealing with solely N1 patterns they can
be much more noisy than the standard ones, in particular we will prove that their noise
can even diverge in the thermodynamic limt, yet the network will still be able to perform
the recognition of the pattern. Let us deepen this concepts in the next Section.

2.3 Neural Networks equipped with Ultra-Detection

2.3.1 The idea beyond redundant representations

Here we consider a minimal extension of the basic architecture for machine learning
discussed so far(i.e. the RBM), namely the restricted Sejnowski machine (RSM) [75], that
is a third-order Boltzmann machine [76], where triples of units interact symmetrically; in
the jargon of Statistical Mechanics, this is just a three-layer spin-glass with (P=3)-wise in-
teractions. In particular, we equip this network with a standard hidden layer and with two
visible layers (a primary and a mirror channel, see Fig.2.12 left), which possibly mimic the
typical presence of two input sources in biological networks (i.e., the eyes). As we show,
the RSM displays, as a dual representation, a bipartite DAM, i.e., a bipartite Hop�eld
model with (P = 4)-wise interactions, see Fig. 2.12 right. In this dual representation, the
K features embedded in the RSM correspond to the K patterns stored in the DAM.
It is worth recalling that a neural network with (P > 2)-wise interactions among its units
does not need to ful�l Gardner's bound: the latter holds solely for quadratic cost func-
tions and implies that, being Kmax(N) the largest number of random i.i.d. patterns that
a network built of N binary neurons can store, then limN→∞Kmax(N)/N = αc < 2 [67].
In fact, Baldi & Venkatesh [77] proved that, for a P -spin associative memory built of N
binary neurons, Kmax(N) ∝ NP−1 (a result made rigorous by Bovier & Niederhauser [78]);
clearly for P = 2 we recover the standard Hop�eld scenario.
In the last decades, the quest for enhanced storage capacities has strongly biased the sta-
tistical mechanical investigations, possibly limiting alternative inspections of the computa-
tional capabilities of these networks, which is the main focus of this work, as summarized
hereafter.

In the standard Hop�eld model it is possible to retrieve a number K of patterns that
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Figure 2.12: Schematic representations of the Restricted Seinowskj Machine (left) and
its dual representation in terms of a bipartite Dense Associative Network (right). In the
former, neurons i, µ, ρ interact 3-wisely through the coupling ξρiµ (see also eq. 2.98), while,

in the latter, neurons i, µ, j, ν interact 4-wisely through the coupling J jνiµ (see also eq. 2.102).

is extensive in N (i.e., K = αN with α ≤ 0.14) by pushing the signal-to-noise ratio to its
limit, namely by letting the magnitude S of the signal � stemming from the pattern to be
retrieved � and the magnitude N of the (quenched) noise � stemming from the remaining
patterns providing an intrinsic glassiness � share the same order. Should the information
encoded by patterns be a�ected by some source of noise, the condition S/N ∼ O(1) would
be deranged in favour of the noise and retrieval capabilities would be lost. On the other
hand, as we show, if we let dense (P = 4) networks operate with a load K = αN (with
α > 0), these turn out to be able to retrieve the information (∼ O(1)) encoded by patterns
is perturbed by extensive noise (∼ O(

√
N)). This is ultimately due to the possibility of

redundant representation of patterns [79, 80], which implies a storage cost of O(N2) bits
per pattern.
In the following we give more technical details to prove the previous statements.

The RSM [75] considered here is built on three layers, two of which � referred to as
visible and mirror, respectively (see Fig.2.12, left panel) � are digital and made up of
N Ising neurons per layer, σ ∈ {−1,+1}N and τ ∈ {−1,+1}N , while the third layer �
referred to as hidden � is analog and made ofK neurons z, whose states are i.i.d. Gaussians
N(0, β−1) (β > 0 tuning the level of the fast noise in the net [11]). The model presents
third-order interactions among neurons of di�erent layers but no intra-layer interactions
(whence the restriction). Its cost function HRSM is given by

HRSM(σ, τ , z|ξ) = − 1

N3/2

N,N,K∑

i,µ,ρ=1

ξρiµσiτµzρ, (2.98)

with i, µ = 1, .., N and ρ = 1, ..,K. In the thermodynamic limit each layer size diverges
such that limN→∞K/N = α > 0 and the factor N−3/2 keeps the mean value of the cost
function (under the quenched Gibbs measure [81]) linearly extensive in N . The interaction
between each triplet of neurons is encoded in the K ×N ×N tensor ξ whose ρ-th element
will be written as

ξρiµ = ξρi ξ
ρ
µ, i, µ = 1, ..., N, (2.99)

where ξρi ∈ {−1,+1} is meant as the i-th entry of the ρ-th pattern to be retrieved in the
dual bipartite DAM. Notice that the factorization (2.99) ensures the symmetry of ξρiµ for
any ρ and this lies at the core of the pattern redundancy scheme pursued here. In fact,
the information contained into a set of K binary patterns of length N is in�ated into a
symmetric tensor of size KN2.
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Given a small learning rate ε > 0, we obtain for this network the following contrastive-
divergence [48] learning rule (see Section 2.3.2 for details on its derivation and perfor-
mances)

∆ξρiµ = εβ (〈σiτµzρ〉+ − 〈σiτµzρ〉−) , (2.100)

where the subscript �+� means that both visible and mirror layers are set at the data input
(i.e., they are clamped), while the subscript �−� means that all neurons in the network are
left free to evolve; importantly, while clamped, visible and mirror layers are always exposed
to the same information (i.e., σ = τ = ξρ).
Using the symbol Dzρ to denote the Gaussian measure with variance β−1 (i.e., Dzρ ≡
dzρ exp(−βz2

ρ/2)
√
β/2π), the partition function Z related to the cost function (2.98) reads

Z =
∑

σ,τ

∫ K∏

ρ=1

Dzρ exp


 β

N3/2

N,N,K∑

i,µ,ρ=1

ξρiµσiτµzρ


 . (2.101)

By construction, the couplings are symmetric (ξρiµ = ξρµi) and detailed balance ensures
that the long term relaxation of any (not-pathological) neural dynamics is described by
the related Gibbs measure [11, 52]. Marginalizing over the hidden layer,

P (σ, τ |ξ) =

∫
Dze−βHRSM(σ,τ ,z|ξ)

Z
≡ e−βHDAM(σ,τ |ξ)

Z
,

where the last equation tacitely de�nes the cost function of the DAM, namely

HDAM(σ, τ |ξ) := − 1

2N3

K∑

ρ=1




N,N∑

i,µ=1

ξρiµσiτµ




2

= − 1

2N3

N,N∑

i,j=1

N,N∑

µ,ν=1

J jνiµ σiσjτµτν , (2.102)

where J jνiµ =
(∑

ρ ξ
ρ
iµξ

ρ
jν

)
. This decomposition shows that the ξ's play as eigenvectors

for the tensor J , whose symmetry with respect to an exhange of indices (i, µ) and (j, ν)
mirrors the symmetry between the σ and the τ variables underlying the learning rule
(2.100). Notice that HDAM corresponds to a (P=4)-wise bipartite Hop�eld model (see
Fig. 2.12, right panel), namely a minimal generalization of the Hebbian kernel in the
classic Hop�eld reference (quite similar to auto-encoders in Engineering jargon [60]). Also,
this equivalence generalizes the standard duality between restricted Boltzmann machines
and (pairwise) Hop�eld neural networks [52, 82].
To start dealing with network's capabilities, it is convenient to introduce generalized Mattis
order parameters Mρ de�ned as

Mρ ≡
1

N2

N,N∑

i,µ=1

ξρiµσiτµ. (2.103)

The signal-to-noise analysis for this system can be obtained by requiring the dynamic
stability of the neural state recalling, without loss of generality, the pattern ρ = 1, that is,
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σiτµ = ξ1
iµ. Therefore, denoting with hiµ the internal �eld acting on σi and τµ we get

σiτµhiµ = S + N =
1

2N

K∑

ρ=1

Mρξ
ρ
iµξ

1
iµ

=
1

2N


M1 +

K∑

ρ>1

Mρξ
ρ
iµξ

1
iµ


 . (2.104)

As the signal term inside the brackets in (2.104) is M1 ∼ O(1), while the noise term
corresponds to a sum of (K − 1) stochastic and uncorrelated contributions, each of order
O(N−1), exploiting the central limit theorem it is immediate to check that the quenched
noise due to non-retrieved patterns can be ampli�ed by a factor

√
N still preserving the

stability condition S/N ∼ O(1). We can therefore introduce noisy patterns yielding to the
noisy tensor η with entries

ηρiµ ≡ ξ
ρ
iµ +
√
Kξ̃ρiµ, (2.105)

where the information is carried by the Boolean entries of ξρiµ, while the noise is coded in

the real ξ̃ρiµ that are i.i.d. standard Gaussian variables for i, µ = 1, ..., N and ρ = 1, ...,K.
Notice that the information encoded by the patterns is perturbed by adding a stochastic
term ξ̃ on ξ (eq.2.105) rather than directly on J ; the latter choice would have a lower
impact on network capacity and is therefore less challenging. In analogy with (2.103) we
also de�ne

M̃ρ ≡
1

N2

N,N∑

i,µ=1

ξ̃ρiµσiτµ. (2.106)

Replacing the Boolean tensor (2.99) in eq. (2.102) with the noisy tensor (2.105) and exploit-
ing the de�nitions (2.103) and (2.128), we get HDAM = −N

2

∑
ρ(Mρ +

√
KM̃ρ)

2. Then, in
the limit of large N , splitting the signal and the noise contributions, the Boltzmann factor
in eq. (2.101) reads as (see Section 2.3.4 for all the details in the statistical mechanical
treatment of this network)

exp (−βHRSM) ∼
N→∞

exp


βN

2
M2

1 + β
αN2

2

K∑

ρ≥2

M̃2
ρ


 .

Let us now handle the two terms appearing as argument of the exponential in the
r.h.s.: exploiting the redundancy ξ1

iµ = ξ1
i ξ

1
µ and calling mσ and mτ the Mattis mag-

netization related to the visible layer σ and to the mirror layer τ respectively, we get

M1 =
(

1
N

∑
i ξ

1
i σi
) (

1
N

∑
µ ξ

1
µτµ

)
≡ mσmτ , in such a way that βNM2

1 /2 = βNm2
σm

2
τ/2;

by performing a Hubbard-Stratonovich transformation, the quenched noise given by the
non-retrieved K − 1 patterns is linearized as

√
αβ
∑

i,µ,ρ≥2 ξ̃
ρ
iµσiτµzρ/N . After these pas-

sages one can address the evaluation of the intensive quenched pressure of the model,
de�ned as,

A(α, β) := lim
N→∞

1

N
Eη ln

∑

σ,τ

∫ K∏

ρ=1

Dzρ exp (−βHRSM) ,
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Figure 2.13: Phase diagram for the DAM with (P = 4)-wise interactions among the N
neurons and a load K = αN , as a function of the capacity α and of the the noise level
1/β. This diagram was obtained by solving the self-consistent equations (2.108)-(2.112)
and by identifying the retrieval region as the region where each neural con�gurations
corresponding to the stored patterns (and their symmetric version) is a maximum of the
pressure � either global, (R1) or local (R2) � the spin-glass (SG) region as the region where
retrieval capabilities are lost due to prevailing �slow noise� α, and the ergodic (E) region
as the region where retrieval capabilities are lost due to prevailing �fast noise� 1/β (see
Section 2.3.4 for further details).

exploiting Guerra's interpolation techniques [26, 52]. Under the Replica Symmetric (RS)
ansatz, the quenched pressure reads as (see Section 2.3.4 for technical details in the statis-
tical mechanical treatment)

ARS =2 ln 2 +
α2β2

2
p(2qr − r − q)− 3

2
βm2

σm
2
τ

+

∫
Dx ln cosh

(
αβx
√
rp+ βmσm

2
τ

)

+

∫
Dx ln cosh

(
αβx
√
qp+ βm2

σmτ

)

− α

2
ln[1− αβ(1− qr)] +

α2β

2

qr

1− αβ(1− qr) , (2.107)

where mσ and mτ are the RS values of the Mattis magnetizations, while q, p and r
are the RS values for the two-replica overlaps for each layer (visible, hidden and mirror
respectively). Its extremization returns the following self-consistency equations for the
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Figure 2.14: Expected Mattis magnetization obtained from Monte Carlo simulations run
for N = 150 and for di�erent values of α, as a function of 1/β
. Notice that, as α is tuned from 0.25 to 0.35, the magnetization abruptly drops even at
small values of 1/β, consistently with the transition from the region R1 to the region R2
found theoretically (see Fig. 2.13 and Section 2.3.6 for further details and discussions).

order parameters

q =

∫
Dx tanh2

(
αβ
√
rpx+ βmσm

2
τ

)
, (2.108)

r =

∫
Dx tanh2

(
αβ
√
qpx+ βm2

σmτ

)
, (2.109)

p =
αqr

[1− αβ(1− qr)]2
, (2.110)

mσ =

∫
Dx tanh

(
αβ
√
rpx+ βmσm

2
τ

)
, (2.111)

mτ =

∫
Dx tanh

(
αβ
√
qpx+ βm2

σmτ

)
. (2.112)

whose solution paints the phase diagram in Fig. 2.13 (see the Appendix for more details).

The theory is also corroborated via Monte Carlo simulations; a sample of this analysis is
shown in Fig. 2.14, while more extensive discussions can be found in Section 2.3.6.

To summarise, we considered a Sejnowski machine equipped with two visible layers and
we showed that it can perform pattern-redundant representation via a suitable generaliza-
tion of the standard contrastive divergence. Further, we proved that this machine has a
dual representation in terms of a bipartite DAM in such a way that the features learnt
by the former correspond to the patterns stored in the latter and, whatever the learning
mode (adaptive versus Hebbian), in the operational mode these networks achieve pattern
recognition always in a Hebbian fashion. We studied these nets via statistical mechanical
tools obtaining (under the RS ansatz) a phase diagram, where their remarkable capabilities
shine. In particular, there exists a region in the parameter space where they can retrieve
patterns although these are (apparently) overpowered by the noise. This may contribute to
explain the high-rate ability of deep/dense networks in pattern recognition, as empirically
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evidenced in a variety of tasks. Indeed, at �nite volumes (as standard dealing with real
data-sets), it is not obvious which regime of operation the network is actually set at: to see
this one can notice that at �nite N and K one has only access to the ratio α(K,N) = K/N
which can possibly be compatible with di�erent scalings (e.g., K = α1N

P−1 or K = α2N).
Hence, we speculate that such impressive detection skills emerge when these nets are away
from the memory storage saturation. Further, we have shown by a pure statistical mechan-
ical perspective, how pattern recognition power and memory storage are strongly related.
For the sake of completeness, we report that also in the purely engineering counterpart,
pattern redundancy is exploited to cope with high noise rate (e.g., in white Gaussian addi-
tive channels [83, 84]). In particular, our approach is close to the so called channel access
method in telecommunications, namely a set-up where more than two terminals connected
to the same transmission medium are allowed to share its capacity.

2.3.2 A new Contrastive-Divergence learning rule

While the reward in the paradigm shift from the pairwise Hamitonian toward deep or
dense networks is expected to be huge (and far from being entirely explored at present,
ultra-detection being just one out of several aspects of the increased performances of these
modern architectures), as a matter of fact all the existing celebrated learning rules -
originally derived within the statistical reductionism framework- must now sutably be
enlarged to work also for these networks. Aim of this section is to generalize the clas-
sical contrastive divergence scheme -introduced by Ackley, Hinton and Sejnowski to deal
with the standard, pairwise, RBM in order to work also for this generalization of the RBM
machine introduced by Sejnowski.
Let us recall the partition function (4) of the Sejnowski machine we are inspecting

Z =
∑

σ,τ

∫ ( K∏

ρ=1

dzρ√
2πβ−1

)
×

× exp
(
− β

2

K∑

ρ=1

z2
ρ + β

N,N,K∑

i,µ,ρ=1

ξ̂ρiµσiτµzρ

)
, (2.113)

where ξ̂ρiµ = N−3/2ξρiµ. Such expression suggests that learning should act on the couplings
ξρiµ rather than on the information patterns ξρi (as it happens in the simpler pairwise
scenario [48, 52]). In order for the learning procedure to create free-energy (we recall that
the pressure A is simply related to the free energy F by A = −βF , in such a way that the
two functions exhibit the same extreme points, yet maxima in the pressure just corresponds
to minima in the free-energy) minima placed at σ = τ = ξρ, both the visible and mirror
layers should be set according to the data, namely the two eyes of the machine do look at
the same outside world.
In this Section, we prove that the learning rule reads as

∆ξ̂ρiµ = εβ (〈σiτµzρ〉+ − 〈σiτµzρ〉−) , (2.114)

where the subscript �+� means that both visible and mirror layers are set at the data input
(i.e., they are clamped), while the subscript �−� means that all neurons in the network
are left free to evolve. Let us write explicitly the probability distribution for a given
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con�guration state:

P (σ, z, τ ) = Z−1

(
1√

2πβ−1

)K
×

× exp
(
− β

2

K∑

ρ=1

z2
ρ + β

N,N,K∑

i,µ,ρ=1

ξ̂ρiµσiτµzρ

)
, (2.115)

and suppose the set of data is made of i.i.d. entries generated by a probability distribution
Q(σ), whose features we aim to extract.
Since the mirror layer, by de�nition, should mimic the activity of the visible layer (as we
want to put the information content in pure minima of the free energy given by con�gura-
tions of the form τ = σ), we have to build a representation of the couplings ξ̂ρiµ such that
the marginal distribution P (σ, τ = σ) is the best approximation for Q(σ), where

P (σ, τ ) = Z−1

∫ ( K∏

ρ=1

dzρ√
2πβ−1

)
×

× exp
(
− β

2

K∑

ρ=1

z2
ρ + β

N,N,K∑

i,µ,ρ=1

ξ̂ρiµσiτµzρ

)

:=
Z(σ, τ )

Z
. (2.116)

Therefore, we introduce the Kullback-Leibler cross-entropy as

D(P,Q) =
∑

σ

Q(σ) log
Q(σ)

P (σ, τ = σ)
.

Under a gradient-descent approach, we have to compute the derivative of the cross-entropy
w.r.t. the couplings, that reads as

∂D

∂ξ̂ρiµ
= −

∑

σ

Q(σ)×

×
[
Z(σ, τ = σ)−1∂Z(σ, τ = σ)

∂ξ̂ρiµ
− Z−1 ∂Z

∂ξ̂ρiµ

]
. (2.117)

The �rst term in the square brackets of eq. (2.117) can be written as:

Z(σ, τ = σ)−1∂Z(σ, τ = σ)

∂ξ̂ρiµ
=

=Z(σ, τ = σ)−1

∫ ( K∏

ρ=1

dzρ√
2πβ−1

)
βσiτµzρ×

× exp
(
− β

2

K∑

ρ=1

z2
ρ + β

N,N,K∑

i,µ,ρ=1

ξ̂ρiµσiτµzρ

)
=

=Z(σ, τ = σ)−1

∫ ( K∏

ρ=1

dzρ

)
βσiτµzρ P (σ, z, τ = σ),

(2.118)
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and, using Bayes' theorem under the constraint τ = σ,

P (σ, z, τ = σ) = P (σ, τ = σ)P (z|σ, τ = σ) =

=
Z(σ, τ = σ)

Z
P (z|σ, τ = σ). (2.119)

Therefore, combining (2.118) and (2.119)

Z(σ, τ = σ)−1∂Z(σ, τ = σ)

∂ξ̂ρiµ
=

=

∫ ( K∏

ρ=1

dzρ

)
βσiτµzρP (z|σ, τ = σ). (2.120)

When taking the Q-weighted sum, we have

∑

σ

Q(σ)Z(σ, τ = σ)−1∂Z(σ, τ = σ)

∂ξ̂ρiµ
=

=
∑

σ

∫ ( K∏

ρ=1

dzρ

)
βσiτµzρQ(σ)P (z|σ, τ = σ) =

= β〈σiτµzρ〉+, (2.121)

since data are extracted with probability Q(σ).
The second term in the square brackets of eq. (2.117) can be written as:

Z−1 ∂Z

∂ξ̂ρiµ
=
∑

σ′,τ

∫ ( K∏

ρ=1

dzρ

)
βσ′iτµzρ P (σ′, z, τ ), (2.122)

where now there are no constraints on the mirror and visible layers. Since there is no
dependence on σ, the Q-weighted sum can be trivially performed, as∑
σ Q(σ) = 1, leading to

∑

σ

Q(σ)Z−1 ∂Z

∂ξ̂ρiµ
=

=
∑

σ′,τ

∫ ( K∏

ρ=1

dzρ

)
βσ′iτµzρ P (σ′, z, τ ) =

= β〈σiτµzρ〉−. (2.123)

All together, we have

∂D

∂ξ̂ρiµ
= −β(〈σiτµzρ〉+ − 〈σiτµzρ〉−). (2.124)

The gradient descent rule (2.114) can therefore be expressed in a contrastive divergence
(CD) form as ∆ξ̂ρiµ = −ε ∂D

∂ξ̃ρiµ
.

In order to check the performance of this network we proceed as follows: we consider the
Restricted Sejnowski Machine (RSM) and, for comparison, a standard Restricted Boltz-
mann Machine (RBM) and, for both the networks, we arbitrarily choose two random
con�gurations (ξ1, ξ2) to be the patterns to be learnt. Via Gibbs-sampling we generate



2.3. NEURAL NETWORKS EQUIPPED WITH ULTRA-DETECTION 96

a training set (the same for both the networks) by producing corrupted versions of these
patterns (with a level of corruption up to 30%). The latter are thus learnt simultaneously
via CD and, once the training stage is over, pattern retrieval is further examined. The
overlaps m1,2 are measured and compared in the training and in the validation stages. In
all the tests we performed � a sample of which is shown in Fig. 2.15 � the RSM outperforms
the standard RBM (all the tests produced results similar to those reported in Fig. 2.15).
In particular, beyond being more accurate, the CD-algorithm for the RSM is signi�cantly
faster with respect to its RBM counterpart, that is, it reaches large values of m1,2 already
for a relatively small number of CD steps.
As a last remark we notice that, in the very initial stage (when the number of CD steps is
small), the RBM displays a large overlap with respect to the RSM. This e�ect is of purely
stochastic nature as the RBM is fed with a vector of N entries while the RSM is fed with
a matrix of N2 entries, in such a way that a random initial con�guration will exhibit a
larger alignment in the former case. This remark further highlights the higher speed of the
RSM.

100 101 102 103

CD steps

0.0

0.2

0.4

0.6

0.8

1.0

m
1

100 101 102 103

CD steps

0.0

0.2

0.4

0.6

0.8

1.0
m

1

Figure 2.15: The two plots show a comparison between learning performances of a RSM
(black lines) and RBM (red lines). Dashed lines are for comparison of the performances
of the machines during the training stage while solid lines are for comparison during the
validation stage. On the horizontal axes, we report the number of CD-steps while on the
vertical axes we show the overlap between the visible layer σ and the retrieved test-pattern
ξ1 (i.e., the magnetization m1). In the left plot the two networks work with the optimal
learning rate for the RBM (evaluated as ε = 0.266), nonetheless the RSM outperforms
the RBM both in the training and in the validation stages. In the right plot, the two
networks operate with their respective optimal learning rates (that is εRBM = 0.266 and
εRSM = 0.52) and the di�erence in the performances is further enhanced. In both cases, the
network size is �xed to N = 20 (however, we obtained analogous results up to N = 200).
Similar results also hold for the overlap with pattern ξ2.

