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Inspired by the bridge pioneered by Guerra among statistical mechanics on lattice
and analytical mechanics on 1+1 continuous Euclidean space time, we built a
self-consistent method to solve for the thermodynamics of mean field models de-
fined on lattice, whose order parameters self-average. We show the whole proce-
dure by analyzing in full detail the simplest test case, namely, the Curie–Weiss
model. Further, we report some applications also to models whose order parameters
do not self-average by using the Sherrington–Kirkpatrick spin glass as a guide. ©
2009 American Institute of Physics. �DOI: 10.1063/1.3131687�

I. INTRODUCTION

Mean field statistical mechanics of discrete systems experiences a massive increasing interest
for several reasons. Born as an infinite dimensional limit of a theoretical background for con-
densed matter physics, mean field statistical mechanics become immediately appealing for its
possibility of being solved �even though this happens exactly for really a few models12�, still
retaining several features of more realistic systems with finite dimensionality.

Furthermore, and maybe nowadays, foremost, its range of applicability is continuously
spreading such that, so far, it is one of the key tools for the investigation of several models far
away from physics such as biological or social networks �see, for instance, respectively, Refs. 11
and 13�: all systems where the mean field nature of the description is not a limitation and whose
rigorous or heuristic analysis was, in the past decades, unimaginable.

As a consequence the need for methods in statistical mechanics is one of the fundamental
enquiries raised to theoretical physicists and mathematicians involved in the field.

In this paper, inspired by a pioneering work of Guerra,7 we develop an alternative approach to
standard statistical mechanics to solve for the thermodynamics of systems whose order parameters
self-average.

With the aim of presenting the theory also to readers who may not be experts in statistical
mechanics, we apply our scheme to the simplest and most well known Curie–Weiss �CW� model,
which we solve in full detail, for the sake of simplicity, linking our procedures with general
statistical mechanics models via frequent remarks spread throughout the whole paper.

As the largest interest is payed to complex systems, after the CW, we analyze the Sherrington–
Kirkpatrick �SK� model, in the replica symmetric regime, subjected to an external field.

II. GUERRA ACTION FOR MEAN FIELD SPIN MODELS

Even though we will be interested in observable’s behavior once the thermodynamic limit is
taken, let us consider a large set of N Ising spins �i= �1, i� �1, . . . ,N�. Let us deal with a generic
mean field spin model, described by the Hamiltonian

a�Electronic mail: adriano.barra@roma.1.infn.it.

JOURNAL OF MATHEMATICAL PHYSICS 50, 053303 �2009�

50, 053303-10022-2488/2009/50�5�/053303/16/$25.00 © 2009 American Institute of Physics

Downloaded 08 Oct 2012 to 141.108.19.30. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3131687
http://dx.doi.org/10.1063/1.3131687


HN��� = − �
�i,j�

N

�ij�i� j , �1�

where �ij is a two-body interaction matrix. The main quantity of interest in statistical mechanics is
the infinite volume limit of the free energy f���=limN→� fN���=limN→� −�−1AN���, where AN���
is the pressure and is related to the Hamiltonian via

AN��� =
1

N
ln�

�

exp�− �HN���� .

We stress here �even though we will not be dealing with disordered systems in the first part of
the work� that for the SK model, it is usually expected to consider the quenched average of the
free energy;7 however, without explicit expectation over the random coupling, we mean its value
� almost surely in the sense of the first Borel–Cantelli lemma.

It is useful to consider the one-body interaction, of the same nature of Hamiltonian, which we
call cavity field

HN� ��� = − �
i

N

�i�i.

We define further two parameters, Boltzmann factor B�x , t� and relative Gibbs measure �.��x,t�, as

BN�x,t� = exp���t�HN + ��x�HN� � , �2�

�f�����x,t� =
��

f����B�x,t��

��
�B�x,t��

, �3�

where � is a increasing function, vanishing at the origin, strictly dependent on the form of
interaction. Eventually a magnetic field can be added in �1� and therefore in �2� and �3�.