2.3.3 Signal-to-noise stability analysis

In this Section we perform a signal to noise analysis [11] for the Dense Associative
Memory (DAM) with (P = 4)-wise interactions among spins and in the linear storage
regime K = αN,α > 0. Its Hamiltonian, or cost function to keep a Machine Learning
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jargon, appearing in eq. (5) in the main text, can be rewritten as

HDAM = −
N,N∑

i,µ=1

hiµσiτµ, (2.125)

where

hiµ =
1

2N3

N,N∑

j,ν=1

K∑

ρ=1

ηρiµη
ρ
jνσjτν , (2.126)

are the internal �elds acting on the dimer σiτµ.
The tensors η (see also eq.2.105) in the main text and [85]) are expressed as the sum of
a Boolean contribution ξ providing the signal and a real contribution ξ̃ accounting for a
noise source:

ηρiµ = ξρiµ +
√
Kξ̃ρiµ = ξρiµ +

√
αNξ̃ρiµ, (2.127)

where P(ξρiµ = ±1) = 1/2 and P(ξ̃ρiµ) = N(0, 1) for each i, µ = 1, . . . , N and ρ = 1, . . . ,K.
We recall the de�nition of the 2K generalized Mattis magnetizations as

Mρ = 1
N2

∑N,N
i,µ=1 ξ

ρ
i,µσiτµ, (2.128)

M̃ρ = 1
N2

∑N,N
i,µ=1 ξ̃

ρ
iµσiτµ, (2.129)

with ρ = 1, ...,K. In terms of these overlaps, the internal �elds (2.126) can be written as

hiµ =
1

2N3

N,N∑

j,ν=1

K∑

ρ=1

(
ξρiµ +

√
αNξ̃ρiµ

)(
ξρjν +

√
αNξ̃ρjν

)
σjτν

=
1

2N3

N,N∑

j,ν=1

K∑

ρ=1

(
ξρiµξ

ρ
jνσjτν +

√
αNξρiµξ̃

ρ
jνσjτν+

+
√
αNξ̃ρiµξ

ρ
jνσjτν + αNξ̃ρiµξ̃

ρ
jνσjτν

)

=
1

2N

K∑

ρ=1

(
ξρiµMρ +

√
αNξρiµM̃ρ+

+
√
αNξ̃ρiµMρ + αNξ̃ρiµM̃ρ

)
. (2.130)

We aim to check the stability of con�gurations where the dimers σiτµ are aligned to a given
element of the tensor, say ξ1

iµ; the resulting contribution to the energy function (2.125) is

hiµξ
1
iµ =

1

2N

K∑

ρ=1

(ξρiµξ
1
iµMρ +

√
αNξρiµξ

1
iµM̃ρ+

+
√
αNξ̃ρiµξ

1
iµMρ + αNξ̃ρiµξ

1
iµM̃ρ)

=
1

2N

[
M1 +

√
αNξ̃1

iµξ
1
iµM1+ (2.131)

+
K∑

ρ=2

(ξρiµξ
1
iµMρ +

√
αNξ̃ρiµξ

1
iµMρ)+

+
K∑

ρ=1

(
√
αNξρiµξ

1
iµM̃ρ + αNξ̃ρiµξ

1
iµM̃ρ)

]

= (S + N)/2N, (2.132)
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where in the �rst line of eq. (2.131) we used the trivial identity (ξ1
iµ)2 = 1 and in eq. (2.132)

we split the energy contribution hiµξ
1
iµ into a signal S and a noise N term:

S = M1, (2.133)

N =
√
αN
[
ξ̃1
iµξ

1
iµM1 +

K∑

ρ=2

(
ξρiµξ

1
iµMρ√
αN

+ ξ̃ρiµξ
1
iµMρ)+

+
K∑

ρ=1

(ξρiµξ
1
iµM̃ρ +

√
αNξ̃ρiµξ

1
iµM̃ρ)

]
. (2.134)

We now compare the scaling behaviours of these two terms, by computing their ratio. We
anticipate that this ratio depends on the realization of the noisy patterns and we should
average in some way over the variables ξ̃ρiµ. If not interested in the magnitude of �uctuations
(mirroring the statistical mechanical side, where the model is kept mean-�eld and analyzed
at the replica symmetric level), one can simply consider the ratio Eξ̃(S)/Eξ̃(N), where Eξ̃(·)
is the average over the internal noise realizations ξ̃ρiµ. In this way, �uctuations are averaged
out and we are only left with the magnitudes of the �rst moment. Let us now turn to the
evaluation of the scaling behaviours of S and N in (2.133) and (2.134), respectively.
First, under the perfect retrieval hypothesis, we have M1 = 1, whence

S = M1 = 1. (2.135)

As for N, we can preliminary notice that, among its �ve contributions appearing in (2.134),
the second term

∑
ρ>1 ξ

ρ
iµξ

1
iµMρ can be neglected as it is vanishing as O(N−1/2) in the

thermodynamic limit. This can be seen by expanding the magnetizations, that is
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ρ
jνξ

1
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]
,

(2.136)

and checking that the �rst term in square brackets is of order O(N), due to the trivial
equality (ξρiµ)2 = 1 and to the fact that the sum includes K − 1 terms with K ∼ αN ;
the remaining two terms can be looked at as the displacement covered by simple random
walkers performing, respectively, ∼ N2 and ∼ N3 steps on a linear chain, in such a way
that for large enough N they are Gaussian distributed with standard deviation of order
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O(N) and O(N3/2), respectively.
Therefore, in the large N limit, the leading contribution in the noise term (2.134) is given
by

N ∼
N→∞

√
αNξ̃1

iµξ
1
iµM1 +

K∑

ρ=2

√
αNξ̃ρiµξ

1
iµMρ+

+

K∑

ρ=1

√
αNξρiµξ

1
iµM̃ρ +

K∑

ρ=1

αNξ̃ρiµξ
1
iµM̃ρ, (2.137)

and, when taking the average with respect to the pattern internal noise, only the last term
survives, since it is the only one with even powers of ξ̃ρiµ.
Then, focusing on the last term, we get

K∑

ρ=1

αNξ̃ρiµξ
1
iµM̃ρ =

α

N
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N,N∑
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1
iµξ̃

ρ
jνξ

1
jν , (2.138)

and, introducing the variables ˜̃ξρiµ = ξ1
iµξ̃

ρ
iµ, which are obviously Gaussian-distributed,
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(2.139)

Furthermore, in the expression (2.139), only the �rst term in the last line gives non-
vanishing contribution (since the other two terms are product of uncorrelated random
variables). Therefore

Eξ̃(N) =
α

N

K∑

ρ=1

Eξ̃(
˜̃ξρiµ)2 ∼ αK

N
= α2, (2.140)

which is O(1), that is the same scaling behaviour of the signal M1.
The arguments just exposed allow us to introduce the �pattern recognition power� as

the maximal extent of noise that can a�ect the information encoded by patterns (supposed
O(1)) still allowing pattern retrieval. This is strongly related to the memory storage: if
we load the network with K ∼ N3 patterns then the pattern recognition power is O(N0),
if K ∼ N2, then the pattern recognition power is O(N1/4), if K ∼ N1, then the pattern
recognition power is O(N1/2), and so on. Therefore, if K ∼ N3 the pattern recognition
power of this net is the same as the one of the standard Hop�eld model in high load, but
if we sacri�ce pattern storage letting K ∼ N1, then the pattern recognition power of this
net is much higher than the one of the standard Hop�eld model.
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Figure 2.16: Mattis magnetization(s) and free-energy. Left: the plot shows the Mattis
magnetization m (we stress that, on the self-consistency solutions, m1 = m2) as a function
of the fast noise 1/β for various storage capacity values (α = 0, 0.20, 0.40, 0.50, going from
the right to the left). The vertical dotted lines indicates the jump discontinuity identifying
the critical noise level 1/β(α) that traces the boundary between the retrieval region and
the pure spin-glass phase. Right: the plot shows the corresponding pressure as a function
of the fast noise level 1/β at the storage capacity values α = 0, 0.10, 0.15, 0.20 (going from
the bottom to the top) in the retrieval (continuous lines) and spin-glass (dotted lines)
states. Note that the sampled α-values are di�erent among the two plots for a matter
of best visualization (for too low values of α all the magnetizations heavily overlap and
it is hard to distinguish them by eye inspection). Note: the solutions always share the
symmetry m1 = m2.

2.3.4 Replica symmetric phase diagram

The phase diagram shown in Figure 2.13 exhibits four qualitatively di�erent phases as
explained hereafter:

� Ergodic phase (E)
The �fast� noise 1/β in the system is too strong for the neurons to reciprocally feel
each other, in such a way that they tend to behave randomly and no emergent collec-
tive property can be appreciated. In this region, the solution of the self-consistency
equations [i.e., eqs. (11)-(15) in the main text] which maximizes the pressure [i.e.,
eq. (10) in the main text] is given by m = 0, q = 0.

� Spin-glass phase (SG)
The �slow� noise α is too large for the neurons to correctly handle the whole set
of patterns, and again the system fails to retrieve information, although the ther-
malized con�gurations are not purely random. In this region, the solution of the
self-consistency equations which maximizes the pressure is given by m = 0, q 6= 0.

� Retrieval phase (R1)
Both �fast� and �slow� noise are small enough for neural collective capabilities to
spontaneously appear. In particular, the most likely con�gurations, namely those
corresponding to the global maxima of the pressure, are those corresponding to stored
patterns. In this region the solution of the self-consistent equations which maximizes
the pressure is therefore given by m 6= 0, q 6= 0.

� Retrieval phase (R2)
Both �fast� and �slow� noise are still relatively small hence neural collective capabil-
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Figure 2.17: This �gure shows results obtained through Monte Carlo simulations. Seeking
for clarity, only 〈mσ,ρ〉 is shown, but quantitatively analogous values are obtained also for
〈mτ,ρ〉. Errorbars (reported only in panel a, seeking for clarity) stem from the average
of thermal noise and quenched noise. All cases depicted here correspond to Q = 100
realizations. Panel a: Expected Mattis magnetization 〈mσ,ρ〉 for N = 150 and p = 0.01
as a function of 1/β and for di�erent values of α as explained by the legend. Panel b:
Comparison of the expected Mattis magnetization 〈mσ,ρ〉 for di�erent initial con�gurations
p = 0.01, 0.05, 0.1 (depicted in di�erent line style as explained by the legend), for �xed
N = 150 and for α = 0.02 (dark curves) and α = 0.25 (bright curves). Panel c: Comparison
of the expected Mattis magnetization 〈mσ,ρ〉 for di�erent sizes N = 50, 100, 150 (depicted
in di�erent line style as explained by the legend), for �xed p = 0.01 and for α = 0.02
(dark curves) and α = 0.25 (bright curves). Panel d: The critical noise Tc is estimated by
taking the discrete derivative of the expected Mattis magnetization 〈mσ,ρ〉 with respect to
the noise and by selecting the value of noise 1/β (if any) where the derivative peaks. Such
estimates are obtained for N = 50, 100, 150 (same legend as panel c) and for p = 0.01,
α = 0.02; the corresponding theoretical values are recalled in the inset.
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ities can still spontaneously appear. However, here con�gurations corresponding to
stored patterns are only local maxima of the pressure in such a way that patterns
can be retrieved as far as the initialization of the system is not too far (in the sense
of the Hamming distance) with respect to the target pattern. In this region the
self-consistent equations admit as solution m 6= 0, q 6= 0 as well as m = 0, q 6= 0,
both corresponding to maxima of the pressure, the former being local maxima, the
latter being global ones.

A sketch of the analysis underlying the de�nition of the various regions is provided in
Fig. 2.16, while a numerical con�rmation via Monte Carlo runs is shown in Figure 2.17
and discussed hereafter.
We performed also Monte Carlo simulations to mimic the evolution of a �nite-size DAM
network made of N neurons interacting (P = 4)-wisely and K = αN patterns, described
by the cost function (3.163): see Figure 2.17. The reason behind the need of numerical
simulations does not lie in the necessity to check heuristic derivations within our treatment
as we worked out the whole theory under the Guerra's schemes that are mathematically
sound, rather to con�rm that the e�ect of replica symmetry breaking is rather mild on
these neural networks (as we worked out the whole theory under the replica symmetric
ansatz).
We �rst �xed the parameters (N,α, β) where K has to be meant as the integer part of αN .
Then, we drew the i.i.d. Boolean variables ξρi , with i = 1, ..., N and ρ = 1, ...,K as well as
the related Gaussian noise ξ̃ρiµ with i, µ = 1, ..., N and ρ = 1, ...,K. Then, the tensor η is
built following the prescription (3.164). Next, we initialize the system con�guration in such
a way that σ and τ are aligned with ξ1, except for a fraction p of misaligned entries, and
we let the system evolve by a single spin-�ip Glauber dynamics. Once the equilibrium state
is reached, we collect data for the instantaneous Mattis magnetizations mσ,ρ =

∑
i ξ
ρ
i σi/N

andmτ,ρ =
∑

µ ξ
ρ
µτi/N to obtain the thermal average referred to as 〈mσ,ρ〉 and 〈mτ,ρ〉, with

ρ = 1, ...,K (notice that, initially, one hasmσ,1 = mτ,1 = 1−2p, whilemσ,ρ6=1,mτ,ρ 6=1 ≈ 0).
This is repeated for Q = 100 di�erent realizations of the patterns ξ and the noise ξ̃,
over which thermal averages are accordingly averaged. The resulting values provide our
numerical estimate for the expectation of the Mattis magnetizations 〈mσ,ρ〉 and 〈mτ,ρ〉
to be compared with the solution of the self-consistent equations. Di�erent parameters
(N,α, β, p) are considered and, for each choice, the same procedure applies. A sample of
our results for N = 150, p = 0.01 and di�erent values of α, β is shown in Fig.2.17a, where
one can check that the Mattis magnetization mσ,1 corresponding to the retrieved pattern
ξ1 vanishes at large values of the noiseT ≡ 1/β and/or at large values of α; as expected
from the theoretical analysis, the larger α and the smaller the critical temperature Tc above
which no retrieval takes place. We also notice that for T = 0, when α increases beyond α ≈
0.3 the magnetization abruptly vanishes. Then, in Fig.2.17b we compare results stemming
from di�erent choices of p and for α = 0.02 (dark curves) and α = 0.25 (bright curves):
the initial con�guration (as long as close enough to ξ1) does not in�uence quantitatively
the �nal outcome. Next, in Fig. 2.17c we perform a �nite-size-scaling considering, again,
α = 0.02 (dark curves) and α = 0.25 (bright curves): the curves for N = 50, N = 100 and
N = 150 are slightly shifted and the shift gets more signi�cant as α is increased. Finally,
in Fig. 2.17d, main plot, we show the numerical derivative of mσ,1 for α = 0.02 and for the
three sizes analyzed before: the peak in the derivative can be used to estimate Tc and this
can in turn be compared with the theoretical results highlighted by the vertical lines and
recalled in the inset.
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2.3.5 Discussion on ultra-detection as an emergent skill

Summarizing alsomresults regarding this extension from the bare Hop�eld reference,
we have shown that -if we abandon the pairwise interactions (quite familiar to Physicists,
as tacitely underlie linear forces -where superposition principle applies- and thus the whole,
partially obsolete, reductionistic sca�old of Hard Science)- rewards are huge and far from
trivial: for instance, by generalizing the restricted Boltzmann machine toward a network
with two input layers (hence accounting for redundant information), the emergent proper-
ties of such an architecture are those of a dense Hop�eld network whose neurons interact
in cliques made of four neurons per time: this architecture signi�cantly outperform w.r.t.
the Hop�eld scenario: for instance, without changing the signal-to-noise ratio for signal
detection (keeping the standard one that holds for the Hop�eld reference), such a network
can store an amount of patterns that scales as ∝ N3 (while for the Hop�eld network this
scaling is just linear, e.g. K = αN), further, as shown by the new contrastive divergence
learning scheme (see equation 2.203) -and as deepened in the relative section (see Section
2.3.2)- the network can infer more than solely single- and pair-wise correlation functions
hidden in the datasets: this is mandatory at work with structured datasets in real-world
problems in machine learning1.
Last but not least, a remarkably property that these dense networks share is that they can
sacri�ce storage space in order to lower their trheshold for signal detection: for instance, in
the analyzed case, the network -that in principle can store O(N3) patterns (whose signal-
to-noise ratio for detection must however be O(1) int hat case)- can retain solely O(N1)
patterns (that in the thermodynamic limiti it is still a diverging amount of information),
but -in this low-storage regime- the network is able to detect a pattern shining with an
intensity of O(1) even if �oating in a sea of noise whose intensity is O(

√
N): the mathe-

matical mechanism that we proved in this thesis lies at the core of the remarkable modern
patterrn recognition scores that these networks are collecting (e.g. they outpeform w.r.t.
experienced doctors in melanoma recnognition on skin and a plethora of similar key prob-
lems and are indeed expected to play a pivotal role in the Personalized Medicine that is
approaching and expected to revoluzionize Healthcare withihn our modern societies at the
international level.
Indeed, it is exactly to this point that the remaining chapter of the manuscript is due
to: far from being solely a thesis in Theoretical Arti�cial Intelligence, in the next pages
a summarize about how our group tackled two biological problems is presented. These
biological problems are extremely actual in modern Healthcare, the former dealing with
understanding cancerogenesis, the latter dealing with pathologies related to hearth: let us
deepen these �ndings!

1Indeed, this is one of the main reasons why -in concrete problems- if we keep the minimal architecture
of the RBM we must stuck one on the top of the other, toward deep learning architectures, in order to infer
broadly generated correlations contained in the inspected datasets.



Chapter 3

Part 3: Applications in Biological

Complexity

From now on, I will report on results I obtained at work in the laboratories dealing
with health-related problems in Biological Complexity.
The underlying motivation that prompted me to add this third part to the thesis (beyond
my genuine interest in Biological Sciences) is essentially the will to show also experi-
mental examples where it is possible to appreciate the bene�t in mastering automatized
high-dimensional statistical inference modi operandi for complex systems, namely mod-
ern algorithmic prescriptions inspired by neural networks and ultimately stemming from
Parisy Complexity Theory, declined within the Jaynes inferential perspective on entropy
maximization, namely the two pillars above which the whole thesis stands.
Regarding the choice of the biological complexity to unveil, I selected two problems quite
far away within the Biological world and spatiotemporally complementary (but quite sim-
ilar from the above modeling perspective on complex and automated inference):

� in the former -a spatial problem- we aim to detect the interactions among cancerous
cells and their sourrounding both in presence and absence of a chemoterapeutic drug
(we will consider two di�erent pancreatic cancerous lineages to show that they give
rise to quite di�erent outcomes). By comparison of the results in the two cases, the
present research becomes a cheap and powerful method to inspect the role and validity
of a particular chemoterapy against a particular cancer type. Concretely we will deal
with pictures of ensembles of broadly interacting cells in vitro, left free to evolve
under time-lapse confocal microscopy and we infer the existence of cellular dialogues
that a�ect their kinetics (namely signals that result in locomotion) by suitably mixing
maximum entropy statistical inference and stochastic processes theory. This is a new
protocol e�ective in order to study the crosstalk between cancerous cells and their
surrounding cells.

� in the latter, instead, we deal with a temporal problem, namely we want to character-
ize the hear rate variability of healthy and pathogenic patients (we consider also here
two pathologies, atrial �brillation and cardiac decompensation) ultimately with the
will of correlating di�erencies in the inferred observables with the pathologies they
are coupled to, in order to provide to Clinicians a cheap computational protocol that
can highlight new (and complementary w.r.t. achieved by standard routes) infor-
mation helpful in early characterization of heart diseases. Concretely, once provided
with Holter's registrations of cardiac performances of large collections of labelled
patients, by inspecting heart rate variability with a suitable adaptation of the max-
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imum entropy technique at work on these historical series, we will show that -while
there universal scalings both in the temporal and frequency domains (already well
known in the Literature and con�rmed also by our �ndings)- there are also second
order variations from these scalings and these variations are pathology-dependent;
further, ultimately the picture that emerges from our approach is that of a glassy
hearth, namely a picture where the healthy heart behavior is chaotic and complex,
systemically accompained by a power-law statistics typical of frustrated systems. In
particular we congecture that the typical 1/f scalings (vide infra) are (typical glassy)
responses suggesting that the intrinsic variability in heat rate ultimately stems from
the interplay of the sympathetic and the parasympathetic nervous system: as Holter's
like recordings will be largely available in the next generation of wearable diagnostic
tools, this kind of investigation aims to contribute to the (already started) growth of
a personalized medicine.

3.1 Preamble: The Hop�eld model from statistical inference

Before addressing the two biological problems this Chapter is due to, as a mandatory
excercise we now obtain the Hop�eld cost function from the Jaynes inferential perspective
about the maximum entropy principle [86, 87]: this is important both for the mathematical
as well as from the physical perspectives.
From the mathematical side it is instructive to see that, while we introduced the Ho�eld
model simply by implementing in mathematical language the Hebb prescription for (bio-
logical) learning (i.e. cells that �re together wire together, also driven solely by Information
Theory argument we would reach the same cost function. Indeed if we want that minima
of the free energy to be highly correlated with the patterns ξ, we should introduce a cost
function that has lowest values when the con�guration of the network σ is close to ξ, but
the simplest way to express this mathematically is exactly by writing H(σ|ξ) ∝ −(σ · ξ)2

that is nothing but the Hop�eld model. Further, via this inferential route, it becomes
crystal clear that the pairwise Hop�eld model searches only for one-point and two-points
correlation functions in the datasets (thus its strength is con�ned within the statistical
reductionism).
From the physical counterpart, instead, it is mandatory to read the second principe within
the Jaynes perspective, simply because once the network ends up in a stable retrieval
minimum, it gets stuck not in a thermodynamic minimum but in a cycle (a steady state
where a circuitry of current becomes stationary) that is not at all the equilibrium condi-
tion analyzed by (equilibrium) statistical mechanics. In other words, the maximum entropy
principle from a pure physical perspective is not enough to guarantee a sound theory simply
because this is a network of (live) neurons and not (dead) atoms.

In an experimental scenario, in order to check retrieval performances of an associative
neural network, one should measure at least two (series of) numbers: the mean values of
the overlaps between the �nal output and the stored patterns and their relative variances.
In other words, the experimental setup requires the observation of the quantities

〈mµ〉exp =
1

N

∑

i

ξµi 〈σi〉exp, 〈m2
µ〉exp =

1

N2

∑

ij

ξµi ξ
µ
j 〈σiσj〉exp. (3.1)

The subscript exp means that we are considering experimentally evaluated quantities on
some given sample. In order to make the notation more clear, we shall omit it, but the
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averages 〈·〉 should not be confused with the theoretical expectation values 〈·〉 ≡ EΩJ
introduced in the previous theoretical Chapters.

The goal is then to determine the probability distribution P(σ) accounting for these
data. To do this, the standard tool coming from statistical inference is the maximum
entropy principle discussed in the �rst Chapter. The basic idea is that P(σ) is obtained by
maximizing the relative Shannon entropy S[P] = −∑σ P(σ) logP(σ). However, we have
to impose some other constraints via a Lagrange multiplier problem. First of all, P(σ)
should be a probability distribution, so the sum on the whole space should be equal to 1.
Furthermore, we have to require that the mean values of the overlap mµ and its square
m2
µ equal the experimental data. In other words, we should maximize the quantity1

SA,β,h[P] = −
∑

σ

P(σ) logP(σ) +AN
(∑

σ

P(σ)− 1
)

+

+ hN
∑

µ

(∑

σ

P(σ)
1

N

∑

i

ξµi σi − 〈mµ〉
)

+
βN

2

∑

µ

(∑

σ

P(σ)
1

N2

∑

ij

ξµi ξ
µ
j σiσj − 〈m2

µ〉
)
,

(3.2)

with respect to P(σ) and the parameters A, h, β. The constraint ∂AS = 0 is equivalent to
require P(σ) is indeed a probability distribution, while the requirements ∂hS = ∂βS = 0
e�ectively �x the theoretical observables with the experimental data. Finally,

δS[P]

δP(σ)
= − logP(σ)− 1 +AN + h

∑

iµ

ξµi σi +
β

2N

∑

ijµ

ξµi ξ
µ
j σiσj = 0, (3.3)

which means that

P(σ) = cost exp
( β

2N

∑

ijµ

ξµi ξ
µ
j σiσj + h

∑

iµ

ξµi σi

)
(3.4)

By putting the constant equal to cost = ZN (β)−1, we prove the following last theorem of
the thesis (than we move to real experiments).

Theorem 3.1. The partition function associated to the probability distribution P(σ) max-
imizing the Shannon entropy (3.2) with the constraints (3.1) for the �rst and the second
moment of neural activity is

ZN (β) =
∑

σ

exp
( β

2N

∑

ijµ

ξµi ξ
µ
j σiσj + h

∑

iµ

ξµi σi

)
, (3.5)

namely the partition function related to the Hop�eld cost function.

1Note that we added some extra N factor in order to ensure that all terms have the same order. Indeed,
in the case of a constant probability distribution, i.e. P(σ) =

∏
i P(σi) = 2−N , therefore the logarithm in

the Shannon entropy would give a factor N in the �rst term.
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3.2 Problem One: Maximum entropy for stroma-cancer cross-

talk

Cells in our body are not single entities but part of a community, they interact between
themselves and with the surrounding environment thus experiencing social life [88]. This
is pivotal in maintaining tissue organization and homeostasis, so as to coordinate an ap-
propriate response to dangerous perturbations. When these dialogues go wrong diseases
may rise, thus highlighting the importance of predicting and modeling cellular interac-
tions, which provide insight into the mechanism of diseases development and progression
[89, 90, 91]. The best examples is cancer, which can be de�ned of social dysfunction within
cellular community and used as a model system to study intercellular communications. The
search for signalling pathways, from direct cellular contact to soluble mediators, is highly
non trivial involving advanced techniques ranging from gene expression measurements,
yeast two-hybrid screening, co-immunoprecipitation, proximit labelling proteinomics, �u-
orescence resonance energy transfer imaging, X-ray crystallografy and more [92].
In this dedicated subsection, restricting solely to signalling a�ecting cell's kinetics, we
present a novel and cheap computational approach -whose strength is its simplicity (it
uses solely �uorescence microscopy and �ow cytometry as experimental needs)- that al-
lows quantifying the existence and intensity of interactions ruling cell's dynamics and
spatio-temporal coordination: in a nutshell, via standard �uorescence microscopy imag-
ing and cell's tracking, we collect the phase space of the experiment, namely the ordered
time-series of all the cell's positions and velocities and we fed the computational protocol
(based on maximum entropy extremization [15, 93, 94, 95]) by this knowledge. The output
the algorithms returns is the e�ective intensity of interactions among the various cells and
a quantitative description of the global motion: note that the method can predict the ex-
istence and magnitude of the interaction, but not its biological nature (we can state that
there is a signaling protein at work but we can not identify it). Yet, despite this limitation,
it can play as a powerful tool to compare how di�erent drugs a�ect the kinetics of the same
ensemble of cells, hence it plays possibly as a new approach to quantify kinetic cancer's
drug response.
To prove this statement, we select pancreatic ductal adenocarcinoma (PDAC) cell lines
as benchmark cases (speci�cally L3.6pl and AsPC-1 lines) and pancreatic stellate cells
(PSCs) as cellular culture system, since their mutual interaction is known to be critical for
PDAC progression: in this setting many e�orts have been devoted to assess whether sol-
uble mediators produced by carcinoma cells stimulated motility, proliferation and matrix
synthesis of PSCs, and how these interactions enhanced tumour growth and progression
[96, 97, 98]. Bachem and colleagues recently performed the wound assay in absence and in
presence of tumour cell supernatants or in co-culture experiments with PSCs and tumour
cells, observing random motility of PSCs in the wound assay and directed PSCs migration
towards tumour cells in the co-culture experiments [99]. These data are supported by in
vivo studies in which PDAC cells were orthotopically injected and their activity was seen
to be promoted by PSCs [99, 100, 101, 102].
A major part of literature a�rms that chemoresistance in PDAC is partially due to a unique
presence of �brous, sti� extracellular matrix (desmoplasia) surrounding the tumour, that
could a�ect the intratumoural drug penetration [103]. However, the role of desmoplasia
in cancer progression is complex and remains somehow controversial; in 2014, Gore and
Korc went through the available literature trying to clarify whether the stroma is friend or
foe in PDAC [104]: indeed, in that period several studies had demonstrated how targeting
the stroma resulted in undi�erentiated and more aggressive pancreatic cancer [105, 106].
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Desmoplasia mainly derives from pancreatic stellate cells (PSCs) that are activated to
proliferate and produce collagens, laminin, and �bronectin [107]; consequently, besides
the physical role played by desmoplasia, another key aspect to consider is the molecular
cross-talk between stroma and cancer cells, that regulates each cell type's survival, mi-
gration and other pro-tumourigenic properties. The lack of proper experimental models
and approaches contributed to enhance the poor knowledge related to PDAC underlying
mechanisms. Indeed, despite the need to study the complex interactions between PDAC
cells and PSCs, very limited in vitro options currently exist [108, 109].

3.2.1 Automatic inference of cell's cross-talk

In our approach, at �rst, to to be sure about the choice of cell lines to investigate, we
inspect the e�ect of PDAC cell lines on PSC kinetics by performing a standard wound
healing experiment (see Figure 3.1, panel A): we let PSCs grow in a medium conditioned
by L3.6pl, by AsPC-1 or nothing (as a control reference), we make a scratch and then
we inspect the time cells need to migrate and �ll the empty region. As shown in Figure
3.1 panel B, PSCs cell migration is highly conditioned by the medium resulting from
AsPC-1 or L3.6PL cells, con�rming the dependency of the dynamic behavior of PSCs from
factors secreted by PDAC cells, thus highlighting the existence of speci�c stroma-cancer
interactions. En route toward their quanti�cation, we then perform the following series
of experiments: for each cellular line (i.e. AsPC-1 or L3.6PL) we mix the PDAC cells
with the PSC cells homogeneously and, via time lapse �uorescent microscopy, we collect
cell's position and velocities. This knowledge su�ces to infer the possible existence of
kinetics interactions ruling the overall cellular dynamics via maximum-entropy statistical
analysis and to characterize the kind of di�usion these cells give rise to by stochastic process
theory. Note that we started from a mixed scenario to inspect how cells orchestrate their
coordination to form larger aggregates (e.g. for the ADPC lines) and/or to inspect if and
how PSC in�ltrate these aggregates. We then repeat the experiments providing in the
medium 5mg of gemcitabine and by comparison among the two series of experiments we
can deduce the role of the chemoterapeutic treatment in cancer-stroma kinetics. In these
experiments (Figure 3.1, panel C) the two cellular populations are left free to interact (with
or without drug) keeping the ratio 25% of pancreatic cancer cells (tumour from now on)
and 75% of PSCs pancreatic stellate cells (stroma from now on) whatever the malignant
line (e.g. both for the L3.6pl as well as for the AsPC-1 cell lines).
In both sets of experiments described, the tumour and stroma cells were labeled with
di�erent tracking dyes used for �uorescent cell staining and time-lapse confocal imaging
was applied to produce two distinct datasets containing all the cell's positions at given
time points (Figure 3.1, panel D) and thus, by di�erentiating two consecutive time frames,
also cell's velocities, namely the phase-space of the whole experiment (Figure 3.1, panel E):
this is a typical input for several statistical methods inspired by statistical physics [110]
(Figure 3.1, panels F,G), �rst of all the maximum entropy principle.
To obtain a clear scenario of the cell's kinetics, the key observable we investigate is cell's
velocity: we split the study of this vector by analyzing its direction by means of maximum-
entropy inference and by inspecting its modulus with stochastic processes theory: for the
former, we adapt the Jaynes maximum entropy inference, in its Bayesian formulation [111],
to infer existence and magnitude of interactions among cells, while, for the latter, we frame
cell's dynamics as a Wiener process [6] (hence we evaluate its di�usion, drift, �uctuations,
persistency, turning angles, etc. [112, 113, 114]) and, taking advantage by the homogeneous
initial state, we inspect if and how the two cellular population tend to form aggregates
(e.g. tumor cells can give rise to spheroids [89]), to mix (e.g. stroma can in�ltrate within
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Figure 3.1: Cartoon depicting the whole experimental and computational setups. In the �rst
row we inspect how PSCs migrate in a wound healing assay with 2D indirect co-culture
(panel A). PSCs were grown in a cell monolayer and exposed, after a scratch, to condi-
tioned medium from AsPC-1 or L3.6PL cells. As shown in panel B, where the vertical
axes quanti�es the ratio between the area of the scratch and the total area, contaminated
medium sensibly a�ects PSCs cell migration con�rming the presence of information ex-
changes among the various cellular lines . Prompted by this preliminary check, we de�ne
the following protocol to quantify such interactions: PDAC tumour cells (L3.6pl or AsPC-
1, red symbols) and stromal cells (PSC, green symbols) are co-cultured in a cell culture
dish with or without gemcitabine (5µM) up to 58 hours (panel C); Time-lapse confocal
�uorescence microscopy is applied to track the positions of the cells versus time (panel D);
Trajectories of each cell are reconstructed and, by temporal di�erentiation, the whole phase
space of the experiment is acquired (panel E), namely the time ordered series of all the
cell's positions and velocities: this information is the input to our algorithmic approach,
split in stochastic process analysis (panel F) and maximum-entropy statistical inference
(panel G).
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the tumoral clumps [115]), etc.: merging their results and comparing experiments with and
without gemcitabine we �nally conclude on the role of the drug in governing the overall
kinetics under investigation.

3.2.2 On cell's sensing and interactions

Interactions can be inferred by studying the directional aspects of cell's velocities,
namely focusing on their reciprocal in�uence in turning: as standard in this case [15, 94, 95],
we study the normalized orientational order parameter

n̂i(t) :=
~vi(t)

||~vi(t)||
=

~ri(t+ ∆t)− ~ri(t)
||~ri(t+ ∆t)− ~ri(t)||

de�ned as the velocity of a given cell i at time t divided by its modulus, namely the angle
tracing the orientation, or simply the direction of that cell. Do these cells tend to coop-
erate, to align or, rather, to move independently? And how their coordination -if any- is
a�ected by the drug? To answer these questions we need to know the collective properties
of cell's directions, probabilistically coded by some unknown probability distribution P (n̂)
that we aim to �nd out by maximum entropy inference [15].
In a stylized way, given a dataset n̂ = n̂1(1), ..., n̂i(t), ..., n̂N (T ) (composed of multiple
observations of the quantity n̂i(t) from t = 1 to t = T and for all the cells we tracked, i.e.
i ∈ (1, ..., N)), this approach allows to reconstruct the probability distribution P (n̂) from
a limited number of empirical observations (too small to reconstruct the probability dis-
tribution directly from the data) by requiring such a probability distribution to reproduce
all the experimental measurements (e.g. the one-point correlation function, C1 = 〈n̂i〉 and
two-point connected correlation function, C2 = 〈n̂i(t) · n̂j(t)〉 − 〈n̂i(t)〉〈n̂j(t)〉) yet being
minimally structured, in a standard Occam razor way (namely, at the maximum entropy).
We refer to the next sub-subsections for a detailed explanation of this declination of the
maximum entropy principle (in particular section Maximum entropy extremization for one
and two point correlations for its construction suitable for the present analysis and section
Bayesian marginalizatio: en route to the posterior for the related resolution). Speci�cally,
given a set of observables (e.g. C1, C2) related to the variable n̂i(t), their experimental
and model estimates are, respectively

〈C1(n̂)〉experimental =
1

T

T∑

i=1

n̂i(t), (3.6)

〈C1(n̂)〉computational =

∫
dn̂P (n̂)n̂i(t), (3.7)

and likewise for C2: the maximum entropy method constructs P (n̂) as the least-structured
probability distribution that matches the experimental averages above with its theoretical
outcomes, i.e. 〈Ck(n̂)〉experimental = 〈Ck(n̂)〉computational for k ∈ (1, 2), the amount of
structure in P (n̂) being quanti�ed by the Shannon entropy

S[P ] = −
∫
dn̂P (n̂) lnP (n̂)

such that, the higher the value of S[P ], the less structured P (n̂) results.
As we are dealing with two cellular populations (namely those belonging to tumor and
those to stroma), we need to enlarge the above standard (single population) maximum
entropy toward a multi-population generalization: using the labels S and T for stroma
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Figure 3.2: Inferring the interactions. Panel A: Cartoon stylizing two cells per cellular
lineage (di�erent lineages in di�erent colors) interacting via the thee possible couplings JT
(tumor-tumor interaction), JS (stroma-stroma interactinos) and JM (mixed interactions
tumor-stroma) and, eventually, perceiving a planar �eld (e.g. a chemotactic gradient)
Hx, Hy.
Panels B-F: results of the maximum entropy inference on synthetic datasets simulated
by the Kuramoto-Heisemberg model. We simulated 20000 synthetic trajectories -whose
parameters were known- and analyzed their phase space. We plot on the horizontal line
the true value of the parameters and on the vertical line the inferred ones. In particular
external �elds are reported in panels B and C, while the interactions among tumor-tumor,
tumor-stroma and stroma-stroma are reported in panels D, E, F respectively.
Panel G-I: results from the L3.6pl experiments.: distributions of the inferred couplings in
the two datasets (without drug in orange and with drug in blue). While JT is roughly left
invariant by the drug (panel G) and stable on low intensities (suggesting poor tumor-tumor
interactions), JM is by far increased (panel H) and JS is sensibly decreased (panel I) by
the presence of gemcitabine, the whole suggesting that an e�ect of the drug is to diminish
stroma-stroma interactions to enrich mixed ones.
Panel J-L: results from the AsPC-1 experiments.: distributions of the inferred couplings
in the two datasets (without drug in orange and with drug in blue). While JT is sensibly
increased by the presence of the drug (panel J), mixed interactions are almost absent with
or without the drug (panel K) and stroma-stroma interactions mildly leveraged by the
drug.
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and tumour respectively, we need to match the empirical and computational expectations

of the correlation functions 〈C1(n̂S)〉, 〈C1(n̂T )〉, 〈C2(n̂S , n̂S)〉, 〈C2(n̂T , n̂T )〉, 〈C2(n̂S , n̂T )〉
hence we have a coupling JS (resulting from the constraint on 〈C2(n̂S , n̂S)〉) accounting
for interactions among two stroma cells, a coupling JT (resulting from the constraint on

〈C2(n̂T , n̂T )〉) accounting for interactions among two cancerous cells and a mixed coupling

JM (resulting from the constraint on 〈C2(n̂S , n̂T )〉) accounting for interactions among S
and T cells to be inferred. Further HS = (HS,x, HS,y) and HT = (HT,x, HT,y) are two
bi-dimensional extra-parameters (i.e. simple homogeneous external �elds) that we should
infer as well to deal with a possible persistency coded in the one-point correlation functions

〈C1(n̂S)〉, 〈C1(n̂T )〉: see the cartoon in panel A of Fig. 3.2 to capture the meaning of the
various parameters.
In the mean-�eld limit, the extremization of the Shannon entropy returns the probability
distribution P (n̂) in terms of a Gibbs measure with a given cost functionH(n̂S , n̂T |JS , JT , JM , HS , HT ),
that is an explicit function of these couplings {JS , JT , JM} and �elds {HS , HT } and that
reads as

P (n̂) =
e−H(n̂S ,n̂T |JS ,JT ,JM ,HS ,HT )

Z(JS , JT , JM , HS , HT )
, (3.8)

H ∼ −1

N(N − 1)
[

NS ,NS∑

i 6=j
JSn̂in̂j +

NT ,NT∑

i 6=j
JT n̂in̂j (3.9)

+

NS ,NT∑

i 6=j
JM n̂in̂j ]−

1

N


HS ·

NS∑

i

n̂i + HT ·
NT∑

j

n̂j




where N = NS + NT and Z(JS , JT , JM , HS , HT ) -the partition function in statistical
physics- plays here as a simple normalization factor: we obtained the cost-function (or
Hamiltonian to keep the statistical physics jargon) of a bipartite Heisenberg-Kuramoto
model [94, 116].
Hereafter we comment the result of such inferential procedure.
In the �rst row of Fig. 3.2, beyond the picture in panel A, we report results on syn-
thetic datasets �generated accordingly to the Heisemberg-Kuramoto and Vicsek models
(see Supplementary Material for details)� to calibrate the computational approach: the
maximum entropy inference reconstructs with high accuracy the (known) values of the
drifts H (shown in panels B and C of Fig. 3.2) as well as the interactions (shown in panels
D,E,F of Fig. 3.2 respectively for JT , JM , JS). In the second and third rows of Fig. 3.2,
panels D,E,F, and panels G,H,I, respectively, the real distributions of the key parameters
JS , JT , JM for the L3.6pl and the AsPC-1 cases are shown: by inspecting these plots we
conclude that

� Interactions among L3.6pl cancerous cells are not in�uenced by the drug (panel G),
while interactions among AsPC-1 cancerous cells are heavily enhanced by the drug
(panel J) highlighting a signi�cant heterogeneity these cells manifest in the kinetic
response to the drug.

� Interaction among stroma cells and L3.6pl cancerous cells are deeply in�uenced by
the drug (panel H): in particular, without gemcitabine, there is roughly no interaction
among stroma and cancer, while -in the presence of the drug- pronounced interactions
do appear. At contrary, for the AsPC-1 case, there are no net interactions nor without
neither with the drug, whose e�ect seems rather marginal on the overall dynamics
(panel K).
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� Interaction within the stroma are deeply in�uenced by the drug for the L6.3p, scenario
(panel I): in particular, PSC cells diminish to interact reciprocally in presence of
gemcitabine (possibly to enhance interactions with the cancerous counterpart). This
e�ect is barely observable in the AsPC-1 scenario, as reported in panel L highlighting
a strong heterogeneity also in the response of these cells to the presence of the drug.

3.2.3 Algorithmic implementation

The input of all our algorithms is made of four datasets, as there are two cancerous
lines, i.e. L3.6pl and AsPC-1, that interact with the stroma and experiments are made
in presence of gemcitabine, D (i.e. with drug), and in absence of gemcitabine, ND (i.e.
without drug), for comparison and for all of them notation is as follows:

� time t

� cell number i

� coordinates ri(t) = (xi(t), yi(t))

� normalized red intensity Ii(t) = 1
2 + 1

2 tanh
[ IRedi (t)−median(IRedi (t))

IQR(IRedi (t))

]

Since cells of di�erent types can be distinguished by the presence or absence of red light
over the cell nucleus, at �rst we classify cell's lineages according to a prede�ned threshold λ
on the recorded normalized red intensities IRed such that if the latter satis�es IRed > λ the
cell will be assigned to population T, otherwise to population S. However, we stress that
by dealing with approximate Bayesian inference as in the present approach, it is possible to
remove this external tuning by producing an optimal estimate also over λ, thus eliminating
the need of establishing an arbitrary threshold a-priori: we checked a posteriori that results
are in full agreement whatever the approach.