We define the Guerra action ��x , t� for a mean field model as the solution of the Hamilton–
Jacobi �HJ� differential equation,

�t�N�x,t� + 1
2 ��x�N�x,t�� + VN�x,t� = 0 �4�

with suitable boundary condition.
Furthermore the function u�x , t�=�x��x , t� satisfies

�tuN�x,t� + uN�x,t��xuN�x,t� + �xVN�x,t� = 0. �5�

The Guerra action �N�x , t� is related to the pressure of model AN��� in a way that will be specified
later, case by case.

Consequently, even the potential function VN�x , t� expresses thermodynamical quantities of
the case study �i.e., in CW and SK models we investigate, it turns out to be the self-averaging of
the order parameters�.

We will be interested throughout the paper in the region where V�x , t�=0, when we can always
solve our equations. �We stress however that the formalism we develop can still be applied to
general constrained problems �V�x , t��0� even though their resolutions can be prohibitive.� In
fact, these problems are largely studied in literature far away from statistical mechanics.4 In
particular, some theorems, due to Lax,9 are helpful since under certain hypothesis �that in a
nutshell are related to the uniform convexity of the quantity 1

2 ��x��x , t��2�, give the form of the
unique solution of �4� and �5� �related by a derivation�. Following Lax we can state the following.

Theorem 1: For a general differential problem
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�t��x,t� + 1
2 ��x��x,t��2 = 0 in R � �0, + �� ,

��x,0� = h�x� on R � �t = 0	 �6�

and

�tu�x,t� + u�x,t��xu�x,t� = 0 in R � �0, + �� ,

u�x,0� = g�x� on R � �t = 0	 , �7�

where h�x� is Lipschitz continuous, and g�x�=h��x��L�, it does exist and it is a unique function
y�x , t� :R�R+→R such that

��x,t� = min
y

 t

2
� x − y

t
�2

+ h�y�
 =
t

2
� x − y�x,t�

t
�2

− log 2 − log cosh y�x,t� �8�

is the unique weak solution of (6), and

u�x,t� =
x − y�x,t�

t
�9�

is the unique weak solution of (7). Furthermore, the function x→y�x , t� does not decrease.
It is worthwhile to remark that the choice of looking for weak solution �that arises naturally in

the Lax’s theorems� may look as redundant in our case since we deal with physical quantities �in
general, smooth functions�. Actually, it prevents us from the eventual discontinuities of the solu-
tions of �6� and �7�. However, a strong solution is a weak solution too and there is no need to
change the essence of the Theorem.

Let us start applying this framework to the CW model.

III. MEAN FIELD FERROMAGNET AS A ONE-DIMENSIONAL FLUID

The mean field ferromagnetic model is defined by the Hamiltonian

HN��� = −
1

N
�
�i,j�

N

�i� j + h�
i

N

�i.

It is easily seen that we have resumed in the Hamiltonian both the two-body and one-body
interactions. �In ferromagnet the cavity field coincides with the external field.� Thus, choosing
��a�=a, we can write the �x , t�-dependent Boltzmann factor as

BN�x,t� = exp� t

N
�
�i,j�

N

�i� j + x�
i

N

�i� .

Remark 1: When dealing with the ferromagnetic Boltzmann factor BN�x , t� above, classical
statistical mechanics is recovered, of course, in the free field case by setting t=� and x=0.

In the same way, the averages �·��x,t� will be denoted by �·� whenever evaluated in the sense of
statistical mechanics.

A fundamental role is played by the magnetization m which we introduce as

m = lim
N→�

mN = lim
N→�

�
i

N

�i, �m� = lim
N→�

��
mN exp�− �HN����

��
exp�− �HN����

.

Let us denote by uN�x , t� the one-dimensional velocity field and �N�x , t� its dynamic potential
�such that �x��x , t�=u�x , t��. Here the label N reminds us that the analogy is made with the CW
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model with finite size N �of course, we are interested about the thermodynamic limit of the
model�.

The Guerra action can be written as

�N�x,t� = −
1

N
log�

��N	
exp� t

2
NmN

2 + xNmN� = − AN�x,t� , �10�

i.e., the mean field CW pressure �up a minus sign�,3 where t stands for the inverse temperature �
and x takes into account the external magnetic field h.