Maximum entropy extremization for one and two point correlations

The one-point, C1, and two-points, C2, correlation functions for the angles n̂, where

n̂i(t) =
~ri(t+ ∆t)− ~ri(t)
||~ri(t+ ∆t)− ~ri(t)||

,

are de�ned as

C1(A) = 〈n̂A(t)〉t (3.10)

C2(A,B) = 〈n̂A(t) · n̂B(t)〉t − 〈n̂A(t)〉t · 〈n̂B(t)〉t (3.11)

where A ∈ (S, T ) as well as B ∈ (S, T ): we now constraint, via the maximum entropy, the
experimental and computational evaluations of these averages to match.
Despite we started with the Shannon expression for the constrained entropy S[P ], once
understood that the inferential procedure returns the Gibbs measure of a suitable cost-
function, we can deal directly with the Lagrangian functional for the constrained Gibbs
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entropy that reads as

L({n̂k}, J,H) = −
∫
d{n̂k}P ({n̂k}) logP ({n̂k})

+
1

N(N − 1)

N,N∑

i<j=1

Ji,j

(∫
d{n̂k}P ({n̂k})n̂i · n̂j − 〈n̂i · n̂j〉t

)

+
1

N

N∑

i=1

~Hi ·
(∫

d{n̂k}P ({n̂k})n̂i − 〈n̂i〉t
)

+λ
(∫

d{n̂k}P ({n̂k})− 1
)

Via standard functional extremization we can at �rst check that, at the stationary
point, P correctly reproduces the correlation functions; moreover if we extremize L w.r.t.
P we deduce (up to normalization) the expression for P , that is

P ({n̂k}|J,H) ∝ exp
( N,N∑

i<j=1

Jij
n̂i · n̂j

N(N − 1)
+

N∑

i=1

~Hi ·
n̂i
N

)
. (3.12)

This model depends on the matrix J and on the vectors ~Hi: at present there are overall
O(N) variables and O(N2) parameters. Clearly to make use of this model we need to
coarse grain: as there are only two lineages of cells and it is reasonable to believe that
similar cells share similar statistics, we partition the set {n̂k} into two sets {n̂Tk } and {n̂Sk }
(the former regarding the tumour, the latter the stroma) and we take the entries of J to
be the constant JT if both the row index and column index belong to the set of T cells,
the constant JS for S cells and JM for mixed interactions T-S; of course we apply the same
argument for the vectors ~H.
These assumptions turn the model into a bi-partite mean-�eld Heisenberg-Kuramoto pair-
wise model whose solution can be achieved analytically: the cost function of the model
reads as

H(nT , nS |J,H) = (3.13)

=
−JT

NT (NT − 1)

NT∑

i 6=j=1

n̂Ti · n̂Tj −
JS

NS(NS − 1)

NS∑

i 6=j=1

n̂Si · n̂Sj

−JM
NTNS

NT ,NS∑

i,j=1

n̂Ti · n̂Sj +
1

NT

~HT ·
NT∑

i=1

n̂Ti +
1

NS

~HS ·
NS∑

i=1

n̂Si

where n̂ are unit vectors in R2.
Now we are left with only seven free parameters opening up the possibility of inferring
them: the probability of observing a con�guration n̂ := (nT , nS) is

P (nT , nS |J,H) =
exp

(
−H(nT , nS |J,H)

)

Z(J,H)
(3.14)

where Z(J,H) is the partition function:

Z(J,H) =

∫

CNT+NS

dNT n̂T dNS n̂S exp
(
−H(n̂|J,H)

)
(3.15)

and C is the set of unit vectors in R2.
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Figure 3.3: Case L3.6pl. Dataset D: Parameters inferred for the Maximum Entropy model
(3.27), the blue curves are the prior distributions, while the orange curves are the posterior
distributions.
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Figure 3.4: Case AsPC-1. Dataset D: Parameters inferred for the Maximum Entropy
model (3.27), the blue curves are the prior distributions, while the orange curves are the
posterior distributions.
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Figure 3.5: Case L3.6pl. Dataset ND: Parameters inferred for the Maximum Entropy
model (3.27), the blue curves are the prior distributions, while the orange curves are the
posterior distributions.
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Figure 3.6: Case AsPC-1. Dataset ND: Parameters inferred for the Maximum Entropy
model (3.27), the blue curves are the prior distributions, while the orange curves are the
posterior distributions.
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Bayesian marginalization: en route for the posterior

Given the acquired observations {n̂k} of the n̂'s, to estimate the parameters JS , JM , JT , ~HS , ~HT

we rely on Bayes theorem, which dictates

P ({n̂k}|J,H)P (J,H) = P (J,H|{n̂k})P ({n̂k}) (3.16)

thus

P (J,H|{n̂k}) =
P ({n̂k}|J,H)P (J,H)

P ({n̂k})
(3.17)

so the log-posterior density is

lP (J,H|{n̂k}) = logP ({n̂k}|J,H) + logP (J,H)− logP ({n̂k}) (3.18)

where logP (n̂1, · · · , n̂T |J,H) is the likelihood of the set of observation of n̂: more precisely,
assuming k ∈ (1, ..., T ), we can write logP ({n̂k}|J,H) as

T∑

i=1

logP (n̂i|J,H) =

T∑

i=1

H(n̂i|J,H)− T logZ(J,H). (3.19)

As well known, there is a glaring problem with this approach, the partition function Z
is intractable. This problem can be tackled via the pseudo-likelihood approximation with
great accuracy: the pseudo-likelihood approximation consists in writing the log-density

logP (n̂|J,H) ≈
∑

i∈1,··· ,NA+NB

logP (n̂i|J,H, n̂\i) (3.20)

as a sum of conditional log-densities and the great advantage of this approximation is that
the term logP (n̂i|J,H, n̂\i) admits a closed form solution; indeed via the identity

P (n̂|J,H) = P (n̂i|J,H, n̂\i)P (n̂\i|J,H) =
exp

(
−H(n̂|J,H)

)

Z(J,H)
(3.21)

we get

P (n̂i|J,H, n̂\i) =
exp

(
−H(n̂|J,H)

)
∫
C
dn̂i exp

(
−H(n̂|J,H)

) . (3.22)

Since n̂i can either be in the set of n̂T or in the set of n̂S we must distinguish these cases:
we do so by introducing the vector quantity

FY (X, n̂) =
2JX

NX(NX − 1)

NX∑

i=1

n̂Xi +
JM

NXNY

NY∑

i=1

n̂Yi +
1

NX

~HX . (3.23)

This quantity allows to express both conditional densities conveniently as

P (n̂Ti |n̂T\i, n̂S , J,H) =
exp(FS(T, n̂) · n̂Ti )

2 exp( 2JT

NT (NT−1))I0(|FS(T, n̂)|)
(3.24)

P (n̂Si |n̂S\i, n̂T , J,H) =
exp(FT (S, n̂) · n̂Si )

2 exp( 2JS

NS(NS−1))I0(|FT (S, n̂)|)
(3.25)
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where I0 is the modi�ed Bessel function of type "I" and order 0.
With this approximation the (pseudo) log posterior density becomes tractable

lP (J,H|n̂1, · · · , n̂T ) ≈ (3.26)

∑

n∈D

[ NT∑

i=1

logP (n̂Ti |n̂T\i, n̂S , J,H) +

NS∑

i=1

logP (n̂Si |n̂S\i, n̂T , J,H)
]

+

logP (J,H)− logP (n̂1, · · · , n̂T ) =

∑

d∈D

[
FS(T, n̂) ·

NT∑

i=1

n̂Ti + FT (S, n̂) ·
NS∑

i=1

n̂Si −

NT (log 2 +
2JT

NT (NT − 1)
− log I0(|FS(T, n̂)|))−

NS(log 2 +
2JS

NS(NS − 1)
− log I0(|FT (S, n̂)|))

]
+

logP (J,H)− logP (n̂1, · · · , n̂T )

This pseudo-log-posterior density is �nally suitable for sampling the variable J,H: we have
done so via Hamiltonian Monte Carlo method and the results are summarised in Fig. 3.3
for the drugged dataset of L3.6pl case, in Fig. 3.4 for the drugged dataset of AsPC-1 case,
in Fig. 3.5 for the not-drugged dataset of 6.3pl case and in Fig. 3.6 for the not-drugged
dataset of AsPC-1 case.
The results show the relevant heterogeneity in response to the drug by the two inspected
cellular lines: in the L3.6pl scenario, the presence of the drug increases the cross-talk
between stroma and tumour (JM is drastically drifted away from zero, indicating that
the probability distribution no longer factorizes over the cell lineages) while sacri�cing
stroma-stroma dialogues (JS gets weaker by the presence of gemcitabine). In the AsPC-
1 counterpart, instead, cross-talk is absent without and stays absent in the presence of
the drug, rather tumor-tumor interactions -that are barely pronounced without the drug,
become signi�cantly predominant, in response to the drug. Via stochastic processes and,
�nally, cell's counting we will correlated these interactions with overall global dynamics of
the cells and their survival.

3.2.4 On cell's di�usion and crowding

As the two types of cells are homogeneously mixed together, by a trivial symmetry
argument, there is no global chemotactic gradient (nor in the experiment with no drug
(ND) neither in the one with the drug (D)), hence, in the long run limit, cells should
overall perform Brownian motion (their dynamics is expected asymptotically di�usive):
this is con�rmed in the �rst row of panels in Fig. 3.8 where we show the temporal evolution
of the ratio between the empirical root mean square displacement of the two lineages and
that of a pure Brownian di�usion (the control in the panels) for both the dataset without
the drug (panel A) and the dataset with the drug (panel B): while on the short timescale
cells deviate from pure di�usion (and we will see soon that their motion can actually be
locally ballistic), for long enough times the two perfectly collapse on the control.
However, looking at shorter times, it is also evident that interactions among cells take
place and that these are enhanced by the presence of the drug: to inspect their e�ects, e.g.
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Figure 3.7: Validation of the inferential procedure with the two-population Heisenberg-
Kuramoto model
We simulated overall 20000 synthetic trajectories by varying systematically the coupling
JS , JT , JM and the �elds HS

x , H
S
y , H

T
x , H

T
y , and we report the scatter plot among the

original parameters and the inferential outcomes for the various couplings and �elds as the
various labels explain along the panels: as it shines even by a visual glance at the plots,
the algorithm almost perfectly reconstructs the correct interactions and �elds.

if and how cells thicken, we study the average intercellular distance D(t), as a function of
time t, de�ned as

DA,B(t) = 〈||~ra(t)− ~rb(t)||〉a∈A,b∈B, (3.27)

where the averages are restricted to the cellular type such that A := (S, T ) and B := (S, T )
giving rise to three quanti�ers: DS,S(t), DS,T (t), DT,T (t).
If there is no crowding, these quanti�ers are expected to �uctuate around a constant value
over time, conversely if -say- S and T types are merging, DS,T (t) should be a monotonously
decreasing function (likewise, if those cells are spreading away, DS,T (t) is expected to
increase in time): these markers are depicted in the second line of panels in Fig. 3.8 for
the L3.6pl case for both the datasets, without drug (panel C) and with drug (right, panel
D) and in the third line of panels in Fig. 3.8 for the AsPC-1 case for both the datasets,
without drug (panel E) and with drug (panel F).
Remarkably, for the L3.6pl scenario, whileDS,S(t) is kept (approximately) constant in both
the experiments, DS,T (t) and DT,T (t) are (approximately) constant solely in the dataset
without the drug, while in presence of gemcitabine these are monotonically decreasing
functions of time. In particular, more than DT,T (t), DS,T (t) heavily experiences this
phenomenon, suggesting that while tumour cells tend to form agglomerations also stromal
ones strongly tend to join in due to the presence of the drug. This is no longer true in the
AsPC-1 counterpart where DS,T (t) stays constant even in presence of the drug.
A quite remarkable behavior we highlight is that, while the motion of these cells is globally
di�usive at the macroscale (as shown in panels A and B of Figure 3.8), local interactions
give rise to ballistic motion, typical of sensing cells [94, 112] as the best �t for their (average)
reciprocal distances versus time returns a roughly linear dependence of time for Da,b(t) vs
t: a local ballistic shortage, suggests that the T and S lineages are actually interacting,
as it happens in the L3.6pl case (Figure 3.8, panel D) in complete agreement with the
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Figure 3.8: Evolution of Inter-Cellular Distances (ICD) vs time. Upper line panels: ratio of
the RMSD over a standard di�usion 〈x2〉 ∼ t for both tumour (blue) and stromal (orange) cells
(dataset with drug: panel A; dataset without drug: panel B). The control (dashed black line) is
the Brownian pure di�usion reference.
Second line panels: distributions, for the L3.6pl case , of mean intercellular distances
DT,T (t), DT,S(t), DS,S(t) (see Eq. (5). Dataset with drug: panel C; dataset without drug: panel
D. The trajectories, that are almost ballistic, show drastic di�erences in the evolution of these
quanti�ers over time: overall, in the dataset with gemcitabine, cells show more activity and more
capacity of reducing relative ICD w.r.t. the cells belonging to the drug-less dataset, suggesting
that -due to gemcitabine- the two di�erent populations of cells tend to stick together (i.e. DT,S(t)
is a monotonic decreasing function in time).
Third line panels: distributions, for the AsPC-1 case , of mean intercellular distances
DT,T (t), DT,S(t), DS,S(t) (see Eq. (5). Dataset with drug: panel E; dataset without drug: panel
F. The main di�erence w.r.t. the L3.6pl counterpart is that it is no longer true that DT,S(t) de-
creases in time, it remains roughly constant (suggesting that dialogues among di�erent cell lines is
suppressed in this case).
Fourth line panels: ratio among the velocity distribution in presence of drug over distribution of
velocities in absence of drug, for the L3.6pl case (panel H) and the AsPC-1 case (panel H): we
highlight that, while in panel G both the stroma and the tumor acquire motility (as both the
orange and blue curve are above one for higher values of velocity ν), this does not happen in the
AsPC-1 case, where solely the tumoral line acquires motility.
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inferential outcomes by maximum entropy extremization of the previous section.
Indeed, if we plot the ratio of the distributions for the two cellular lineages, namely if we plot
the density ratio (drug distribution)/ (no drug distribution) for both stromal and tumour
cells, as presented in panels G and H for the L3.6pl and the AsPC-1 cases respectively,
we see that -for the L3.6pl kinetics- the e�ect of gemcitabine is to speed up above a
critical threshold (that is slightly di�erent between S and T cells resulting in ∼ 0.3µm/min
and 0.2µm/min respectively) the bulk of all the cells, that sensibly acquire motility (this
phenomenon is by far more pronounced in the stromal lineage, as the latter is possibly
approaching cancerous clumps and it is coherent with the raise of the mixed interactions
we inferred in the previous section, see Figure 3.2 panel H). In the AsPC-1 counterpart,
instead, stromal cell's dynamics result almost una�ected by the presence of gemcitabine
also from this perspective (coherently with panel K of Figure 3.2 where mixed interactions
have not been detected).
Finally, we can correlate the outcomes of the e�ects of the drug by counting live/dead cells
by �ow cytometry and relating these results with previous �ndings: 5µM gemcitabine
decreased L3.6pl cell proliferation as compared to the control group but it did not a�ect
AsPC-1 proliferation. In particular, manual and automatic counting of dead and live cells
showed high cell death in the tumour core (roughly 50%) for the L3.6pl case, while the
stromal core resulted highly resistant to the treatment (Figure 3.9 panels A,B,C).

Crowding as a stochastic process

Called ~ri(t) := (xi(t), yi(t)) the position of the ith cell at time t, the �rst quanti�er we
consider stems from stochastic process theory and is the root mean square displacement
of any cell, de�ned by

RMSD[~ri(t)](∆t) =
√
〈||~ri(t+ ∆t)− ~ri(t)||2〉t (3.28)

where the 〈〉t is an average over all possible choices of time t for which we have ~ri(t+∆t) and
~r(t)i and i ∈ (1, ..., N) labels the N cells: the underlying idea in its usage is that, without
the presence of a macroscopic gradient to sense [112], in the long term limit cells are
expected to behave randomly in accordance with Brownian motion, whose formalization
is usually mathematically achieved via a Wiener process, hence we expect that roughly
RMSD[~ri(t)](∆t) ∼

√
(∆t), possibly perturbed by some persistence cells may display

[88], see the �rst rows of Figures 8− 11.
The Wiener process can be described via the following equation

~r(t+ ∆t) = ~r(t) + ~µ ∆t+ σ~εt
√

∆t (3.29)

where ~µ is a vector accounting for the ballistic component of motion (i.e., a possible
drift) while εt is a random vector whose entries are distributed according to the standard
probability density N(0, 1) that acts as the source of �uctuations. This very simple model
has the advantage that the RMSD(∆t) can be obtained analytically

RMSD(∆t) =
√
〈‖~r(t+ ∆t)− ~r(t)‖2〉ε =

√
µ2(∆t)2 + d σ2∆t (3.30)

where d = 2 is the number of dimensions in which the vectors lie. The RMSD obtained
from (3.30) has to be compared to the empirical RMSD of each observed path generated
by each individual cell. As each cell can obey a di�erent Weiner process (thus there can
be in principle N di�erent values of µ, σ coupled to the N cells), we can actually think
to have distributions P (µ), P (σ) (whose extractions return the observed µ, σ values) that
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Figure 3.9: Tumor cells and stromal cells co-cultured for 58 hours. In the �rst raw, panels
A, B and C report on the count of cells killed by gemcitabine (in panel B the percentage
of cells treated or untreated with 5µM gemcitabine is counted with haemocytometer at
the indicated times, p < 0 : 05, n ≥ 3 and in panel C the percentage of cells treated
or untreated with 5µM gemcitabine counted with �ow cytometer at 58 hours. p < 0.05,
n ≥ 3: it shines that the L3.6pl line is highly a�ected by the drug, while the AsPC-1
counterpart is not. In panels D and F we show the representative bright�eld for L3.6pl
and AsPC-1 cases respectively, while panels E and G show �uorescent images of L3.6pl
-panel F- and AsPC-1 -panel G- (green) and PSCs (red) co-cultured cells growth in the
presence or absence of 5µM gemcitabine for 0, 48 and 58 hours. Scale bars: 100µm.
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Figure 3.10: case L3.6pl. Fit of the model (3.29) to the D dataset RMSD for both cell
types, tumour cells on the left, stromal cells on the right. For each parameter µ and σ
the values of median and interquartile range are available as a measure of location and
dispersion, it is evident that the drift component in the Wiener process is very weak as
µ
σ � 1..

we assume as Gaussian N(mµ, vµ) with unknown mean mµ and variance vµ. These means
and variances are assumed uniformly distributed over a physically plausible range of values
(hence they are centered in zero and share an unreasonably large variance of value 4 that
ensures that it acts as an upper bound on the real one) that we reduce self-consistently
(vide infra). Calling U the uniform distribution, we can write

mµ ∼ U(0, 4), vµ ∼ U(0, 4) (3.31)

mσ ∼ U(0, 4), vσ ∼ U(0, 4) (3.32)

µ ∼ N(mµ, vµ), σ ∼ N(mσ, vσ) (3.33)

RMSD(~r,∆t) ∼
√
µ2(∆t)2 + d σ2∆t ∀∆t,∀~r ∈ Cells.

To calculate the distributions of these parameters µ, σ we exploited the framework of Ap-
proximate Bayesian Computation (in particular we used the algorithm developed in [117]):
we assumed as a metric distance between the simulated datasets and the original datasets
the maximum of Kolmogorov-Smirno� distances between the empirical RMSD and the
simulated RMSD at each time point. Optimal values are reported in the second and third
lines of panels in Fig. 3.10 for the L3.6pl drugged dataset, in Fig. 3.11 for the AsPC-1
drugged dataset, in Fig. 3.12 for the L3.6pl non-drugged dataset and in in Fig. 3.13 for
the AsPC-1 non-drugged dataset.
This preliminary analysis shows that cells do not exhibit purely ballistic motion (as ex-
pected as there is no global chemotactic gradient in the experiments), although the dis-
tribution for µ is systematically biased toward positive (but small) values in every plot in
accordance with mild persistency.
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Figure 3.11: case AsPC-1. Fit of the model (3.29) to the D dataset RMSD for both cell
types, tumour cells on the left, stromal cells on the right. For each parameter µ and σ
the values of median and interquartile range are available as a measure of location and
dispersion, it is evident that the drift component in the Wiener process is very weak as
µ
σ � 1..

3.2.5 Discussion on the �rst experiment

By means of time-lapse confocal imaging we were able to track two di�erent cell popu-
lations (tumour and stroma cells) co-cultured in presence (or in absence, for comparison)
of a chemoterapeutic agent (i.e. gemcitabine): the resulting data-sets storing cell's po-
sitions and velocities resulted in su�cient information to infer the e�ect of the drug on
stroma-cancer kinetics, as well as their dynamical cross-talk, due to a novel computational
algorithm we developed. Focusing on cell's velocities, we analyze the directions and moduli
of these vectors separately: the former are investigated via maximum-entropy inference,
the latter are studied via stochastic processes, resulting overall into a uni�ed synergic ap-
proach where global coherence can be appreciated.
By performing the same analysis with and without the presence of gemcitabine on two dif-
ferent malignant lineages, namely the L3.6pl and the AsPC-1 test cases, by comparison of
their kinetic responses we can quantify the e�ect of the drug on these dynamics: we prove
that, for the L3.6pl case, the drug added to the cell medium highly increases interactions
among cancer and stroma, much more than interactions within the same lineage (that is
almost left invariant for the tumour and it is actually diminished for the stroma). As a
result of such enhanced interactions, cells tend to form cluster and, locally, the dynamics
of the involved cells is no longer di�usive but ballistic, resulting in a marked acquired
motility. In the AsPC-1 counterpart, instead, the e�ect of the drug is sensibly milder: nor
mixed interactions raise due to gemcitabine, neither the stochastic dynamics of the cells
acquires enhanced motility. Correlating these �ndings with counts on dead/live cells, we
�nd that while in the AsPC-1 case, cancer progression kept almost unperturbed, in the
L3.6pl scenario, the drug killed roughly ∼ 50% of the cancerous cells without a�ecting the
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Figure 3.12: case L3.6pl. Fit of the model (3.29) to the ND dataset RMSD for both cell
types, tumour cells on the left, stromal cells on the right. For each parameter µ and σ
the values of median and interquartile range are available as a measure of location and
dispersion, it is evident that the drift component in the Wiener process is very weak as
µ
σ � 1.

vitality of the stroma.
Focusing on research aspects, these results contribute to enlarge the amount of techniques
and tools (integrating those mainly -omics derived) we have to quantify drug response to
cancer: while it is true that we can not identify sharply eventual signaling molecules, yet,
as it is well known that stellate stromal cells of the pancreas, when activated, migrate
and secrete components of the extracellular matrix such as type I collagen, chemokines
and cytokines to which the movement of the cell is also linked, our approach can be used
in broad generality to help pro�ling which of these molecules (or related receptors) con-
tribute to the interactions at the core of cell's kinetic coordination: for example, if we
get a high JM -as for the L6.36pl cells case in presence of gemcitabine (as shown by the
maximum entropy inference approach)- and then we could measure the concentration of
various molecules and/or the expression levels of various proteins with speci�c assays, we
can get information on which molecules (or related receptors) is involved in the cross-talk
and how the latter results pivotal under the administration of a particular drug.
Further, focusing on clinical aspects, as stroma can play a very broad critical role �ranging
from cancer �ghter to cancer facilitator� our protocol could help (at a very cheap cost)
to quickly understand whether the stroma-tumor interaction harms the therapy or not:
for example, in the case of L6.36pl cells we see that the interactions between tumor and
stroma raise sensibly when treated with gemcitabine and, coherently, also crowding e�ects
do appear (as shown by the stochastic process approach). As these data correlate with cell-
counting data indicating that a high percentage of L6.36pl cells are killed by gemcitabine,
it can be hypothesized that in this case the stromal cells do not inhibit the action of the
chemotherapeutic agent and that the related crowding among the two cellular populations
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Figure 3.13: case AsPC-1. Fit of the model (3.29) to the ND dataset RMSD for both
cell types, tumour cells on the left, stromal cells on the right. For each parameter µ and
σ the values of median and interquartile range are available as a measure of location and
dispersion, it is evident that the drift component in the Wiener process is very weak as
µ
σ � 1.

is likewise important for a successful therapy.
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3.3 Problem Two: Maximum Entropy for Heart Rate Vari-

ability

Heart-rate variability (HRV) analysis constitutes a major tool for investigating the
mechanisms underlying the complex and chaotic cardiac dynamics as well as for identifying
general features discriminating the clinical status of patients [118, 119, 120, 121, 122, 123,
124]. To this aim a fundamental observable is the RR series r = {r1, r2, ...}, where rn is
the temporal distance between the n-th and the (n + 1)-th R peaks in a ECG recording
(see Fig. 3.14 left panel). Several approaches have been carried out in the past in order
to address the HRV analysis from this observale (see e.g., [125, 126, 127]) about the RR
series: by paving this route the problem of classi�cation of heart failures via time-series
analysis is translated into a search for clusterization in a high-dimensional space1.

Interestingly, the intrinsic variability in heat rate ultimately stems from the interplay
of the sympathetic and the parasympathetic nervous system. In this work, exploiting
glassy statistical inference approaches, we aim to unveil any signature of this underlying
autonomic neural regulation. To this scope we will study HRV in the temporal and in the
frequency domain, and at di�erent levels of aggregation (in the higher one the sample is
made of all available data, in the lower one we build di�erent sub-samples pertaining to pa-
tients displaying a di�erent clinical status: healthy, su�ering from cardiac decompensation,
su�ering from atrial �brillation).