Deriving �10� we get

uN�x,t� = − �mN��x,t� , �11�

the mean value of the magnetization. So our analogy is now completed, and we can write a fluid
equation as a transport equation for uN�x , t�, plus an HJ equation for �N�x , t� and a continuity
equation, defining the �purely fictitious� density function 	�x , t�.

We notice that the Guerra action �N�x , t� satisfies an HJ equation where the potential function
is the self-averaging of the magnetization. Indeed, since we have

�t�N�x,t� = − 1
2 �mN

2 �

and

�x2
2

�N�x,t� = �xuN�x,t� = − �x�mN��x,t� = − N��mN
2 ��x,t� − �mN�2�x,t�� ,

we can easily choose the external pressure for the fluid that appears as a potential in the HJ
equation, as

VN�x,t� = 1
2 ��mN

2 ��x,t� − �mN�2�x,t�� , �12�

and we have also

−
1

2N
�x

2�N�x,t� = VN�x,t� . �13�

Finally, computing

�N�x,0� = − AN�x,0� = − log 2 − log cosh x , �14�

we can build the differential problem for our hydrodynamical potential �N�x , t�,

�t�N�x,t� + 1
2 ��x�N�x,t��2 + VN�x,t� = 0 in R � �0, + �� ,

�N�x,0� = − log 2 − log cosh x on R � �t = 0	 . �15�

Remark 2: We stress that by choosing as a boundary a general point on x but t=0 [as we did
in Eq. (14)], we implicitly skipped the evaluation of the two-body interaction, which is usually the
hard core of the statistical mechanics calculations as the one-body problem trivially factorizes.

Equation �15� is just the HJ equation for a mechanical one-dimensional system with time-
dependent interactions. We can write it in a more suggestive way, for exalting our hydrodynamical
analogy. Indeed, bearing in mind �13�, we have

�t�N�x,t� + 1
2 ��x�N�x,t��2 − 1

2N�x
2�N�x,t� = 0 in R � �0, + �� ,

�N�x,0� = − log 2 − log cosh x on R � �t = 0	 . �16�

This equation is more interesting than the first one for several reasons. At first, it is closed with
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respect to the unknown function. �This is actually a feature of the ferromagnets. For instance, it is
easily seen that it is not trivially closed for the SK pressure because every derivation involves
different overlap combination �Ref. 2��. Furthermore, it has a clear physical and mathematical
meaning. Indeed the presence of a dissipative term suggests the typical viscous fluid behavior,
where friction acts against the motion. The smallness of this term �that appears with a factor N−1�
acts as a mollifier for our differential problem. It may appear even clearer by investigating the
equation for uN�x , t�. Deriving with respect to x Eq. �16� �and using standard results about for the
order of derivation�, we obtain

�tuN�x,t� + uN�x,t��xuN�x,t� −
1

2N
�x

2uN�x,t� = 0 in R � �0, + �� ,

uN�x,0� = − tanh�x� on R � �t = 0	 . �17�

This is a viscous Burgers’ equation, i.e., a very simple Navier–Stokes equation in one dimension.
Here the mollifier term is more incisive, since, as we will see soon, when it vanishes �i.e., in
thermodynamic limit�, it induces the spontaneous Z2 symmetry breaking of statistical mechanics
by making the solution u�x , t� �i.e., the magnetization� not regular in the whole �x , t� half-plane.

Lastly, let us derive the continuity equation that should complete our formal hydrodynamical
analogy for the ferromagnetic model. We stress that it does not carry any further information about
the model, as it is all contained in �16� and �17�. From the continuity equation, we get

�t	N�x,t� + uN�x,t��x	N�x,t� = − 	N�x,t��xuN�x,t� = 	N�x,t�2NVN�x,t� .