The statistical inference approach we adapt to the present case of study is the leight-
motif of the whole thesis, namely the maximum entropy framework. By this technique,
we search for the minimal structured probabilistic model compatible to our data; more
precisely, we consider the family of probability distributions P (r) over the sequences of
inter-beat intervals r whose lowest momenta match the empirical ones and, among all the
elements of this family we select the one corresponding to the maximum entropy. As a
direct consequence of the de�nition of entropy in terms of the logarithm of the probability
distribution P (r) over the inter-beat sequences r, this approach returns an exponential
family P (r) ∼ e−H(r), where H(r) can be interpreted as a cost function (or Hamiltonian in
a physical jargon). By requiring a match on the �rst two moments only (i.e., by requiring
that the theoretical average and two-point correlation provided by the model are quantita-
tively consistent with the empirical ones), H(r) results in a pairwise (rn, rm) cost-function,
as standard in Physics (see the �rst Section of this Chapter and the Section 1.1.2 at the
beginning of the thesis.
Of course, recovering the complex structure hidden in RR series by a relatively simple
pairwise model has several advantages: on the one hand, the low number of parameters
prevents from over-�tting, on the other hand, the inferred cost-function can be framed in
a statistical mechanics context (see e.g., [15, 93, 95, 129, 130]) and we can therefore rely
on several powerful techniques and on a robust Literature (as for instance those provided
in the �rst Chapter of the present thesis). In particular, we will show that, despite its
simplicity, such a pair-wise model is able to capture the complex nature of the temporal
correlation between beats which emerges experimentally; in fact, the coupling between two
beat-intervals rn and rn+τ turns out to be long-range (i.e., displays a power-law decay
with the distance τ) and frustrated (i.e., the couplings between two beats can be positive
and negative). In a statistical-mechanical jargon, this system is referred to as a two-body
spin-glass with power-law quenched interactions.
Remarkably, frustration in couplings, which is a key feature of spin-glasses, means the exis-
tence of competitive driving forces and it is natural to look at this emerging feature in our

1Via machine learning approaches, our group addressed that perspective in [124, 128].
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model as the hallmark of the interplay between the parasympathetic and orthosympathetic
systems (indeed, while the �rst one tends to increase the distance between RR peaks, i.e.,
to lower the heart rate [122], the latter tends to decrease it [131]). We speculate that these
competing interactions may be responsible for the well-known 1/f noise shown by HRV
[132, 133, 134]: spin-glasses typically display a chaotic dynamics [135, 136, 137] spread
over several timescales [138] and their power spectrum density is power-law [139, 140, 141].
In fact, here we show that the autocorrelation in the {rn} series decays in the beat number
as n−1 and its related power spectrum decays in frequecy as f−1. Incidentally, we notice
that variables whose �uctuations display 1/f noise are widespread, ranging from inorganic
(e.g., condense [142], granular [143], etc.) to organic matter (e.g. in DNA sequences [144],
membrane channels [145]) and, even broadly, in Nature (e.g. ranging from earthquakes
[146] to o�-equilibrium �ows of current trough resistors [147], to the whole self-organized
criticality [148, 149]).

3.3.1 Summary of experimental data
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Figure 3.14: Left: examples of the bare RR time series for a single patient for each class; the
window depicted is restricted to the �rst 2000 beats. Right: examples of autocorrelation
functions for a single patient for each class. The dotted blue line refers to a healthy patients,
while red are patients with AF (dashed curve) and CD (dash-dotted line).

In this Section, we give some details about the data and the quantities considered in
our analysis.
The database is made of ECG recordings on M = 348 patients, wearing an Holter device
for nominal 24 hours. From these recordings we extract the RR series

{r(i)}i=1,...,M = {rn(i)} i=1,...,M
n=1,...,Ni

, (3.34)

where i labels the patient and n labels the number of beats in each sequence (which is
order of 105 and depends on the patient). Patients belong to three classes, according to
their clinical status: healthy individuals (H), individuals with atrial �brillation (AF) and
individuals with congestive heart failure (hereafter simpli�ed as cardiac decompensation)
(CD). Their number is MH = 149, MAF = 139, and MCD = 60, respectively; of course,
M = MH +MAF +MCD. In Fig. 3.14 (left) we show examples of the series r(i) for three
patients belonging to the di�erent classes.
In order to make a meaningful comparison of the variability among the RR series r(i) of
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di�erent patients, we standardize them with respect to their temporal mean and standard
deviation, so that the study of HRV is recast in the study of �uctuations of the standardized
RR series around the null-value. More precisely, we introduce

zn(i) =
rn(i)− 〈r(i)〉

std[r(i)]
, for n = 1, ..., N (3.35)

or, in vectorial notation,

z(i) =
r(i)− 〈r(i)〉
std[r(i)]

, (3.36)

where we de�ned

〈r(i)〉 =
1

Ni

Ni∑

n=1

rn(i), 〈r2(i)〉 =
1

Ni

Ni∑

n=1

r2
n(i), std[r(i)] =

√
〈r2(i)〉 − 〈r(i)〉2. (3.37)

The raw histograms for the standardized inter-beat intervals in the three classes of patients
are shown in Fig. 3.15: notice that the frequency distributions exhibit heavy-tails.
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Figure 3.15: Histograms of the standardized values {z(i)} divided by classes: left panels are
build by collecting data from healthy patients, middle panels are build by collecting data
from patients su�ering from atrial �brillation and right panels are build by collecting data
from patients su�ering from cardiac decompensation. In the �rst row, we reported relative
frequencies in the natural scale, while the second row we reported relative frequencies in
the logarithmic scale.

We consider the points in the standardized RR series as random variables sampled by
a hidden stochastic process, in such a way that the value of zn(i) at a given step n depends
in principle on all the values {zm(i)}m<n taken in the previous steps m < n since the
beginning of sampling. From this perspective, a meaningful observable to look at is the
auto-correlation function at a distance τ , de�ned as

C(i, τ) =
1

N

Ni−τ∑

n=1

(
zn(i)− 〈z(i)〉+

)(
zn+τ (i)− 〈z(i)〉−

)
, (3.38)

where 〈z(i)〉+ = 1
Ni−τ

∑Ni−τ
n=1 zn(i) and 〈z(i)〉− = 1

Ni−τ
∑Ni

n=τ zn(i). Given the standard-
ization over the whole segment [1, Ni], as long as τ � Ni, we expect that 〈z(i)〉+ and
〈z(i)〉− are both close to zero and shall be neglected in the following (indeed, we checked
that this is the case, since 〈z(i)〉+, 〈z(i)〉− ∼ 10−15 ÷ 10−17). Then, the auto-correlation



3.3. PROBLEM TWO: MAXIMUM ENTROPY FOR HEART RATE VARIABILITY132

function we measure simply reduces to

C(i, τ) =
1

N

Ni−τ∑

n=1

zn(i)zn+τ (i). (3.39)

Some examples of the autocorrelation function for patients of the three classes are reported
in the right plot of Fig. 3.14, where we stress that the autocorrelation is non-null over a
large τ window and its shape is patient-dependent.

Finally, we introduce a further average operation, this time on the sample of patients,
namely, we de�ne

Eclass(z) =
1

Mclass

∑

i∈class
z(i), (3.40)

Eclass(z2) =
1

Mclass

∑

i∈class
z2(i), (3.41)

Eclass(C(τ)) =
1

Mclass

∑

i∈class
C(i, τ). (3.42)

where class ∈ {H,AF,CD} and, with �i ∈ class� we mean all the indices corresponding
to patients belonging to a certain class. In the following we will consider the vectors z as
random variables sampled from an unknown probability distribution P trueclass(z), which we
will estimate by the probability distribution Pclass(z) characterized by a minimal structure
and such that its �rst and second moments are quantitatively comparable with Eclass(r),
Eclass(z2) and Eclass(C(τ)), respectively.

3.3.2 On the model and on the inferential procedure

Our atomic variable is the sequence {z1, z2, ..., zN} and, as anticipated above, we denote
with P (z) the related probability distribution emerging from the inferential operations on
the sample of experimental data. The Shannon entropy H̃[P (z)] associated to P (z) is

H̃[P (z)] = −
∫

dzP (z) lnP (z). (3.43)

According to the maximum entropy principle, we look for the distribution P (z) that maxi-
mizes H̃[P (z)] and such that its moments match those evaluated experimentally, in particu-
lar, here the we choose to apply the constraints on the one-point and two-points correlation
function that is, Eclass(z), Eclass(z2) and Eclass(C(τ)), respectively. To lighten the nota-
tion hereafter these moments shall be referred to simply as, respectively, µ(1), µ(2) and
C(τ), without specifying the class. In fact, the inferential procedure works analogously
regardless of the class, the latter a�ecting only the quantitative value of the parameters
occurring in P (z). Constraints are set via Lagrange multipliers (λ0, λ1, λ2, λτ ) in such a
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way that the problem is recast in the maximization of the functional

H̃λ0,λ1,λ2,λτ [P (z)] = H̃[P (z)] + λ0

(∫
dz P (z)− 1

)
+

+ λ1

(
N∑

n=1

∫
dz P (z)zn −Nµ(1)

)
+

+ λ2

(
N∑

n=1

∫
dz P (z)z2

n −Nµ(2)

)
+

+
N∑

τ=1

λτ

(
N−τ∑

n=1

∫
dz P (z)znzn+τ − (N − τ)C(τ)

)
,

(3.44)

where integration is made over RN . Note that, while the derivation with respect to λ1,
λ2 and λτ ensure, respectively, the agreement between the theory and the experiments at
the two lowest orders, i.e. the temporal average µ(1), the second moment µ(2) and the
auto-correlation function C(τ), λ0 guarantees that P (z) is normalized, so that P (z) is
a probability distribution function. In the asymptotic limit of long sampling (N → ∞)
and under a stationarity hypothesis (see [150] for a similar treatment), the solution of the
extremization procedure, returning the probability of observing a certain sequence z, is
given by

P ({zn}∞n=1) =
1

Z

( ∞∏

n=1

P0(zn)

)
exp

( ∞∑

n=1

∞∑

τ=1

J(τ)znzn+τ + h

∞∑

n=1

zn

)
, (3.45)

where h and J(τ) can be estimated from available data (vide infra). Here, P0 is the N(0, 1)
distribution and plays the role of prior for the variable zn, the parameter J(τ) represents the
pairwise interaction between elements at non-zero distance τ in the series (notice that each
element occurs to be coupled to any other), and the parameter h represents the bias possibly
a�ecting the single value in the sequence (and it is expected to be zero as we standardized
the RR series). The factor Z plays here as a normalization constant, like the partition
function in the statistical mechanics setting [19]. Notice that the interaction between two
elements rn and rm depends on the distance τ = n−m, but not on the particular couple
considered. This stems from a�stationary hypothesis�, meaning that one-point and two-
point correlation functions calculated on a segment spanning O(τ � N) elements along
the series are approximately the same and since the starting time of sampling is arbitrary,
we get that J(n,m) = J(m− n).

The standard inference setup for the model parameters is based on a Maximum Like-
lihood Estimation (MLE), i.e. the maximization of the function

L(J, h|D) = − 1

M

∑

z∈D
logP (z|J, h), (3.46)

where D is the time-series database (of a given class) and where we made clear the depen-
dence of P on the model parameters. However, such an approach requires the computa-
tion of the whole partition function Z, which is numerically hard in this case. Then, we
chose to adopt as objective function for the inference procedure the pseudo-(log-)likelihood
function[150]:

L(J, h|D) = − 1

M

∑

z∈D
logP (zL+1|{zn}Ln=1), (3.47)
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that is, given L observation in a �xed time-series z, we maximize the conditional proba-
bility to observe the value zT+1 at the successive time step. Further, we make two main
modi�cations with respect to the standard pseudo-likelihood approach: i) in order to use
the entire available time-series in our database, we also adopt a window average procedure;
ii) we add regularization terms in order to prevent divergence for the model parameters.
A detailed discussion is reported in Section 3.3.5. Our objective function is therefore given
by

L(reg)(J, h|D) =
1

M

∑

z∈D

[
− 1

2(N − T )

N−1∑

n=T

(
zn+1 − h−

T∑

τ=1

J(τ)zn+1−τ
)2

− λ

2
h2 − λ

2

T∑

τ=1

f(τ)J(τ)2

]
,

(3.48)

where T is the largest τ we want to consider (namely T must be larger that the maximal
decorrelation time), λ is the regularization weight and f(τ) is a temporal regularizer that
prevents the elements of J(τ) to get too large for large τ (see Section 3.3.5 for a detailed
description).

This inference method allows us to determine the values of the parameters J(τ) and
h as well as their uncertainties σJ(τ) and σh. As for the parameter h, due to series stan-
dardization, its value, evaluated over the di�erent classes, is expected to be vanishing (this
is indeed the case as it turns out to be h ∼ 10−3 with a related uncertainty of the same
order). As for the pairwise couplings, we �nd that for all the classes considered, J(τ) is
signi�cantly non-zero only for relatively small values of τ , with a cuto� at T ∼ 102, and,
for a given τ < T , the coupling does not display a de�nite sign, that is, for pairs (zn, zn+τ )
and (zm, zm+τ ) at the same distance τ the related couplings can be of opposite signs. These
results are shown in Fig. 3.16: in the left column we reported the inferred J(τ) with the
associated uncertainties for all τ , and in each panel in the right we reported the frequency
distributions for the �rst values of τ as examples.

In order to study how decorrelation of RR intervals takes place, it is interesting to study
how interaction vector J(τ) (regardless of its sign) vanishes as the delay time τ increases.
We found that the long delay time behavior of the magnitude (i.e. disregarding the signs
and oscillatory characteristics) of the interactions is well-described by a power law of the
form

|J(τ)|leading ∼ A · τ−β. (3.49)

We thus �tted the tails of the inferred J(τ) with this trial function (tails are chosen in
order to maximize the adjusted R2 score). In Table 3.1, we report best-�t parameters, the
adjusted R2 score and the reduced χ2. It is interesting to note that the scaling parameter
β is around 1, meaning that, for each of the three classes, the leading behavior of the
interactions at large τ is ∼ 1/τ (as we will see later, the same scaling also characterize
the power spectral density in the Fourier domain, see Fig. 3.20). In the upper row of Fig.
3.17, we depicted with red circles the results of the inference procedure (once taken their
absolute values), while the best �t of the general trend is represented with dashed black
lines. In the lower row of the same �gure, we also reported the residuals of the experimental
values with respect to the best �t (normalized to the corresponding uncertainty). A part
for the �rst few points in the AF and CD cases, we see that the residuals are distributed
in a range of at most 2σJ(τ) (where σJ(τ) is the standard deviation at each τ point), and,
in particular, for su�ciently long τ (where oscillations are softened), experimental values
are always contained in the range [−σJ(τ), σJ(τ)], implying that the leading behavior of the
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Figure 3.16: Inference results for delayed interactions. Left column: the plots show the
results of the inference procedure (distinguishing between the clinical status) for the �rst 50
τs. Right: frequency distribution of the Js for some selected values of τ (i.e. τ = 1, 2, 3, 4).
In both cases,the statistics consists in M = 500 di�erent realizations of the J(τ) which
are realized by randomly extracting di�erent mini-batches, each with size n = 20. We
stress that some frequency distributions present tails on negative values of J for some
τ . This means that frustrated interactions are also allowed, implying that the system is
fundamentally complex, i.e. a glassy hearth.

delayed interaction is well-captured by ∼ 1/τ noise both in our datasets as well as in the
model's prediction.

To summarize, a few comments are in order here.

� couplings can be both positive and negative (see Fig. 3.16), de�ning the heart as a
complex glassy system.

� the coupling magnitude decays in τ as a power-law whose leading order is ∼ 1/τ (see
Fig. 3.17).

� the coupling magnitude displays a sharp scaling 1/τ solely in healthy patients, while
for the remaining patients it display a bump in the short time-scales (see Fig. 3.16
and the residual plots in Fig. 3.17).

� by �tting data via Eq. (3.49), we obtain re�ned estimates for the exponent β (as
reported in Tab. 3.1): interestingly, di�erent classes (i.e. di�erent pathologies) are
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Class A β R̄2 χ2/DOF

H 0.38± 0.04 1.41± 0.04 0.75 0.33
AF 0.20± 0.03 0.96± 0.05 0.79 0.42
CD 0.37± 0.05 1.2± 0.05 0.78 0.46

Table 3.1: Best �t values regarding the scaling reported in Eq. (3.49). For each
class, we report the best-�t parameters A and β, as well as the adjusted R2 and the reduced
χ2 scores quantifying the �t goodness.

100 101

10−3

10−2

10−1

|J
(τ

)|

H

100 101

10−3

10−2

10−1

AF

100 101

10−3

10−2

10−1

CD

20 40
τ

−1

0

1

R
es

id
u

al
s

20 40
τ

−2.5

0.0

2.5

20 40
τ

−5

0

Figure 3.17: Leading behavior of magnitude of the delayed interactions. In the upper
panel, we reported the absolute value of the delayed interactions J(τ) and the relative best
�t. In the lower panel, we reported the residuals (normalized by the uncertainty at each
point τ) of the experimental data with respect to the best �t function. We stress that,
even if the interactions J(τ) are far from the �tting curve (in the log-log scale, see �rst
row), they are compatible within the associated uncertainties, as remarked by the residual
plots.

robustly associated to di�erent best-�t values of β, in such a way that classi�cation
of cardiac failures via HRV via this route seems possible.

3.3.3 On the model and on the generalization procedure

Once the model and the related parameters are inferred for each of the three classes, we
can use the original sequences {z} to generate synthetic sequences {z̃} of length N−T . The
intuition behind the procedure followed to get the synthetic sequence is brie�y described
hereafter.
For any class, we consider our estimate for J(τ), along with the estimate σJ(τ) of its
uncertainty, and we build the noisy estimate for J(τ), that is J̄(τ) = J(τ) + δJ(τ) where
δJ(τ) = ησJ(τ) and η is a N(0, 1) random variable. Next, taken a certain {z}, we convolve
it with J̄(τ) and this returns {z̃}. Of course, due to the initial standardization of the RR
series, the inference procedure returned a vanishing bias parameter h, hence the synthetic
series will also be centered at zero. However, a synthetic sequence is no longer standardized
and this is done by hand.

Then, it is natural to compare the synthetic sequences and the experimental ones. We
generate a sample of data with the same size of the experimental data available, and we
compute the empirical cumulative distribution function for both the experimental and syn-
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thetic data in order to compare them: results are reported in Fig. 3.18. In the �rst row,
we directly compare the experimental (red solid line) and the synthetic (black dashed line)
cumulative distributions highlighting an excellent agreement for all the classes. This is
then corroborated by checking the probability plots in the same �gure (second row): here,
the red solid line shows the synthetic cumulative distribution versus experimental cumu-
lative distribution, while the black dashed curve is the identity line. The green regions in
the plot are con�dence intervals with p = 0.95.
Next, we test whether the model is able to e�ectively capture correlation in the RR series,
in particular by comparing experimental auto-correlation functions and their predicted
counterparts. However, since autocorrelation functions are individual-dependent, starting
from a single (randomly chosen) RR series we generate 100 synthetic series with di�erent
realizations of the J̄(τ) according to the above mentioned procedure. In this way, we can
use our estimation of the uncertainties on J(τ) in order to give a con�dence interval for
our predictions. In Fig. 3.19 we compare the auto-correlation functions for the experi-
mental series and for the synthetic series; for the latter we also highlight the con�dence
interval with p = 0.68. More precisely, we depict the experimental (red solid line) and
theoretical (black dashed line) auto-correlation functions and see that the former always
fall inside the con�dence interval of the re-sampled series (the green region). Thus, we
can conclude that our inferred minimal pairwise model is able to e�ectively capture the
temporal autocorrelation in the RR series.

Figure 3.18: Comparison between posterior distributions for experimental and synthetic
data. First row: comparisons between the empirical cumulative distributions for both
experimental (solid red lines) and resampled (black dashed lines) populations for all of the
three classes. Second row: probability plots for the two populations of data (i.e. empirical
versus theoretical ones, red solid lines) for all of the three classes. The black solid curves are
the identity lines for reference. The green region is the con�dence interval with p = 0.95.

As a �nal comment, we also looked at the power spectrum density (PSD) of the provided
datasets {z} that, as expected (see e.g., [132, 133, 134]), displays the long tail 1/f (see
Fig. (3.20), upper panel) and we made the following comparison: for all the patients, we
evaluated its PSD and in the region [10−4, 10−2] Heartbeat−1 we �t with a power-law

PSD(f) = α · f−γ
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Figure 3.19: Comparison between autocorrelation functions for experimental and synthetic
data. The autocorrelation function for one patient randomly extracted from the experi-
mental data-set (red solid lines) is compared with the median autocorrelation function
obtained from the synthetic dataset (black dashed lines). Notice that the former falls in
the con�dence interval with p = 0.68 (green region) of the latter.

where γ ∼ 1 and its value is taken as the x-coordinate of that patient in the lower panels
of Fig. (3.20). The corresponding y-value is obtained by calculating the PSD over 100
synthetic RR-series generated by convolution with the empirical series playing as seed and
using as value of J the one pertaining to the class the patient belongs to (H, AF, CD);
results are in good agreement on the diagonal.

3.3.4 Pairwise correlations from maximum entropy principle

The probabilistic model we use to frame the analysis of heart-rate variability contained
in the standardized RR series {zn}Nn=1 emerges as the solution of extremization procedure
of the constrained Shannon entropy functional

H̃λ0,λ1,λ2,J [P (z)] = H̃[P (z)] + λ0

(∫
dz P (z)− 1

)

+ λ1

(
N∑

n=1

∫
dz P (z)zn −Nµ(1)

)
+ λ2

(
N∑

n=1

∫
dz P (z)z2

n −Nµ(2)

)

+

N∑

τ=1

λτ

(
N−τ∑

n=1

∫
dz P (z)znzn+τ − (N − τ)C(τ)

)
.

(3.50)

Here, we recall that the �rst term is the standard Shannon entropy for probability distri-
bution for continuous variables, i.e.

H̃[P (z)] = −
∫

dzP (z) logP (z), (3.51)

while the other terms are constraints with Lagrangian multipliers λ0, λ1, λ2 and λτ . The
extremization with respect to these parameters leads to the following conditions:

∫
dz P (z) = 1 ,

1

N

N∑

n=1

∫
dz P (z)zn = µ(1),

1

N

N∑

n=1

∫
dz P (z)z2

n = µ(2) ,
1

N − τ
N−τ∑

n=1

∫
dz P (z)znzn+τ = C(τ),
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Figure 3.20: Top: empirical power spectral density (PSD). The dotted blue line refers to
a healthy patients, while red are patients with AF (dashed curve) and CD (dash-dotted
line). The PSD is computed according to the Welch procedure with 50% windows overlap.
The black continuous curve is the expected 1/f -noise distribution for visual comparison.
Bottom: scatter plot for the scaling exponent of the PSD (in the region 10−4 e 10−2 Hz); in
particular, we take the simple average over the synthetic realizations, the red spots are the
exponent for the single patient (notice that the uncertainties over the synthetic realization
are much smaller and are not visible in the plot), and the blue spot marks the average over
all patients (both experimental and synthetic) with the relative uncertainties.

i.e. that the function P (z) is a probability distribution and that the moments up to the
second order are captures the experimental temporal average µ(1), the temporal standard
deviation µ(2) and the auto-correlation function C(τ). The extremization with respect to
the function P leads to the explicit form of the solution, i.e.

logP (z) = λ0 − 1 + λ1

N∑

n=1

zn + λ2

N∑

n=1

z2
n +

N∑

τ=1

λτ

N−τ∑

n=1

znzn+τ , (3.52)

which can be rewritten as

P (z) = cost · exp

(
λ1

N∑

n=1

zn + λ2

N∑

n=1

z2
n +

N∑

τ=1

N−τ∑

n=1

λτznzn+τ

)
. (3.53)

The constant in the latter equation is computed by using the normalization property of
the probability distribution P (z), and it is given by

cost−1 = Z =

∫
dz exp

(
λ1

N∑

n=1

zn + λ2

N∑

n=1

z2
n +

N∑

τ=1

N−τ∑

n=1

λτznzn+τ

)
, (3.54)
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where we used the letter Z to make contact with the notion of partition function from the
statistical mechanical dictionary. Since the model is essentially Gaussian, we can directly
compute the partition function (at least, in formal way) as

Z =

∫
dz exp

(
λ1E

T · z + zT (λ2I + λλλ)z
)

=

= (−π)N/2det−1/2(λ2I + λλλ) exp(−λ2
1E

T (λ2I + λλλ)−1E).