Writing

DN�x,t� = �t + uN�x,t��x =
d

ds
, �18�

the differential operator along the stream lines, we obtain the equation for 	N

DN�x,t�	N�x,t� = 2NVN�x,t�	N�x,t� , �19�

solved by

	N�x,t� = 	N�0,0�e2N�dsV�x�s�,t�s��, �20�

that is,

	N�x,t� =
1

2N�
��	

exp�NtmN
2 + NxmN� = ZN�2t,x� . �21�

Resuming, mean field ferromagnets of finite size N is completely equivalent to the one-
dimensional viscous fluid described by the equations,

�tuN�x,t� + uN�x,t��xuN�x,t� −
1

2N
�x2

2 uN�x,t� = 0,

DN�x,t�	N�x,t� = 2NVN�x,t�	N�x,t� ,

and in thermodynamic limit, to an Eulerian fluid, such that

�tu�x,t� + u�x,t��xu�x,t� = 0,
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	�x,t�−1D�x,t�	�x,t� = 0.

We would like now to link the finite dimensional model with its thermodynamic limit, i.e., the
viscous fluid with the inviscid one. It is consequently useful to study the free problem

�t��x,t� + 1
2 ��x��x,t��2 = 0 in R � �0, + �� ,

��x,0� = − log 2 − log cosh x on R � �t = 0	 �22�

and

�tu�x,t� + u�x,t��xu�x,t� = 0 in R � �0, + �� ,

u�x,0� = − tanh x on R � �t = 0	 . �23�

With this purpose we can use Theorem 1.
Remark 3: We stress that via Theorem 1 changing the boundary condition is equivalent to

modifying the nature of the spin variables in the ferromagnetic model. Since the condition on H is
Lipschitz continuity, such a theorem is valid for every bounded distribution of spin variables, but
not, for example, for Gaussian ones. We let for future works further investigations.5 Hereafter,
anyway we will deal with only dichotomic variables.

With h�y�=−log 2−log cosh y, y=x− tu�x , t� �given by �9��, we find

��x,t� =
t

2
u�x,t�2 − log 2 − log cosh u�x,t�

and bearing in mind �=−A and u=−�m�, by setting t=� and x=h, we gain find the usual free
energy for mean field ferromagnet

f��,h� = −
1

�
A��,h� =

1

�
���,h� =

1

�

��m�2

2
− log cosh ��h + �m�� − log 2
 ,

where, of course, �m� is the limiting value for the magnetization, as we are going to show. We only
have to prove convergence for differential problems �16� and �17� to the free ones, respectively
�22� and �23�. Let us start with the former by stating the following.

Theorem 2: The function

�N�x,t� = −
1

N
log��N

t
�

−�

+� dy
�2


exp − N� �x − y�2

2t
− log 2 − log cosh y�� �24�

solves the differential problem (6), and it is

��N�x,t� − ��x,t�� � O� 1

N
� . �25�

Proof: In order to find a solution of �22�, we put �This is usually known as the Cole–Hopf
transform �Ref. 4��.

�N�x,t� = e−N�N�x,t�.

After a few calculations,

�t�N�x,t� =
1

2
N�N�x,t���x�N�x,t��2 −

1

2
�N�x,t��x2

2
�N�x,t� =

1

2N
�x2

2 �N�x,t� , �26�

we see that ��x , t� solves the heat equation with conductivity 1 /2N �and a suitable boundary
condition�,

053303-6 G. Genovese and A. Barra J. Math. Phys. 50, 053303 �2009�

Downloaded 08 Oct 2012 to 141.108.19.30. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



�t�N�x,t� −
1

2N
�x2

2 �N�x,t� = 0 in R � �0, + �� ,

�N�x,0� = 2−N cosh−N x on R � �t = 0	 . �27�

The unique bounded solution of �27� is

�N�x,t� =�N

t
�

−�

+� dy
�2


exp�− N� �x − y�2

2t
− log 2 − log cosh y��

and, bearing in mind �N=−�1 /N�log �N, we have

�N�x,t� = −
1

N
log��N

t
�

−�

+� dy
�2


exp�− N� �x − y�2

2t
− log 2 − log cosh y��� .

We notice that since the uniqueness of the minimum of the function in the exponent �allowed by
Theorem 1�, we easily get �N→� when N→�. Finally bounds on the error can be made via
standard techniques. �

We must now prove an analog result for the velocity field u�x , t�. Since the equations for
��x , t� and u�x , t� are trivially related by a derivation, it is clear that uN�x , t�→u�x , t� uniformly in
the thermodynamic limit. Anyway for the sake of completeness �and as a guide for testing other
models�, we state the following.

Theorem 3: The function

uN�x,t� =

�
−�

+� dy
�2


x − y

t
exp�− N� �x − y�2

2t
− log 2 − log cosh y��

�
−�

+� dy
�2


exp�− N� �x − y�2

2t
− log 2 − log cosh y�� �28�

solves the differential problem (23) and it is

�uN�x,t� − u�x,t�� � O� 1
�N

� . �29�

Proof: �28� is easily obtained by direct derivation of �N in �24�. Again the bound on the error
is made via standard techniques. �

Finally we can state the subsequent.
Corollary 1: It is VN�x , t��O�1 /N� almost every.
Proof: For the two previous theorems, we have

�N�x,t� = ��x,t� + O� 1

N
� ,

thus

�t�N = �t� + O� 1

N
�

and

��x�N�2 = ��x��2 + O� 1

N
� ,

and therefore, using the HJ equation �15� for �N, we find
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�t� +
1

2
��x��2 + O� 1

N
� + VN = 0,

that implies the thesis. �

What we meant for “almost every” is actually the whole �x , t� positive half-plane, but the line
defined by �x=0, t
1� as will be well explained in Sec. IV.

IV. SHOCK WAVES AND SPONTANEOUS SYMMETRY BREAKING

In this section we study more deeply the properties of Eq. �23�. This is an inviscid Burgers’
equation, and again we can have a representation of solutions as characteristics.4 We get

u�x,t� = − tanh�x − u�x,t�t� �30�

i.e., the well known self-consistence relation for the CW model, with trajectories �parametrized by
s�R�

t = s ,

x = x0 − s tanh x0. �31�

We can immediately state the subsequent.
Proposition 1: In the region of the plane �x , t�, defined by

x � − �t�t − 1� + arctanh�� t − 1

t
� for x0 � 0

and

x � − �t�t − 1� + arctanh�� t − 1

t
� for x0 � 0

trajectories (31) have no intersection points.
Remark 4: This last statement defines the onset of ergodicity breaking in the statistical

mechanics of the CW model.
Proof: Set, for instance, x0�0.
Once fixed s= s̄, let us investigate the position at time s̄ as a function of the starting point x0.

We have

x�x0� = x0 − s̄ tanh x0.

If x�x0� is monotone with respect to x0, then ∀x0�R∃ !x�t�, i.e., for every starting point there is
an unique position at time t. In other words, two trajectories born in different points of the
boundary cannot, at the same time, assume the same position �do not intersect�. Hence we have

x��x0� = 1 − s̄�1 − tanh2 x0� � 0 ∀ x0,

only if

s̄ �
1

1 − tanh2 x0
,

as 1−tanh2 x0 always belongs to �0,1�. The last formula implies

x0 � arc tanh�� t − 1

t
� ,

and bearing in mind the form of trajectories �31�, we get
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x � arctanh�� t − 1

t
� − �t�t − 1� . �32�

The proof is analog for x0�0. �

We must notice that the previous proposition gives the region of the �x , t� plane in which the
invertibility of the motion fails. On the other hand, every trajectory has its end point at the
intersection with the x-axis, or are all merged in a unique line, that is �x=0, t
1�.

More rigorously, the curve �x=0, t
1� is a discontinuity line for our solution since it is easily
seen that every point of such a line is an intersection point of the trajectories �31�. Also we can get
by �30� with direct calculation

�xu�x,t� = −
1 − u2

1 + t�1 − u2�
� 0, �33�

i.e., the velocity field is strictly decreasing along x direction. �This is a particular case of a more
general property of the Lax–Oleink solution �Ref. 9�, named entropy condition, which ensures
u�x , t� never increases along x. We would not give the general form, which is redundant in this
contest, but can be very useful in studying generalized ferromagnet �Ref. 5��.