(3.55)

where E = (1, 1, . . . , 1) is a N -dimensional vector of ones and we de�ned the interaction
matrix (λλλ)n,m =

∑N
τ=1 δn,m−τλτ (which turns out to be an upper triangular Toeplitz matrix

with zeros on the main diagonal). Because of this, the determinant of the kernel λ2I + λλλ
is trivially det(λ2I + λλλ) = λN2 . We can now determine the relation between the temporal
average and standard deviation in terms of the model parameters. This relations read as

µ(1) = 〈 1

N

N∑

n=1

zn〉 =
1

N

∂ logZ

∂λ1
= − 2

N
λ1E

T (λ2I + λλλ)−1E, (3.56)

µ(2) = 〈 1

N

N∑

n=1

z2
n〉 =

1

N

∂ logZ

∂λ2
= − 1

2λ2
− λ2

1

N

∂

∂λ2
ET (λ2I + λλλ)−1E. (3.57)

Since z is temporally standardized, we directly get λ1 = 0 and λ2 = −1/2. However, we
left the former as a free parameter to be inferred and check a posteriori that it is consistent
with zero. In order to get contact with Physics' dictionary, we rename the Lagrangian
multipliers λ1 = h and λτ = J(τ), playing the role of external magnetic �eld and two-body
interactions respectively. Then, the solution of the maximum entropy problem (after some
rearrangements of the sum indices) is given by

P (z) =
1

Z

(
N∏

n=1

P0(zn)

)
exp

(
N−1∑

n=1

N−n∑

τ=1

J(τ)znzn+τ + h

N∑

n=1

zn

)
, (3.58)

where P0(z) is the Gaussian distribution N(0, 1) and Z is the partition function.
The prior distribution for the values of the rn elements in the time-series is chosen to be a
Gaussian distribution:

P0(rn) =
1√
2π

exp
(
− r2

n

2

)
, (3.59)

and by introducing by hand a temporal correlation between the elements of the series. In
other words, we consider the model described by the partition function (in the physics
jargon)1

Z =

∫ ( ∞∏

n=1

drnP0(rn)
)

exp
( ∑

n,n′>n

J(n, n′)rnrn′ +

∞∑

n=1

h(n)rn

)
. (3.60)

Since we assume that the relevant features di�erentiating the clinical status of the patients
are entirely encoded in the HRV series, this directly implies that the parameters J and h
should be characteristic of each class. As a general working hypothesis, we assume that
the clinical status of each patient does not change during the sampling time and, since
the starting time is arbitrary, this implies that the model should be characterized by a

1We stress that, in the �rst sum, the constrained n′ > n stands for the fact that correlation do not
travel backward in time, i.e., the value of the variable rn does not a�ect those at previous time-steps.
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translational invariance in time, i.e. J(n, n′) ≡ J(n′ − n) = J(τ) with τ = n′ − n and
h(n) = h for all n. Then, we can rewrite the entire partition function as1

Z =

∫ ( ∞∏

n=1

drnP0(rn)
)

exp
( ∞∑

n=1

∞∑

τ=1

J(τ)rnrn+τ + h

∞∑

n=1

rn

)
. (3.61)

Since we are interested in �nite-length HRV sequences, we need the truncated version of
the partition function, which reads as

Z(L) =

∫ ( L∏

n=1

drnP0(rn)
)

exp
( L−1∑

n=1

L−n∑

τ=1

J(τ)rnrn+τ + h
L∑

n=1

rn

)
, (3.62)

and yields to the following probability to observe a given �nite-lenght sequence {rn}Ln=1

P
(
{rn}Ln=1

)
=

1

Z(L)

( L∏

n=1

P0(rn)
)

exp
( L−1∑

n=1

L−n∑

τ=1

J(τ)rnrn+τ + h

L∑

n=1

rn

)
. (3.63)

3.3.5 The pseudo-likelihood setup

The determination of the model parameters J(τ) and h is based on a maximum like-
lihood approach. As stated in the model description, the usage of the full probability
is computationally untractable (because of the high dimensionality of the integral in the
partition function),thus we use a maximum pseudo-likelihood approach [150] (namely a
tractable asymptotic correct estimator of the likelihood), in which the fundamental object
to be maximized is the conditional probability that, given the observations {zn}Ln=1, the
successive observation is equal to experimental data zL+1:

P
(
z = zL+1|{zn}Ln=1

)
=
P
(
{zn}L+1

n=1

)

P
(
{zn}Ln=1

) = (3.64)

Z(L)

Z(L+1)

(∏L+1
n=1 P0(zn)

)
exp

(∑L
n=1

∑L+1−n
τ=1 J(τ)znzn+τ + h

∑L+1
n=1 zn

)

(∏L
n=1 P0(zn)

)
exp

(∑L−1
n=1

∑L−n
τ=1 J(τ)znzn+τ + h

∑L
n=1 zn

) .

The second factor is easy to handle with, while the partition function can be evaluated by
using the fact that

∫
dzP

(
z|{zn}Ln=1

)
= 1, so that we �nally have

P
(
z = zL+1|{zn}Ln=1

)
=

exp
(

logP0(zL+1) +
∑L

τ=1 J(τ)zL+1−τzL+1 + h zL+1

)

∫
dz exp

(
logP0(z) +

∑L
τ=1 J(τ)zL+1−τz + h z

) . (3.65)

Since the prior is Gaussian, we can directly integrate the denominator for carrying out a
closed form for the conditional probability. Thus, we get

P
(
z = zL+1|{zn}Ln=1

)
=

1√
2π

exp
(
− 1

2

(
zL+1 −

L∑

τ=1

J(τ)zL+1−τ − h
)2)

. (3.66)

1We stress that, since here the parameter h plays the role of bias (or, in physical jargon, external
uniform magnetic �eld), then its e�ect should be the appearance of a non-zero average value for the
temporal series. However, by de�nition the HRV series has zero mean, so it can be consistently put to zero
(however, the results we obtained were also checked in presence of a non-zero �eld).
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The MLE is based on the maximization of this conditional probability, or equivalently
of the pseudo log-likelihood, which is composed by quantities of the form

logP (z = zL+1|{zn}Ln=1) = −1

2

(
zL+1 −

L∑

τ=1

J(τ)zL+1−τ − h
)2
, (3.67)

where we discarded unessential constant terms. Since we would like to infer the �rst values
of the delayed interaction vector J(τ) and since the RR time-series have a size which is of
the order of 105, it is better to use a sliding-window average approach, whose functioning is
ensured by the stationary hypothesis. In this way, we can also perform a temporal average
over all a single RR time-series. Supposing we want to infer the �rst T elements of the
delayed interaction J(τ) (i.e. we truncate long-term correlations) and given the time-series
{zn}Nn=1 of length N , we de�ne the individual log-likelihood as

L(J, h|{zn}Nn=1) =− 1

N − T
N−1∑

L=T

logP (zL+1|{zn}Ln=L−T+1) =

=− 1

2(N − T )

N−1∑

L=T

(
zL+1 − h−

T∑

τ=1

J(τ)zL+1−τ
)2
.

(3.68)

In order to prevent the parameters to acquire large values, we also introduce some regu-
larization. For the bias, we simply add a quadratic penalization term: R(h) = −λh2/2.
Concerning the interaction vector, in order to discourage the algorithm to generate spuri-
ous correlation for high τ , we introduce a penalization which depends on the delay time τ ,
i.e.

R(J) = −λ
2

T∑

τ=1

f(τ)J(τ)2. (3.69)

However, in order to ensure not to destroy correlation for interesting values of τ , we adopt
a mild regularizer. In all of our tests, we found that a good choice is f(τ) = log2(1 + τ).
Putting all pieces together, we have the regularized individual pseudo log-likelihood

L(reg)(J, h|{zn}Nn=1) =− 1

2(N − T )

N−1∑

L=T

(
zL+1 − h−

T∑

τ=1

J(τ)zL+1−τ
)2

− λ

2
h2 − λ

2

T∑

τ=1

f(τ)J(τ)2.

(3.70)

The whole pseudo-likelihood is the average over the set Dc time-series in each given class
(where c ∈ {H,AF,CD}):

L(reg)(J, h|Dc) =
1

Mc

∑

z∈Dc

L(reg)({zn}Nn=1|J, h), (3.71)

whereMc is the number of examples in the class. By adopting a standard gradient descent
(GD) approach, we can derive the following optimization rules:

δJ(τ) =
N−1∑

L=T

∆LzL+1−τ − λf(τ)J(τ), (3.72)

δh =

N−1∑

L=T

∆L − λh, (3.73)
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where

∆L =
1

N − T (zL+1 − h−
T∑

τ=1

J(τ)zL+1−τ ). (3.74)

In order to speed up the inference procedure, we use a AdaGrad[151] adaptation method for
the gradient descent rules (3.72). Since we want a uncertainties estimation for the coupling
matrix J(τ), we proceed in the following way: better than to realize a single delayed
interaction for the whole database (for each class), we minimize the pseudo log-likelihood
to M random subsets of cardinality n of the database of each class (i.e. the gradients are
averaged with respect to this minibatch) and then let the inferential algorithm converge
towards a �xed point. Then, we compute the mean values and the standard deviation with
respect to this M realizations of the interaction vector J(τ).

3.3.6 Discussion on the second experiment

Several past studies have highlighted that heart-rate �uctuations, in healthy individu-
als, exhibit the characteristic 1/f noise (see [133] and references therein). Deviations from
this behavior can in fact be associated to cardiac pathologies such as atrial �brillation or
congestive heart failure [132]. In this work we tried to deepen the mechanisms possibly
underlying this peculiar behavior, both in healthy as well as in compromised subjects.
To this aim we exploited inferential tools derived from statistical mechanics (i.e. the max-
imum entropy principle by the Jaynes perspective, one of the two pillars over which this
thesis stands) to construct a probability distribution P (r) characterizing the occurrence of
a RR series r. By requiring that P (r) is minimally structured (i.e., prescribing the max-
imum entropy) and that P (r) correctly matches the empirical �rst and second moments,
we end up with a probabilistic model analogous to a spin-glass where quenched couplings
J(τ) among spins exhibit frustration and a power-law decay with the distance τ between
spin pairs. This kind of system is known to display chaotic dynamics spread over several
timescales and the 1/f noise. We thus speculate that the presence of competitive driving
force are key features for the emergence of the rich phenomenology displayed by heart-rate
and we are naturally tempted to identify the two opposite driving forces with the sympa-
thetic and parasympathetic systems: the ultimate representation of this mechanism is thus
a glassy hearth whose core mechanism in order for it to work properly is frustration, thus
highlighting also the systemic importance of the second pillar this thesis stands on, Parisi
theory of complex systems, and the synergism by which these two pillars interplay to give
rise to a unique coherent and powerful quantitative theory to describe -both theoretically
and experimentally complex systems.
Finally, a last clinician-oriented observation: our data-driven glassy model is robustly
checked against extensive available datasets and the preliminary results we reported in
this thesis in order to classify heart rate variabiilty in healthy vs pathogenic patients seem
to candidate the exponent β controlling the coupling decay J(τ) ∼ τ−β as an indicator for
classify the patient clinical status. Should further research con�rm these �ndings, also this
second computatonal approach would result in a cheap classi�er for (some) heart failures,
a new instrument -complementary to those already avaialble by clinicians- to �ght diseases
developing personalized weapons.



Conclusions

In this thesis I tried to summarize my research experience during my PhD time, by
logically concatenating selected results I obtained along the way.
Before entering the details of any given problem I faced, the criterion that I followed
in planning the exposition has been the systematic usage of lightmotifs along the whole
manuscript. These are two major concepts (or better methodological perspectives) and a
mathematical approach, all borred from Glassy Statistical Mechanics, namely Parisi rep-
resentation of complex systems and Jaynes interpretation of entropy extremization as long
as the concepts are regarded and Guerra's interpolation technique (coupled with Signal-to-
Noise analysis and Monte Carlo simulations), as long as the methodologies are regarded.
The perspective that stems by merging Parisi Complexity Theory and Jaynes Entropy Ex-
tremization resulted in a powerful tool that we used to undertand both theoretical infor-
mation processing networks (i.e. advances in Arti�cial Intelligence) as well as experimental
information processing networks in biological complexity, ranging from cancer-related anal-
ysis to heart failure investigations.
Indeed, regarding the former (namely advances in Theoretical Arti�cial Intelligence), the
picture that is emerging in the past three decades is that statistical mechanics of disordered
and complex systems -namely Parisi theory framed within Jaynes entropic extremization
(with all its package of de�nitions, concepts and tools - e.g. overlaps, replicas, replica trick,
Guerra's interpolation, etc.) is becoming the main methodological exhaustive theoretical
approach by which �nally a systemic analysis of neural networks and learning machines
can be achieved: trough this approach the spontaneous information processing capabilities
of the networks emerge as a natural result of the countless interactions among neurons
(much as the phases of matter emerge in classical statistical mechanics as a result of the
tumultuos and noisy interactions of the molecules at the microscopic scale). Despite initial
distrust and skepticism by Computer Scientists, this approach is nowadays particularly
welcome in the Communities involved in Machine Learning and Neural Networks because,
at present, there is an urgent need of an Explainable Arti�cial Intelligence (XAI) and of
an Optimized Arti�cial Intelligence (OAI) and (as largely discussed in this thesis), in these
regards, statistical mechanics of complex systems can play a pivotal role: focusing on XAI,
it allows clear bridges between biological information processing and arti�cial information
processing (thus helping in cracking the black box), further -focusing on OAI- the ultimate
pourpose of the statistical mechanical approach is to produce phase diagrams and it is a
credo of mine (and of several research groups worldwide) that their extensive production
and rationalization could truly contribute toward an optimized usage of machine learning
algorithms1 because it allows setting the network in a desired optimal operational mode
a-priori (selecting the most suitable region in the phase diagram, e.g. the retrieval region

1Note that, far from being a marginal aspect of Theroetical Arti�cial Intelligence, this is a climate-
related mandatory imperative in order for these algorithms to be widespread in modern Societies without
a dramatic impact on energy consumption and global warming.
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if pattern recognition is concerned), thus potentially saving from expensive unsuccessfull
trainings or from facing bad-posed tasks in general.
In this thesis, I contrbuted to the �eld mainly in three aspects as discussed in the �rst part
of this manuscript (the second chapter, dedicated to Theoretical Arti�cial Intelligence):
at �rst I have shown that there exist a sharp duality between key architectures in bio-
logically inspired neural networks (e.g. the Hop�eld model) and celebrated architectures
in machine learning (e.g. the Boltzmann machine). By generalizing the Hebbian kernel
of the Hop�eld network in order to deal with examples of patterns -rather than patterns
themselves- I have shown that the learning thresholds for this network do coincide with
those of the Boltzmann machine and thus that there are deep similarities between arti�-
cial and biological information processing mechanisms. Riding the wave of this result, I
tried to generalize it in two directions, namely by increasing the maximal storage capacity
of these networks and by lowering their signal-to-noise trheshold for signal detection. I
want to remark that in both the extensions, I have been inspired by biological informa-
tion processing, implementing (suitably stylized versions of) sleeping-like mechanisms in
the former and equipping the network with two input layers in the latter (imitating the
redundat information sources provided by the two eyes or two ears in mammals).
These are just very small steps forward a Theory for Arti�cial Intelligence of course, yet,
the most important point to me is that �nally we are starting to see a route to be paved
in order to have such a theory and, in this journey, Parisi theory and Jaynes perspective
are expected to play a major role.

Clearly, while there is a giant attention on Arti�cial Intelligence in these years, hence
the �rst application of the techniques that I have learnt has been focused in that �eld,
the modus operandi that I have studied has a much broader basin of application and, in
the second chapter of research in this thesis (chapter three) I applied the same know-how
for analyzing experiments in biological complexity: I presented two streamlined examples
of what can be learny by analyzing biological datasets via this glassy maximum entropy
approach.
in the former I used this approach to infer the evolution of the interactions between (pan-
creatic) cancerous cells and (stroma) surrounding cellls in vitro: by repeating the expe-
rients with and without the presence of a chemotherapeutic drug, the ultimate aim was
to study how their kinetics behavior and their interactios are a�ected by the presence of
chemotherapy. Note that I framed these cells as networks of interacting element, with
possibly complex interaction (hence these were Parisi's complex networks) and I inferred
the related interaction by maximum entropy extremization in a genuine Jaynes perspec-
tive thus extensing quite naturally the modus operandi of the �rst part of the thesis to the
second part. Via this procedure I obtained a quite net result: there are malignant lineages
whose relative dialogue with the stroma is absent before the administration of the drug and
persist to be absent also after (and this lack of interactions highly correlates with cancer
progression) and there are malignant lineages whose relative dialogues with the stroma
are absent before adding the drug in the medium but these are strongly enanched by the
presence of the drug (and the raise of these interactions is highly correlated with cancer
regression): while those are obviously just preliminary results, the interest for this kind of
research is manifest and the methodology is completely general, extremely cheap and can
be applied to countless other similar examples.
In the latter I used this methodology to infer long-range correlations among heart beats in
historical series (i.e. Holter records) of hart rate variability: this is an hard problem from
a statistical perspective because the underlying distributions of key-quantities are typi-
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cally scale-free. Here we had labelled patients (healthy, su�ering from atrial �brillation
and su�ering from cardiac decompensation) and we studied the statistics hidden in their
historical series again via Jaynes maximum entropy principle to �nd out a glassy hearth.
Namely, we e�ectively described the correlations among heart beats as both long-range and
positive as well as negative, much as the behavior of a one-dimension spin glass with long
range frustrated couplings. This is at �rst corroborated by the typical 1/f noise (that we
evidenced both in the temporal and in the frequency domain), further, we generated syn-
tethic datasets from this data-driven glassy-hearth model and the statistics of synthetic
data perfectly reproduces the original one conferring further robustness to our �ndings.
Finally, we searched for re�ned information hidden within these historical series, with the
aim of classi�cation of phatologies as we were provied with labelled patients. Indeed sta-
tistically robust di�erent outcomes have been obtained as re�nements to the above 1/f
leading scalings, potentially allowing for new classi�cation criteria for automatized early
detection of cardiac pathologies, en route toward a Personalized Medicine.
Cleary there is a long way to go before AI and these related tools will extensively take care
of us in the Hospitals, yet the fact that a Ph.D. student in three years of research had the
opportunity to inspect these �elds and produce some new results is pheraphs an indicator
that times are �nally ripe for such revolution, where biological and arti�cial information
processing networks will be mixed at various leves and the best has yet to come (but it is
approaching fast): while I have certainly learned a lot in these years, from Science tout-
court to producing Science and living in a scienti�c environment, i.e. a research group - I
also dare to believe that, in these three years, I tried my best to help our Society, for the
little that was in my possibilities to be done, in this direction.



Appendices

3.4 Statistical mechanics approach to ultra-memory

To better inspect the crossover between archetype and example stabilities evidenced by
signal-to-noise analysis and, possibly, to frame such a phenomenon into a classical phase
transition setting where fast noise is also accounted, we must rely on statistical mechanics
of spin glasses. In particular, in this appendix, we use a reformulation [26, 152] of the
celebrated Guerra's interpolation technique [81].

3.4.1 General setting and main de�nitions

Let us consider a network made of N Ising neurons σi = ±1, with i ∈ (1, ..., N),
K = αN archetype patterns ξµi ∈ {−1,+1} with µ ∈ (1, ...,K), andM noisy examples per
archetype ηµ,a with µ ∈ (1, ...K) and a ∈ (1, ...,M). The latter constitute a stochastic,
perturbed version of the archetypes, that are still binary and the arbitrary i-th component
can be written as ηµ,ai = ξµi χ

µ,a
i for i = 1, ..., N , where χµ,ai is a Bernoullian random variable

taking value −1 or +1. We will assume that, for each component, P(ξ = ±1) = 1/2 and
P(χ = 1) = 1− P(χ = −1) = p namely, the closer p is to 1/2 and the higher the noise in
the example (viceversa for p → 0 and p → 1, as the network stores equally a pattern and
its �ipped version, due to the spin-�ip symmetry σi → −σi). The network is fed by the
M ×K noisy patterns and has no direct access to the K archetype patterns.

De�nition 10. The Hamiltonian of the model is de�ned as

HN,M (σ|χ, ξ) = − 1

2N

M∑

a=1

K∑

µ=1

( N∑

i=1

ξµi χ
µ,a
i σi

)2
. (3.75)

The partition function coupled to the Hamiltonian (3.75) is de�ned as

ZN,M (α, β|χ, ξ) =
∑

σ

exp(−βHN,M (σ|χ, ξ)) =
∑

σ

exp
[ β

2N

M∑

a=1

K∑

µ=1

( N∑

i=1

ξµi χ
µ,a
i σi

)2]
.

(3.76)
At �nite network volume N and sample size M , the quenched pressure (i.e., the free energy
times −β [81]) of this model reads as

AN,M (α, β) =
1

N
E lnZN,M (α, β|χ, ξ), (3.77)

147
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where E := EχEξ, being

Eχµ,ai f(χ) =

{∫ +∞
−∞ dχµ,ai (pδ(χµ,ai − 1) + (1− p)δ(χµ,ai + 1)) f(χ) µ = 1
∫ +∞
−∞

dχµ,ai√
2π

exp(− (χµ,ai )2

2 ) f(χ) µ = 2, · · · ,K

Eξ G(ξ) =

∫

R

( N∏

i=1

K∏

µ=1

dξµi
2

[
δ(ξµi + 1) + δ(ξµi − 1)

])
G(ξ)

EχG(χ) =




K∏

µ=1

M∏

a=1

N∏

i=1

Eχµ,ai


G(χ)

(3.78)

Finally, for a generic observable O(σ|ξ,χ), we de�ne the brackets as 〈O〉 := EΩ (O(σ|ξ,χ)),
being Ω the (replicated) Boltzmann average.

remark 12. In equation (3.78) we approximated the noise terms χµ,ai for µ = 2, · · · ,K as
standard Gaussian variables; in the thermodynamic limit this assumption �ts the worst case
(p = 1/2) and, in general, it plays as a bound: if the network is able to infer an archetype
out of this noisiest example sample, it will certainly works also in less challenging (p > 1/2)
cases.

De�nition 11. In order to quantify both the retrieval of the archetype and the retrieval of
the examples, we de�ne the related Mattis magnetizations as, respectively,

mµ =
1

N

N∑

i=1

ξµi σi, (3.79)

nµ,a =
1

N

N∑

i=1

ξµi χ
µ,a
i σi. (3.80)

Proposition 5. The partition function de�ned in (3.76) can be recast as

ZN,M (β, α|χ, ξ) = lim
J→0

ZN,M (β, α, J |χ, ξ) =

= lim
J→0

∑

σ

∫ K,M∏

µ=2,a=1

dzµ,a√
2π

exp
[
− 1

2

K,M∑

µ=2,a=1

z2
µ,a +

+J
N∑

i=1

ξ1
i σi +

√
β

N

M∑

a=1

K∑

µ=2

N∑

i=1

ξµi χ
µ,a
i σizµ,a +

+
β

2N

M∑

a=1

( N∑

i=1

ξ1
i χ

1,a
i σi

)2]
,

which corresponds to the partition function of a restricted Boltzmann machine with N
visible binary neurons σi ∈ {−1,+1}, M×K hidden Gaussian neurons zµ,a ∼ N(0, 1), and
weights χµ,ai ξµi , for any i = 1, ..., N , µ = 1, ...,K, and a = 1, ...,M .
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remark 13. In the expression above we added the last term J
∑N

i=1 ξ
1
i σi to generate the

expectations of the Mattis magnetization m1, by evaluating the derivative of the quenched
pressure w.r.t. J at J = 0. In fact, we need to quantify both the retrieval of the archetype
and the retrieval of the examples, but, while the noisy examples exist and are supplied to the
network (in fact, the Hamiltonian itself can be written in terms of the examples {ηµ,a}),
the archetype is a network's abstraction, nor it exists by itself neither it is coded in the
Hamiltonian, hence we need to use the functional generator trick. However, as we will see
in Sec. 3.4.4, as far as M � 1, we can bypass this arti�ce and obtain the expectation value
of m by exploiting is direct proportionality with the expectation value of n, which, instead,
is a natural order parameter for the model.