Now we name u+ as the limiting value from positive x, and u− as the one from negative x, and
state the following.

Proposition 2: It is 0�u−=−u+�0 for almost every t
1.
Proof: The curve of discontinuity can be parametrized as

t 
 1

x = 0,

so has zero speed. We have that ∀t�0 does exist a neighbors I of �x=0� such that u�x , t� is
smooth on I. Thus, since we know that our u�x , t� is an integral solution, we can use Rankine–
Huginiot condition4 to state

u+
2 = u−

2 .

Since for �33� it has to be u+�u−, the assert is proven. �

Remark 5: We stress that the relation u+
2 =u−

2, in this context, mirrors the spin-flip symmetry
shared by the two minima of the CW model in the broken ergodicity phase, i.e., �+�m��= �−�m��.

It follows that �x=0, t
1� is a shock line for the Burgers’ equation �23�.
On the other hand, of course, x=0 is an equilibrium point for the system since we have that

both position and velocity are zero.
Remark 6: This property is translated in statistical mechanics to the trivial case of CW model

without neither a vanishing external field such that spontaneous magnetization can never happen.
We can use it for exploring the well known mechanism of spontaneous symmetry breaking.

With this purpose, let us move on a family of straight lines of equation

x = �t − � .

We have infinitely many lines, all converging in �0,1� that intersect the x-axis in −�. Let us choose,
for example, �
0, and perform the limit of u�x , t� on the shock line taking the value of u�x , t� by
these, and then sending �→0. Since −� is negative, the intersection point with t=0 approaches 0
from the left �x−�, meanwhile the limit of u is taken from the right �u+�. In the same way, we have
that when the intersection point approach to zero from right �x+�, the limiting value of u is taken
from left �u−�.

Remark 7: In our analogy with statistical mechanics, one can make the substitution u�x , t�
=−�m��h ,��, and t=�, x=h�, getting the spontaneous symmetry breaking mechanism in such a
way that limh→0��m��h ,��=m�.
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V. CONSERVATION LAWS

We can rewrite �15� from a mechanical point of view as

�t�N�x,t� + HN��x�N�x,t�,x,t� = 0

and the Hamiltonian function reads as �Here we name p our velocity u, i.e., the velocity field
coincides with the generalized time-dependent momentum.�

HN��x�N�x,t�,x,t� =
p2�x,t�

2
+ VN�x,t� . �34�

Hamilton equations are nothing but characteristics of Eq. �15�,

ẋ = uN�x,t� ,

ṫ = 1,

ṗ = − uN�x,t��xuN�x,t� − �xVN�x,t� ,

Ė = − uN�x,t��x��t�N�x,t�� − �tVN�x,t� , �35�

the latter two equations express the conservation laws for momentum and energy for our system
and can be written in form of streaming equations as

DNuN�x,t� = − �xVN�x,t� ,

DN��t�N�x,t� = − �tVN�x,t� .�

Since in thermodynamic limit the system approaches a free one, bearing in mind that uN�x , t�=
−�mN� and �t�N�x , t�=− 1

2 �mN
2 �, so DN=�t− �mN��x, for N→� we conclude

DN�mN� = 0,

DN�mN
2 � = 0, �36�

i.e.,

�mN
3 � − 3�mN��mN

2 � + 2�mN�3 = O� 1

N
� ,

��m4� − �m2�2� − 2�m��m3� + 2�m�2�m2� = O� 1

N
� . �37�

We have from Corollary 1 that �m2�= �m�2+O�1 /N� everywhere but on the line �x=0, t
1�,
where anyway �m�=0. It is possible to write down a relation that follows from energy conserva-
tion: where the potential vanishes, using momentum conservation, giving �m3�= �m�3+O�1 /N�, we
get

�m4� − �m2�2 = O� 1

N
� .

Otherwise when the potential is different from zero �Anyway it is a zero measure set.� we have
�m�=0, thus the previous formula is still valid, and it holds in all the �x , t� half-plane.

Remark 8: This is, of course, a Ghirlanda–-Guerra relation6 for the CW model (i.e., it
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expresses self-averaging of the internal energy density). As a counterpart, the bare momentum
conservation implies the first Aizenman–Contucci1 relation for �m3�.

Remark 9: It is interesting to remark that the orbits of the Nöther groups of theory coincide
with the streaming lines of our fluid, and conservation laws along these lines give well known
identities in the statistical mechanics of the model.

VI. THE REPLICA SYMMETRIC PHASE OF THE SHERRINGON–KIRKPATRICK MODEL

Despite the main goal when dealing with complex systems is a clear scenario of the Broken
Replica Phase, which, in our languages translates into solving viscous problems as VN�x , t��0
�and it is posted to future investigations�, a detailed analysis of the replica symmetric regime is
however immediate within this framework, as pioneered in Ref. 7.

The SK Hamiltonian is given by

HN = −
1

�N
�
�i,j�

Jij�i� j + h�
i

�i,

where Jij are i.i.d centered Gaussian variables, with E�Jij�=0 and E�Jij
2 �=1.

Following Ref. 7, we introduce the partition function

ZN�x,t� = �
��	

exp�� t

N
�
�i,j�

Jij�i� j + �x�
i

Ji�i + �h�
i

�i� .

Accordingly with the normalization factor 1 /�N of the model, we choose ��a�=�a; it is important
to stress that different from the ferromagnetic model, the cavity field with strength �x does not
coincide with the magnetic field h, that entries in the Boltzmann factor as an external parameter.
Thus our results will hold for every value of h.

The main difference when introducing thermodynamical quantities �as the free energy� is in an
overall average over the random quenched couplings encoded in the interaction matrix. In this
sense the averages �·� now stand both for the Boltzmann averages �denoted by � hereafter when
dealing with a single set of phase space configuration, �=���� ¯ �� when dealing with
several replicas of the system� and for the averages over the coupling �denoted by E hereafter�
such that �·�=E��·�.

The Guerra action for the SK model reads as

�N�x,t� = 2AN −
t

2
− x . �38�

So it has, once introduced, the two replica overlap as q12=N−1�i
N�i

�1��i
�2�,

�t�N = 2�tAN − 1
2 = − 1

2 �q12
2 � , �39�

�x�N = 2�xAN − 1 = − �q12� . �40�

Mirroring the mean field ferromagnet, also in this glass model the interaction factorizes at t=0,
and, once set Eg= �1 /�2
��−�

+�dge−�g2/2�, we have

�N�x,0� = AN
SK�x,0� = log 2 + Eg log cosh��h + g�x� .

The last formula, together with �39� and �40�, allows one to build the HJ equation for �N�x , t�

�t�N�x,t� + 1
2 ��x�N�x,t��2 + VN�x,t� = 0 in R � �0, + �� ,
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�N�x,0� = log 2 + Eg log cosh��h + g�x� on R � �t = 0	 �41�

with

VN�x,t� = 1
2 ��q12

2 � − �q12�2� . �42�

In complete generality, this is an equation more complicated than the ferromagnetic one.
Reflecting the complex structure of the RSB phase, the closure of the equation can be obtained
only via cumulant expansions of the overlaps in terms of higher order correlation functions,2 i.e.,
the potential has no trivial expression in terms of �N derivatives. We will study this equation in the
replica symmetric phase, that is, where, in the �x , t ,h� domain, limN VN=0.

The velocity field, according to �40�, is

uN�x,t� = − �q12��x,t�

and satisfies the transport equation

�tuN�x,t� + uN�x,t��xuN�x,t� + �xVN�x,t� = 0 in R � �0, + �� ,

uN�x,0� = − Eg tanh2��h + g�x� on R � �t = 0	 . �43�

Remark 10: We stress that naturally in our approach the hyperbolic tangent of the CW model
has been mapped into the squared hyperbolic tangent in the SK case, exactly as it happens in
statistical mechanics, reflecting the role of the overlap as a proper order parameter with respect
to the magnetization.