Proof. We chose as �marked� (or �condensate�) patterns [8, 11] those related to the archetype
labelled as µ = 1 and, accordingly, we re-write eq. (3.76) as

ZN,M (β, α|χ, ξ) =
∑

σ

exp
[ β

2N

M∑

a=1

( N∑

i=1

ξ1
i χ

1,a
i σi

)2
+

β

2N

M∑

a=1

K∑

µ=2

( N∑

i=1

ξµi χ
µ,a
i σi

)2]
. (3.81)

Since we are interested in extracting the magnetization for both the noisy examples and
the archetypes, we introduce a source �eld J such that the partition function is generalized
as

ZN,M (β, α, J |χ, ξ) =
∑

σ

exp
[ β

2N

M∑

a=1

( N∑

i=1

ξ1
i χ

1,a
i σi

)2
+

+
β

2N

M∑

a=1

K∑

µ=2

( N∑

i=1

ξµi χ
µ,a
i σi

)2
+ J

N∑

i=1

ξ1
i σi

]
.

Then, we apply the relation

exp

(
X2

2

)
=

∫ +∞

−∞

dz√
2π

exp(−z
2

2
+Xz) (3.82)

to each squared term appearing in the argument of the exponential and this directly yields
to Eq. (3.81).

3.4.2 Guerra's interpolation for the quenched pressure

The strategy that we follow to solve the model is based on Guerra's interpolation
technique [26, 152] and ultimately consists in exploiting the mean-�eld nature of the model
to properly compare the original model with an e�ective one-body model that shares the
same statistical features of the original one in the thermodynamics limit.

De�nition 12. The Guerra interpolating functional for the quenched pressure related to
the cost-function 3.75 is de�ned as

AN,M (α, β, J ; t) =
1

N
Eφ,χ,ξ ln

[∑

σ

∫ K,M∏

µ=2,a=1

dzµ,a√
2π

exp
(
− ψ(t)

2

K,M∑

µ=2,a=1

z2
µ,a+

+ J

N∑

i=1

ξ1
i σi + Γ(t)

√
β

N

M∑

a=1

K∑

µ=2

N∑

i=1

ξµi χ
µ,a
i σizµ,a+

+ ρ(t)
β

2N

M∑

a=1

( N∑

i=1

ξ1
i χ

1,a
i σi

)2
+NWN,M (t)

)]
,

(3.83)
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where ψ(t),Γ(t), ρ(t) are auxiliary �elds to be set a posteriori, andWN,M (t) := W (σ, z,φ, ξ,χ; t)
is a source term whose speci�c expression will be set a posteriori too.

In the following, to lighten the notation, we will set AJ := AN,M (α, β, J ; t).
Note that the original model can be recovered by setting

ψ(t = 1) = Γ(t = 1) = ρ(t = 1) = 1, (3.84)

WN,M (t) = 0, (3.85)

and, as standard, we approach ψ(t = 1) = Γ(t = 1) = ρ(t = 1) = 1 by evaluating the
factorized case ψ(t = 0),Γ(t = 0), ρ(t = 0) = 0 and then integrating back in t from 0 to 1
by using the fundamental theorem of calculus.

To accomplish this plan, denoting by 〈.〉t the averages evaluated in this extended frame-
work (and clearly 〈〉t → 〈〉 as t→ 1), let us start working out the streaming of AJ :

∂

∂Γ
AJ =

1

N

√
β

N

M∑

a=1

K∑

µ=2

N∑

i=1

Eφ,χ,ξ ωs(ξµi χ
µ,a
i zµ,aσi)t =

=
β

N2
Γt

M∑

a=1

K∑

µ=2

N∑

i=1

EφEχE ξ
(
ωs(z

2
µ,a)t − ωs(zµ,aσi)t

)

∂

∂ρ
AJ =

β

2

M∑

a=1

EφEχE ξωs(
( 1

N

N∑

i=1

ξ1
i χ

1,a
i σi

)2
)t (3.86)

∂

∂ψ
AJ = − 1

2N

M∑

a=1

K∑

µ=2

EφEχE ξωs(z2
µ,a)t

such that
dAJ
dt

= Γ̇
∂

∂Γ
AJ + ρ̇

∂

∂ρ
AJ + ψ̇

∂

∂ψ
AJ + ωs(Ẇ )t. (3.87)

We still have the freedom of choice for the source termWN,M (t): the idea is the classical one
in Guerra's interpolation, as we are explaining hereafter. By taking advantage of the mean-
�eld nature of the model, it should be possible to linearize the �nasty� quadratic interactions
appearing in (3.81) by properly balancing them with extra one-body terms (i.e., those
introduced in 3.83) such that each contribution within the source term has to match the
second order moments of the order parameters. In this way we can calculate and tune the
e�ective one-body contributions � that are easy to evaluate � and, in the thermodynamic
limit, under the replica symmetric assumption disregard �uctuations around those means.
To this task we choose WN,M (t) as:

WN,M (t) =
λ(t)

N

N∑

i=1

φiσi +
µ(t)

N

K∑

µ=2

M∑

a=1

φµ,azµ,a +
τ(t)

N

M∑

a=1

N∑

i=1

ξ1
i χ

1,a
i σi (3.88)
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With this choice for the source term a few more derivatives must be calculated,

∂

∂λ
AJ =

1

N
Eφ,χ,ξ

N∑

i=1

φiωs(σi)t =
λ(t)

N
Eφ,χ,ξ

N∑

i=1

(
1− ωs(σi)2

t

)
(3.89)

∂

∂µ
AJ =

1

N
Eφ,χ,ξ

K∑

µ=2

M∑

a=1

φµ,aωs(zµ,a)t =

=
µ(t)

N

K∑

µ=2

M∑

a=1

Eφ,χ,ξ
(
ωs(z

2
µ,a)t − ωs(zµ,a)2

t

)
(3.90)

∂

∂τ
AJ =

1

N
Eφ,χ,ξ

N∑

i=1

M∑

a=1

ωs(ξ
1
i χ

1,a
i σi)t (3.91)

Proposition 6. By inspecting the moments generated by di�erentiating AJ we naturally
introduce a complete set of order parameters to characterize the system, namely, the two
replica overlaps plm for the z variables, the two replica overlaps qlm for the σ variables
(accounting for the slow noise in the system) and two sets of quanti�ers of the retrieval,
namely the standard Mattis magnetization of the archetype mµ and a generalized Mattis
magnetization for the noise example nµ,a:

plm =
1

KM

K∑

µ=1

M∑

a=1

z(l)
µ,az

(m)
µ,a (3.92)

qlm =
1

N

N∑

i=1

σ
(l)
i σ

(m)
i (3.93)

nµ,a =
1

N

N∑

i=1

ξµi χ
µ,a
i σi (3.94)

mµ =
1

N

N∑

i=1

ξµi σi. (3.95)

By these de�nitions each di�erential can be rewritten as

∂

∂ψ
AJ = −KM

2N
Eφ,χ,ξωs(p11)t;

∂

∂Γ
AJ = βΓ(t)

KM

N
Eφ,χ,ξ

(
ωs(p11)t − ωs(p12q12)t

)

∂

∂ρ
AJ =

β

2

M∑

a=1

Eφ,χ,ξωs(n2
1,a)t;

∂

∂λ
AJ = λ(t)Eφ,χ,ξ

(
ωs(q11)t − ωs(q12)t

)

∂

∂µ
AJ = µ(t)

KM

N

(
ωs(p11)t − ωs(p12)t

)
;

∂

∂τ
AJ =

M∑

a=1

Eφ,χ,ξωs(n1,a)t.
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We are now ready to explicitly write dAJ
dt :

dAJ
dt

=− α

2
Mωs(p11)ψ̇ + βαMΓΓ̇(ωs(p11)− ωs(p12q12)) + ρ̇

β

2

M∑

a=1

ωs(n
2
1,a)+

+λλ̇(ωs(q11)− ωs(q12))µµ̇αM(ωs(p11)− ωs(p12)) + τ̇
M∑

a=1

ωs(n1,a).

As in the replica symmetric regime we can discard �uctuations of the order parameters,
assuming the latter to self-average around their mean values, that we indicate by a bar in
the following, i.e. limN→∞ P(q12) = δ(q12 − q̄), limN→∞ P(p12) = δ(p12 − p̄), the strategy
now is to write correlations as a source term, made of by mean values (that we will keep
in the asymptotic limit), and �uctuations around these means (that will be discarded in
the asymptotic limit), thus we write

ωs(p12q12) = ωs((p12 − p̄)(q12 − q̄))− p̄q̄ + p̄ωs(q12) + q̄ωs(p12) (3.96)

ωs(n
2
1,a) = ωs((n1,a − n̄)2)− n̄2 + 2n̄ωs(n1,a).

We plug the previous expressions in the streaming equation for AJ

dAJ
dt

= −α
2
Mωs(p11)ψ̇ + βαMΓΓ̇(ωs(p11)− ωs((p12 − p̄)(q12 − q̄)) + p̄q̄ − p̄ωs(q12)− q̄ωs(p12)) +

+ ρ̇
β

2

M∑

a=1

(ωs((n1,a − n̄)2)− n̄2 + 2n̄ωs(n1,a)) + λλ̇(1− ωs(q12)) + (3.97)

+ µµ̇αM(ωs(p11)− ωs(p12)) + τ̇
M∑

a=1

ωs(n1,a)

and we set to zero each coe�cient coupled to a �rst order moment of any of the order
parameters, namely

ωs(p11) : −1

2
ψ̇ + βΓΓ̇ + µµ̇ = 0, (3.98)

ωs(p12) : βΓΓ̇q̄ + µµ̇ = 0, (3.99)

ωs(q12) : p̄βαMΓΓ̇ + λλ̇ = 0, (3.100)

ωs(n1,a) : τ̇ + n̄ρ̇β = 0. (3.101)

This PDE system is under-determined: it is su�cient to �nd a solution which solves it and
that also satis�es the Cauchy condition for AJ (3.84) and

Γt=0 = 0, (3.102)

ρt=0 = 0. (3.103)

The last two constraints allow us to further simplify the solution of the model, and make
it exactly solvable at the replica symmetric level. It is easy to solve this PDE system: one
can verify that the solution we are looking for is given by

Γ(t) =
√
t, (3.104)

ρ(t) = t, (3.105)

ψ(t) = 1− (1− t)β(1− q̄), (3.106)

µ(t) =
√
βq̄(1− t), (3.107)

λ(t) =
√
αβp̄M(1− t), (3.108)

τ(t) = n̄(1− t). (3.109)
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remark 14. We point out a di�erence between our approach and the original Guerra's
route: in the latter, the interpolation parameter associated to glassy terms appears under the
square root, while when associated to the signal terms it appears linearly; in our approach,
the interpolants are general functions of t and we obtain Guerra's prescriptions as the result
of the resolution of the di�erential equation system coded in the eq.s 3.98.

These terms have to be plugged in the streaming equation for AJ , whose �nal expression
is given by

dAJ
dt

= −1

2
βαMp̄(1− q̄)− βM

2
n̄2 − 1

2
βαMωs((p12 − p̄)(q12 − q̄)) +

β

2

M∑

a=1

ωs((n1,a − n̄)2).

(3.110)
As, under the replica symmetric ansatz, we can disregard the �uctuations asymptotically,
we can state the next

theorem 3. In the high storage (K = αN) and in the in�nite volume of the network limit
(N →∞), but �nite dataset size M , the quenched replica symmetric pressure of the model
(3.75) is given by the following expression in terms of the natural order parameters of the
theory:

AN,M (α, β, J ; t) = log 2− βαM

2
p̄(1− q̄)− βM

2
n̄2 − αM

2

(
log[1− β(1− q̄)]− βq̄

1− β(1− q̄)
)

+

+ Eφχ log cosh
(
J + n̄β

M∑

a=1

χa +
√
αβp̄Mφ

)
(3.111)

Proof. Note that, with the expression (3.110) for the streaming of AJ we express the �ux
of AJ in t by two kinds of object: average values of the order parameters, i.e. q̄, p̄, n̄, that
contribute to the source term, and all the remaining terms that are �uctuations around
these means, i.e. 〈(p12 − p̄)(q12 − q̄)〉 and ωs((n1,a − n̄)2): the latter can be discarded in
the thermodynamic limit, under replica-symmetric assumption. Note further that, so far,
the Mattis magnetization for the archetype has played no role.
For the sake of completeness we write also the interpolating structure in its �nal form that
reads

AJ =
1

N
Eφ,χ,ξ log

[∑

σ

∫ K∏

µ=2

M∏

a=1

dzµ,a√
2π

exp
(
− 1− β(1− q̄)(1− t)

2

K∑

µ=2

M∑

a=1

z2
µ,a + (3.112)

+
√
t

√
β

N

M∑

a=1

K∑

µ=2

ξµi χ
µ,a
i zµ,aσi + t

βN

2

M∑

a=1

(
1

N

N∑

i=1

ξ1
i χ

1,a
i σi)

2 + J

N∑

i=1

ξ1
i σi +

+
√
αβp̄M(1− t)

N∑

i=1

φiσi +
√
βq̄(1− t)

M∑

a=1

K∑

µ=2

φµ,azµ,a + n̄β(1− t)
M∑

a=1

N∑

i=1

ξ1
i χ

1,a
i σi

)]
.

The true power of the interpolation scheme now shines: the solution of the model can be
recast as a simple integration problem. Recalling that we are interested in the original
model (which can be recovered by setting t = 1, J = 0 inside the interpolating structure
3.112), we can exploit the fundamental theorem of calculus now, as

AJ(t = 1) = AJ(t = 0) +

∫ 1

0
ds

dAJ
dt

∣∣∣∣
t=s

, (3.113)
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thus all that is left to do is evaluating the trivial 1-body problem AJ(t = 0): this is a
routinely integration procedure and it is performed as follows

AJ(t = 0) =
1

N
Eφ,χ,ξ log

[∑

σ

∫ K∏

µ=2

M∏

a=1

dzµ,a√
2π

exp
(
− 1− β(1− q̄)

2

K∑

µ=2

M∑

a=1

z2
µ,a + (3.114)

+ J

N∑

i=1

ξ1
i σi +

√
αβp̄M

N∑

i=1

φiσi +
√
βq̄

M∑

a=1

K∑

µ=2

φµ,azµ,a + n̄β

M∑

a=1

N∑

i=1

ξ1
i χ

1,a
i σi

)]
=

= −αM
2

(
log[1− β(1− q̄)]− βq̄

1− β(1− q̄)

)
+ Eφχ log cosh

(
J + n̄β

M∑

a=1

χa +
√
αβp̄Mφ

)
,

thus ending the proof.

corollary 1. The self-consistency equations related to the model introduced in De�nition
(10) are obtained by looking for the stationary points of the quenched pressure ∇n̄,q̄,p̄AJ |J=0 =
0. These equations are given by

p̄ =
βq̄

[1− β(1− q̄)]2 , (3.115)

q̄ = Eφχ tanh2
(
βn̄

M∑

a=1

χa +
√
αβp̄Mφ

)
, (3.116)

n̄ = Eφχ
( 1

M

M∑

a=1

χa
)

tanh
(
βn̄

M∑

a=1

χa +
√
αβp̄Mφ

)
. (3.117)

Further, exploiting the auxiliary �eld J , inserted by hand in such a way that m̄ = ∇JAJ ,
we obtain

m̄ = Eφχ tanh
(
βn̄

M∑

a=1

χa +
√
αβp̄Mφ

)
. (3.118)

Proof. The proof works by straightforward derivation of AJ in (3.111).

3.4.3 Network behavior in the noiseless limit β →∞
As standard also for the classic Hop�eld scenario, namely within the AGS theory [8, 11],

en route to the ground-state solution (namely the self-consistencies for β → ∞), we now
assume that limβ→∞ β(1− q̄) is �nite. This gives rise to the following

theorem 4. The zero-temperature self-consistency equations for the order parameters read
as

K̄ :=

√
2αMβ(1− q̄)
β(1− q̄)− 1

= Eχ erf ′
( n̄∑M

a=1 χa

K̄ +
√

2αM

)
(3.119)

n̄ = Eχ
∑M

a=1 χa
M

erf
( n̄∑M

a=1 χa

K̄ +
√

2αM

)
(3.120)

m̄ = Eχ erf
( n̄∑M

a=1 χa

K̄ +
√

2αM

)
(3.121)

where erf is the error function and erf ′ is it's �rst derivative erf ′(x) := 2√
π

exp(−x2).
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Proof. As a �rst step we introduce an additional term βx in the argument of the hyperbolic
tangent appearing in the self-consistency equations (3.115):

q̄ = Eχ,φ tanh2
(
βn̄

M∑

a=1

χa + βφ

√
αMq̄

[1− β(1− q̄)]2 + βx
)

(3.122)

n̄ = Eχ,φ
( 1

M

M∑

a=1

χa
)

tanh
(
βn̄

M∑

a=1

χa + βφ

√
αMq̄

[1− β(1− q̄)]2 + βx
)

(3.123)

m̄ = Eχ,φ tanh
(
βn̄

M∑

a=1

χa + βφ

√
αMq̄

[1− β(1− q̄)]2 + βx
)
. (3.124)

We also recognize that at β → ∞ we also have q → 1 thus in order to correctly perform
the limit a reparametrization is in order,

q̄ = 1− δq

β
as β →∞ (3.125)

Via this reparametrization we obtain

1− δq

β
= Eχ,φ tanh2

(
βn̄

M∑

a=1

χa + βφ

√
αM(1− δq

β )

(1− δq)2
+ βx

)
(3.126)

n̄ = Eχ,φ
( 1

M

M∑

a=1

χa
)

tanh
(
βn̄

M∑

a=1

χa + βφ

√
αM(1− δq

β )

(1− δq)2
+ βx

)
(3.127)

m̄ = Eχ,φ tanh
(
βn̄

M∑

a=1

χa + βφ

√
αM(1− δq

β )

(1− δq)2
+ βx

)
. (3.128)

Taking advantage of the new parameter x we can recast the last equation in δq as a
derivative of the magnetization m̄:

∂m̄

∂x
= β[1− (1− δq

β
)] = δq (3.129)

where we used both the self-consistencies for m̄ and δq. Thanks to this correspondence
between m̄ and δq, we can proceed with our limit without worrying about q̄: the limiting
equations for m̄, n̄ are now for β →∞:

n̄ = Eχ,φ
( 1

M

M∑

a=1

χa
)

sign
(
n̄

M∑

a=1

χa + φ

√
αM

[1− δq]2 + x
)
, (3.130)

m̄ = Eχ,φ sign
(
n̄

M∑

a=1

χa + φ

√
αM

[1− δq]2 + x
)
. (3.131)

These equations can be further simpli�ed by evaluating the Gaussian integral in φ, via the
relation:

Eφ sign(Aφ+B) = erf

(
B√
2A

)

to get

m̄ = Eχ erf
[
(n̄

M∑

a=1

χa + x)
1− δq√

2αM

]
(3.132)

n̄ = Eχ
( 1

M

M∑

a=1

χa
)

erf
[
(n̄

M∑

a=1

χa + x)
1− δq√

2αM

]
(3.133)
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while δq, thanks to (3.129), becomes

δq =
∂m̄

∂x
= Eχ

2√
π

1− δq√
2αM

exp



−

[
(n̄

M∑

a=1

χa + x)
1− δq√

2αM

]2


 . (3.134)

In order to simplify the equation in δq we make one last change of variables,

δq =
δQ

δQ+
√

2αM

yielding to

m̄ = Eχ erf
( n̄

∑M
a=1 χa√

2αM + δQ

)
(3.135)

n̄ = Eχ
( 1

M

M∑

a=1

χa
)

erf
( n̄

∑M
a=1 χa√

2αM + δQ

)
(3.136)

δQ = Eχ
2√
π

exp
[
−
( n̄

∑M
a=1 χa√

2αM + δQ

)2]
(3.137)

where x has been set to 0, allowing to close the proof.

The solutions of these equations, as p and M are varied, is captured in the plots of
Fig. 3.21. Remarkably, there exists a crossover at M̃(p), such that as M < M̃(p) (M >
M̃(p)) the example magnetization n̄ is larger (smaller) than the archetype magnetization
m̄. We would be tempted to label the crossover points M̃(p) as candidate markers of a
phase transition, yet we still need to further inspect the system and to develop the theory
by suitably sending bothM and N (and K as well in the high storage) to in�nity before we
can robustly refer to a phase transition; this work will be achieved in the next subsection.

3.4.4 Network behavior in the large dataset limit M →∞
In the theory developed so far, we assumed that, asK andN are made larger and larger,

their ratio α remains �nite in such a way that it can be used as an intensive parameter
tuning pattern load, however, the parameterM expressing the sample size is still extensive
and its tuning is not related to a tuning in the network volume N or in the number K of
pattern. In this section we turn the whole theory intensive such that the meaning of the
self-consistencies, as well as the nature of the phase transition, can appear manifestly.
This goal is approached by steps: �rst, settingM as large (but still retaining the parameter
M explicit), via the central limit theorem, we approximate the quantity 1

M

∑M
a=1 χa, where,

we recall P(χa) = p δ(χa−1) + (1−p) δ(χa+ 1), with a Gaussian random variable, namely

1

M

M∑

a=1

χa ∼ 2p− 1 + 2

√
p(1− p)
M

Z, Z ∼ N(0, 1). (3.138)

This expression can be used to considerably simplify the self-consistency equations. Let
us focus on the retrieval of the noisy patterns quanti�ed by n̄:

n̄ = Eφ,Z

(
2p− 1 + 2

√
p(1− p)
M

Z

)
tanh

[
βMn̄

(
2p− 1 + 2

√
p(1− p)
M

Z

)
+
√
αβMp̄φ

]
=

= (2p− 1)m̄+ βMn̄
4p(1− p)

M
(1− q̄), (3.139)
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Figure 3.21: We compare the expected magnetizations m̄ (solid line) and n̄ (dashed line),
obtained by numerically solving (3.135) and (3.136), holding in the limit of vanishing
temperature β → ∞ and in�nite size N → ∞, in the low load regime α = 0. We
notice that, as the size M of the dataset increases, the magnetization of the noisy example
diminishes while that of the archetype starts to grow; we denote with M̃ the value of
M corresponding to the intersection between the two curves. Di�erent values of p are
considered, as reported in the title of the panels.

where the last step has been performed via Wick theorem: EZZf(Z) = EZ∂Zf(Z). This
equation implies that, for large M , beyond n, the order parameter m � assessing the
retrieval of archetypes � also starts to play a fundamental role; in fact, the con�gurations
σ = ξµ emerge as ground states. Indeed, we have

n̄ =
m̄r

1− β(1− q̄)(1− r2)
, (3.140)

where, for simplicity, we posed r = 2p− 1.
This equation allows us to get rid of n and rather focus on m: by replacing (3.140) in the
remaining self-consistencies we �nd

p̄ =
βq̄

[1− β(1− q̄)]2 , G :=
βr2

1− β(1− r2)(1− q̄) , (3.141)

m̄ = Eφ,Z tanh

[
Gm̄M

(
1 + Z

√
1− r2

r2M

)
+ φ

√
αβp̄M

]
, (3.142)

q̄ = Eφ,Z tanh2

[
Gm̄M

(
1 + Z

√
1− r2

r2M

)
+ φ

√
αβp̄M

]
, (3.143)

where the parameter G has been introduced to lighten the notation.
For a straight comparison to AGS theory, we introduce a more convenient scale for the
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temperature, such that

β → β

β(q − 1) (r2 − 1) + r2
. (3.144)

Via this rescaling the self-consistent equations become

m̄ = Eφ,Z tanh

[
βm̄M + Zβ

√
M

1− r2

r2
m̄2 + φβ

√
α

q̄

r4(1− β(1− q̄))2
M

]
,(3.145)

q̄ = Eφ,Z tanh2

[
βm̄M + Zβ

√
M

1− r2

r2
m̄2 + φβ

√
α

q̄

r4(1− β(1− q̄))2
M

]
.(3.146)

These equations can be further simpli�ed as shown in the next

Proposition 7. For the model introduced in De�nition (10), in the thermodynamic limit
and for large samples of examples (M � 1), the order parameters ful�ll the following
self-consistent equations:

m̄ = EZ tanh

[
βm̄M + Zβ

√
M

1− r2

r2
m̄2 + α

q̄

r4(1− β(1− q̄))2
M

]
, (3.147)

q̄ = EZ tanh2

[
βm̄M + Zβ

√
M

1− r2

r2
m̄2 + α

q̄

r4(1− β(1− q̄))2
M

]
. (3.148)

Proof. Given a function F , we introduce the relation

EX,Y F (aX + bY + c) = EZF (
√
a2 + b2Z + c), (3.149)

where X,Y, Z are assumed to be Gaussian random variables. This relation allows us to
reduce any number of averages with the same structure to a single Gaussian average, and,
in particular, by appling (3.149) to eqs. (3.145)-(3.146) we get eqs. (3.147)-(3.148).

remark 15. The argument of the hyperbolic tangents in (3.147)-(3.148) includes three
contributions (and no longer just two as in the standard Hop�eld scenario). Indeed, beyond
the signal carried by m̄ there are two sources of (slow) noise: a classic one given by the
other patterns not retrieved (pattern interference) and a new one given by the examples
within the dataset related to the pattern the network is retrieving (example interference).

remark 16. As a consistency check, we point out that if the network is not provided with
datasets, but just patterns (i.e. M = 1) and those are assumed noiseless (i.e. r = 1), the
whole theory collapses over the standard AGS theory of the Hop�eld model as expected.
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Proposition 8. To be sure that the archetype is retrieved over the noisy patterns we can
use a simple argument, namely we can require that

βMm̄ > β
√
M |Z|

√
1− r2

r2
m̄2 +

α

r4(1− β(1− q̄))2
q̄, Z ∼ N(0, 1) (3.150)

holds almost surely: a solution in M to the above equation is given by

M >
γ2

r2

[
1− r2 +

q

m̄2(1− β(1− q̄))2

α

r2

]
(3.151)

where γ establishes the con�dence level (indeed the last condition implies |Z| < γ, Z ∼
N(0, 1) which can be satis�ed up to an exceedingly small probability at �nite M): these
results recover the scaling behaviour achieved via signal to noise analysis in the previous
section. In particular, in the low storage α = 0 the correct scaling is M ∝ 1/(2p − 1)2,
while in the high storage α > 0 the correct scaling is M ∝ 1/(2p− 1)4.

Proof. The proof works by requiring that the signal term in the argument of tanh (3.147)
is on average greater than the noise term, which amounts to the condition:

βm̄M > |Z|β
√
M

1− r2

r2
m̄2 + α

q̄

r4(1− β(1− q̄))2
M (3.152)

this condition can be recast as

|Z| <
√
M√

1−r2
r2

+ α
m̄2

q̄
r4(1−β(1−q̄))2

=: W (M) (3.153)

if we further require
|Z| < γ < W (M) (3.154)

by solving W (m) > γ w.r.t M we obtain

M > γ2
[1− r2

r2
+

α

m̄2

q̄

r4(1− β(1− q̄))2

]
(3.155)

concluding the proof.

Now, to further inspect the competition between m and n, we resume Theorem 4,
see in particular equations (3.120)-(3.121), which are used to build Fig. 3.22: the �Fuzzy�
phase corresponds to a region in the parameter space where the retrieval of the examples
is more e�ective than the retrieval of the archetype (n̄ > m̄), no matter how good the
retrieval can be. Focusing on the low-load regime, this region is demarcated by the line
M̃(p) := M̃(α = 0, p); beyond that line the retrieval of the archetype is more e�ective than
the retrieval of the example (m̄ > n̄) and, by requiring also a high-quality retrieval (i.e.,
|m̄| > z), we get the line M̃z(α, p), which detects a region whose volume decreases with z.
Focusing on the high-load regime, the �Fuzzy� region is demarcated by the line M̃(α, p),
which is more restrictive that M̃(α, p).

Finally, we want to deepen the possible existence of a genuine phase transition distin-
guishing between a region where the system can infer the archetype (m̄ > 0) and a regione
where noise � either fast (i.e., ruled by T ) or slow (i.e., ruled by a suitable combination
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Figure 3.22: In this plot we show the crossovers values for M as a function of 2p − 1
and under di�erent conditions. In particular, given P = αN archetypes and feeding the
network with M × P examples characterized by a noise p, as M > M̃(α, p), then m̄ > n̄.
As expected, moving from a low load (α = 0) to a high load (α > 0), the region in
this parameter space where m̄ > n̄ shrinks. Notice that M̃(α, p) simply signs a crossover
between n̄ and m̄, while no conditions are posed on the magnitude of magnetizations. This
kind of information is provided by M̃z(α, p) which also requires that |m̄| > z. In this way,
we can highlight a region where the pattern is better retrieved than examples and with
high quality.

of α, r and M) � prevails (m̄ = 0). A close look to the self-consistent equations (3.147)-
(3.148) suggests that a suitable, intensive and tuneable parameter able to trigger the phase
transition is given by

ρ :=
α

Mr4
. (3.156)

In the following analysis we will let M →∞ and, accordingly, we rescale the temperature
as β → β

M to ensure the well-de�niteness of the model (3.75); this limit also implies that
that we are focusing on the limit of high disorder in the dataset (p → 1/2) so to retain a
�nite ρ.

Proposition 9. In the limit of large samples (M → ∞) and high disorder in the dataset

(r → 0) a critical behaviour is found as ρ approaches ρc = 2
π , where m̄ ∼

√
3
π

√
2− πρ.

Proof. Taking the large-M self-consistency equations (3.147)-(3.148), all that we have to
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Figure 3.23: Zero-temperaure self-consistency for the Mattis magnetization in the limit of
M,N,K →∞ such that (0, 1) 3 ρ := K/(MNr4) is the tunable control parameter for the
dataset density (see eq. 3.156): for values of ρ smaller than ρc = 2/π the solely solution
is m̄ = 0 while for values of ρ > ρc two (gauge-invariant) not-null values of the Mattis
magnetization appear. Beyond the exact result given by eq. (3.161), the �gure also shows
a comparison with the square-root estimate valid nearby the critical point.

do is replace r2 with
√

α
ρM and β with β

M obtaining:

m̄ = EZ tanh


βm̄+ Zβ

√√√√√
1−

√
α
ρM

M
√

α
ρM

+
ρq̄

[1− β
M (1− q̄)]2


 , (3.157)

q̄ = EZ tanh2


βm̄+ Zβ

√√√√√
1−

√
α
ρM

M
√

α
ρM

+
ρq̄

(1− β
M [1− q̄)]2


 . (3.158)

The whole theory now has been rephrased intensive in M , allowing us to take the limit
M →∞:

m̄ = EZ tanh(βm̄+ βZ
√
ρq̄) as M →∞, (3.159)

q̄ = EZ tanh2(βm̄+ βZ
√
ρq̄) as M →∞. (3.160)

In particular, the zero-temperature limit of the previous equations, where we send β →∞,
reads as

m̄ = EZsign(m̄+ Z
√
ρq̄) = erf

(
m̄√
2ρ

)
as β,M →∞, (3.161)

q̄ = EZsign(m̄+ Z
√
ρq̄)2 = 1 as β,M →∞. (3.162)

By Taylor expanding equation (3.161) around m̄ = 0, a critical behaviour is found at

ρc = 2
π with scaling m̄ ∼

√
3
π

√
2− πρ near the critical point.
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The behavior of the magnetization m̄ versus ρ, in the limit M,N,K →∞ is shown in
Fig. 3.23, where the critical behavior is also corroborated.

remark 17. As a direct consequence of the previous proposition we can state that concepts,
namely archetypes of the experienced examples, are formed by the network via a critical be-
havior and not abruptly (as, for instance, happens to the Hop�eld network when forgetting,
i.e. the blackout scenario).

3.5 Statistical mechanics approach to ultra-detection

3.5.1 General settings and main de�nitinos

In this Section, we report the technical details underlying the solution of the model
provided by the equations 2.211− 2.215. Here, we will adopt a formal style to stress that
the analysis is led by rigorous tools. In fact, beyond the signal-to-noise analysis performed
in the previous Section, the numerical approach followed in the next Section and analytical
non-rigorous methods based on the replica-trick (that we also carried out to check overall
consistency, without presenting in details) that still retain a heuristic �avour, the problem
can be actually addressed rigorously.

For completeness, let us recall the basic ingredients of the model.

De�nition 13. The Hamiltonian function for the DAM neural network is

HDAM = − 1

2N3

K∑

ρ=1




N,N∑

i,µ=1

ηρiµσiτµ




2

, (3.163)

where σi, τµ ∈ {−1,+1} for i, µ = 1, ..., N and K = αN .

Following the preliminary analysis by the Signal-to-Noise analysis of the previous sec-
tion, the noisy tensors η is given by

De�nition 14. The interaction strength for the dimer (σi, τµ) is de�ned as

ηρiµ = ξρij +
√
Kξ̃ρiµ = ξρi ξ

ρ
µ +
√
Kξ̃ρiµ, (3.164)

where the ξρi 's are i.i.d. drawn from P(ξρi = ±1) = 1/2, while the ξ̃ρiµ's are i.i.d. drawn

from P(ξ̃ρiµ) = N(0, 1).

3.5.2 Guerra's interpolation for the quenched pressure

Here, we extend Guerra's interpolating scheme [20] to deal with these dense networks.
This technique works directly on the main quantity of interest in the Statistical Mechan-
ical analysis, namely the quenched pressure associated to the cost function (3.163), as
introduced in the next

De�nition 15. The quenched pressure density associated to the Hamiltonian (3.163) is
de�ned as

A(α, β) ≡ lim
N→∞

1

N
Eη logZ, (3.165)
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where Z is the partition function associated to the Hamiltonian (3.163) given by

Z ≡
∑

σ,τ

exp


 β

2N3

K∑

ρ=1




N,N∑

i,µ=1

ηρiµσiτµ




2
 , (3.166)

and Eη denotes the quenched average over the realizations of the tensor η: for a generic
function f of the tensor elements {ηρiµ} this average is de�ned as standard.

We stress that the partition function can be written in terms of the magnetizations
(2.128) as

Z =
∑

σ,τ

exp
[βN

2

K∑

ρ=1

(
Mρ +

√
KM̃ρ

)2 ]
. (3.167)

Since we are looking for the retrieval regime, we shall assume that only a single information
pattern (say ξ1) is candidate for the condensation. Then,

Z =
∑

σ,τ

exp
[βN

2
(M1 +

√
KM̃1)2+

+
βN

2

K∑

ρ=2

(Mρ +
√
KM̃ρ)

2
]
. (3.168)

The magnetization M1 associated to the retrieved pattern is of order O(1), while all the
others Mρ are O(N−1). This implies that, in the thermodynamic limit, we can neglect the
subleading contributions, so that (note that this decomposition leads to the same results
also in case ofM1 ∼ O(N−1), i.e. when the network fails to retrieve the presented pattern.
In that case, the overlap of the network with the external noise source ξ̃1 is not negligible
w.r.t. to the signal part. However, discarding it (i.e. only taking the last sum in (3.168))
would lead to a negligible error in the thermodynamic limit. Indeed, it is straightforward
to check that the former is of order O(1), while the remaining contributions scale as O(N))

Z ∼
N→∞

∑

σ,τ

exp


βN

2
M2

1 +
αβN2

2

K∑

ρ=2

M̃2
ρ


 =

=
∑

σ,τ

∫
Dz exp

(βN
2
m2
σm

2
τ+

+
√
α
β

N

K∑

ρ=2

N,N∑

i,µ=1

ξ̃ρiµσiτµzρ

)
, (3.169)

where, in the second line, we used the Hubbard-Stratonovich linearization (by this, Dz is
the (K − 1)-dimension N(0, β−1) Gaussian measure) and we posed M1 = mσmτ with

mσ ≡
1

N

N∑

i=1

ξ1
i σi, mτ ≡

1

N

N∑

µ=1

ξ1
µτµ, (3.170)

re�ecting the factorization of the signal part of the interaction strength, i.e. ξ1
iµ = ξ1

i ξ
1
µ. The

expression in the last line of (3.169) is the starting point for our interpolation procedure.
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De�nition 16. Guerra's interpolating function related to the quenched pressure of the
DAM cost function (3.163) is

A(t) =
1

N
Eη logZt,

where

Zt ≡
∑

σ,τ

∫
Dz exp

(
t
β

2
Nm2

σm
2
τ+

+
√
t
√
α
β

N

K∑

ρ=2

N,N∑

i,µ=1

ξ̃ρiµσiτµzρ+

+
√

1− t W + (1− t) D
)

(3.171)

is the generalized partition function and W and D are de�ned as

D ≡NC1mσ +NC2mτ + C6

K∑

ρ=2

z2
ρ

2
,

W ≡C3

N∑

i=1

ξ̃
(1)
i σi + C4

N∑

µ=1

ξ̃(2)
µ τµ + C5

K∑

ρ=2

ξ̃ρzρ,

(3.172)

where the external �elds ξ̃
(1)
i , ξ̃

(2)
µ and ξ̃ρ are i.i.d. variables and C1, ..., C6 are suitable

constants to be set a posteriori.

De�nition 17. Given a generic function F (σ, τ , z) of the neurons, the (generalized) Boltz-
mann average ωt(F ) is de�ned as

ωt(F ) ≡ Z−1
t

∑

σ,τ

∫
DzF (σ, τ , z) exp

(
t
β

2
Nm2

σm
2
τ

)
×

× exp
(√

t
√
α
β

N

K∑

ρ=2

N,N∑

i,µ=1

ξ̃ρiµσiτµzρ

)
×

× exp
(√

1− t W + (1− t) D
)
. (3.173)

Note that, as standard in Guerra's interpolation techniques (see [47] for ferromagnets,
[81] for spin glasses and [20] for neural networks), in the function A(t), the interpolating
parameter appears with di�erent exponents (1 and 1/2) mirroring the nature of the inter-
action (ferromagnetic and glassy, respectively) and, ultimately, the need to apply Wick's
theorem.

remark 18. Guerra's interpolating function evaluated at t = 1 corresponds to the original
quenched pressure, in such a way that its explicit expression can be recovered via a simple
sum rule by using the Fundamental Theorem of Calculus, i.e.

A(α, β) = lim
N→∞

A(t = 1) =

= lim
N→∞

(
A(t = 0) +

∫ 1

0
dt ∂tA(t)

)
. (3.174)
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Therefore we now have to evaluate ∂tA and A(0). This calculation is rather lengthy
and goes along the same line as [20] without requiring any particular operation; for this
reason, we shall report the explicit passages related only to the second term (that is, the
most complex) in the argument of the exponential in A(t) and just for illustrative purposes.
Then, let us pose

A(2)(t) ≡ 1

N
Eη log

∑

σ,τ

∫
Dz×

× exp


√t√α β

N

K∑

ρ=2

N,N∑

i,µ=1

ξ̃ρiµσiτµzρ


 , (3.175)

and de�ne the generalized Boltzmann average ω
(2)
t as in Def. 17 (of course, when dealing

with the generalized pressure A(t) rather than A(2)(t), we have to replace ω
(2)
t with the

corresponding Boltzmann average ωt). Thus, deriving with respect to t, we get

∂tA
(2)(t) =

√
α

2
√
t

β

N2

K∑

ρ=2

N,N∑

i,µ=1

Eη ξ̃ρiµ ω
(2)
t (σiτµzρ)

=
αβ2

2N3

K∑

ρ=2

N,N∑

i,µ=1

Eη
[
ω

(2)
t (σ2

i τ
2
µz

2
ρ)− ω(2)

t (σiτµzρ)
2
]

=
αβ2

2N3

K∑

ρ=2

N,N∑

i,µ=1

Eηω
(2)
t (z2

ρ)− α2β2

2
〈q12r12p12〉(2)

t

=
α2β2

2
〈p11〉(2)

t −
α2β2

2
〈q12r12p12〉(2)

t . (3.176)

Here, in the second passage we applied Wick's theorem, in the third passage we exploited

the Boolean nature of the σ and τ variables, we de�ned 〈·〉(2)
t ≡ Eηω

(2)
t (·) and introduced

two-replica overlaps (one for each layer) to account for the quenched noise. More precisely:

q12 ≡ 1

N

N∑

i=1

σ1
i σ

2
i , (3.177)

r12 ≡ 1

N

N∑

µ=1

τ1
µτ

2
µ, (3.178)

p12 ≡ 1

K − 1

K∑

ρ=2

z1
ρz

2
ρ. (3.179)

Further, the �rst term in (3.176) can be cancelled by suitably choosing the constant C6

(dedicated to tune the variance z2). Repeating analogous calculations for the remaining
terms making up A(t), overall we get

∂tA = Eξ
[β

2
ωs(m

2
σm

2
τ )t +

α2β2

2
ωs(p11)t + (3.180)

−α
2β2

2
ωs(p12q12r12)t − C1ωs(mσ)t − C2ωs(mτ )t + (3.181)

−αC6

2
ωs(p11)t −

C2
3

2
− C2

4

2
+
C2

3

2
ωs(q12)t + (3.182)

+
C2

4

2
ωs(r12)t −

αC2
5

2
ωs(p11)t +

αC2
5

2
ωs(p12)t

]
, (3.183)
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where now 〈·〉t ≡ Eηωt(·) and the quenched average Eξ applies only on the Boolean vari-
ables ξ as the Gaussian variables ξ̃ have been already averaged out (via Wick's theorem).
As anticipated, a trivial simpli�cation can be implemented by setting C6 = αβ2 − C2

5 in
such a way that we get rid of ωs(p11). A further simpli�cation can be obtained asking for
vanishing �uctuations for the order parameters, as prescribed by the RS approximation
in the thermodynamic limit. Then, calling (mσ, mτ ) and (q, p, r) the RS values for,
respectively, the Mattis magnetizations and the overlaps, the corresponding probability
distributions in the thermodynamic limit satisfy

lim
N→∞

P(mσ) = δ(mσ −mσ), (3.184)

lim
N→∞

P(mσ) = δ(mτ −mτ ), (3.185)

lim
N→∞

P(q12) = δ(q12 − q), (3.186)

lim
N→∞

P(p12) = δ(p12 − p), (3.187)

lim
N→∞

P(r12) = δ(r12 − r). (3.188)

Denoting with ∆ the �uctuation of the generic observable w.r.t. its thermodynamic value
(e.g., ∆ = mσ −mσ), we can recast the interaction terms appearing in (3.180) as

ωs(p12q12r12)t = −2pqr + pqωs(r12)t + prωs(q12)t + (3.189)

+rqωs(p12)t + O(∆2),

ωs(m
2
σm

2
τ )t = −3m2

σm
2
τ + 2m2

σmτωs(mτ )t + (3.190)

+2m2
τmσωs(mσ)t + O(∆2).

Moreover, since in the RS regime �uctuations vanish, we can disregard terms O(∆2),
obtaining

ωs(p12q12r12)t = −2pqr + pqωs(r12)t + prωs(q12)t + rqωs(p12)t, (3.191)

ωs(m
2
σm

2
τ )t = −3m2

σm
2
τ + 2m2

σmτωs(mτ )t + 2m2
τmσωs(mσ)t. (3.192)

Replacing these expressions inside the streaming term, and choosing our free parameters
as

C1 = βmσm
2
τ , (3.193)

C2 = βmτm
2
σ, (3.194)

C2
3 = α2β2pr, (3.195)

C2
4 = α2β2pq, (3.196)

C2
5 = αβ2qr, (3.197)

C6 = αβ2(1− qr), (3.198)

(3.199)

we reach the simple result

∂tA =
α2β2

2
p(2qr − q − r)− 3

2
βm2

σm
2
τ , (3.200)

which is independent on t, so that the integration is trivial. Now, we must evaluate the
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one-body term:

A(0) =
1

N
Eη log

∑

σ,τ

∫
Dz× (3.201)

× exp
(
NC1mσ +NC2mτ + C6

K∑

ρ=1

z2
ρ

2

)
× (3.202)

× exp
(
C3
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i=1

ξ̃
(1)
i σi + C4
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µ=1

ξ̃(2)
µ τµ + C5

K∑

ρ=1

ξ̃ρzρ

)
. (3.203)

With straightforward computations and recalling the choices (3.193) for the Ci coe�cients,
we have

A(0) = 2 log 2 + Ex log cosh
[
αβx
√
pr + βmσm

2
τ

]
+ (3.204)

+Ex log cosh
[
αβx
√
pq + βm2

σmτ

]
+ (3.205)

+
α2β

2

qr

1− αβ(1− qr) −
α

2
log[1− αβ(1− qr)], (3.206)

where x is a standard Gaussian variable. Exploiting the sum rule (3.174) we have the �nal
result

theorem 5. In the thermodynamic limit, under the replica symmetric approximation, the
quenched pressure density related to the cost function (3.163) can be expressed in terms
of the natural order parameters of the model (i.e. the two Mattis magnetizations for the
visible and mirror layers and the three two-replica overlaps of the visible, hidden and mirror
layers) as follows

ARS = 2 log 2 + Ex log cosh
[
αβx
√
pr + βmσm

2
τ

]
+ (3.207)

+Ex log cosh
[
αβx
√
pq + βm2

σmτ

]
+ (3.208)

+
α2β

2

qr

1− αβ(1− qr) −
α

2
log[1− αβ(1− qr)] + (3.209)

+
α2β2

2
p(2qr − q − r)− 3

2
βm2

σm
2
τ . (3.210)

Its extremization selects the maximum entropy solutions that minimize the cost function
3.163 and yields to the self-consistent equations (11)-(15).

As a �nal remark, we note that, from a machine-learning perspective, beyond signal de-
tection (involving the Mattis magnetizations), also quenched noise is to be estimated and,
since the latter is carried by the overlaps, a �rst estimate can be obtained by a Plefka-like
expansion of the free energy in the high (fast)-noise limit (see e.g., [153, 154, 155] and
reference therein).
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