Replica symmetry apart, the characteristic trajectories in �43� are not in general straight lines
because of the presence of the potential. We can give an expression for them,

t = s ,

x = x0 − sEg tanh2��h + g�x0� − �
0

s

ds��xVN�x�s�,t�s�� �44�

and solving for u

uN�x,t� = − Eg tanh2��h + g�x0�x,t�� −� ds�xVN�x�s�,s� , �45�

where we get x0�x , t� inverting the second among �44�.
This is the analogous of the Guerra sum rule for the order parameter q �Actually Guerra

relation may be obtained through an integration of �45�.�, stating that the difference among the true
order parameter and the RS one is the line integral of the x derivative of VN along trajectories.

Reducing our attention to the RS phase of the model, we get the free HJ equation

�t�RS�x,t� + 1
2 ��x�RS�x,t��2 = 0 in R � �0, + �� ,

�RS�x,0� = 2 log 2 + 2Eg log cosh��h + g�x� on R � �t = 0	 , �46�

and Burger’s equation

�tuN�x,t� + uN�x,t��xuN�x,t� = 0 in R � �0, + �� ,
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uN�x,0� = − Eg tanh2��h + g�x� on R � �t = 0	 . �47�

We are now in perfect agreement with the hypothesis of Theorem 1. Therefore we can write the
replica symmetric Guerra action, in the thermodynamic limit, as

�RS�x,t� =
t

2
� x − y�x,t�

t
�2

+ log 2 + Eg log cosh��h + g�y�x,t�� , �48�

and, naming the velocity field of the free problem −q̄�x , t�, we trivially get from �45� the self-
consistence equation

q̄�x,t� = Eg tanh2��h + g�x + tq̄�x,t�� , �49�

and the trajectories are

t = s ,

x = x0 − sEg tanh2��h + g�x0� . �50�

Remark 11: We stress that Eq. (49) is exactly the self-consistent equation for the SK model
order parameter in the replica symmetric ansatz.

Furthermore, the minimization point y�x , t� is usually given by

y�x,t� = x + tq̄�x,t� .

Proposition 3: For values of t, x, and �h such that

tEg� 1

cosh4��h + g�x + q̄t�
� �

1

3
+

2

3
tEg� 1

cosh2��h + g�x + q̄t�
� , �51�

trajectories (50) have no intersection points. In particular, the whole region with x�0 and t�0 is
included in (51).

Remark 12: We notice that (51) gives the form of the caustics for the �x , t� motion, i.e.,

tEg� 1

cosh4��h + g�x + q̄t�
� =

1

3
+

2

3
tEg� 1

cosh2��h + g�x + q̄t�
�

and in this sense completes the theorem given in Ref. 7.
Proof: The procedure is just the same used in Proposition 1. Starting from �50�, we put

x�x0� = x0 − tEg tanh2��h + g�x0� ,

i.e., the position depending on the initial data, and let us study its monotony. Given the trajectories,
it is clear that, whereas there is no intersection, x�x0� must be increasing, thus

�x0
x�x0� = 1 − tEg�x0

tanh2��h + g�x0� � 0

�of course, we can swap derivatives and Gaussian integral�. So we have

tEg�x0
tanh2��h + g�x0� � 1. �52�

Now
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Eg�x0
tanh2��h + g�x0� =

1
�x0

Eg�g
tanh��h + g�x0�
cosh2��h + g�x0�

� =
1

�x0

Eg��g
tanh��h + g�x0�
cosh2��h + g�x0�

�
= Eg� 1

cosh4��h + g�x0�
� − 2Eg� tanh2��h + g�x0�

cosh2��h + g�x0�
�

= 3Eg� 1

cosh4��h + g�x0�
� − 2Eg� 1

cosh2��h + g�x0�
� ,

where we have used the well known formula for Gaussian expectation Eg�gF�g��=Eg��gF�g��. At
this point, putting the last expression in �52� we gain �51�. �

We can finally give the form of the SK solution for the pressure of the model.8,10 It is

ARS��� = ARS�0,�2� =
1

2
�RS�0,�2� +

�2

4
= log 2 + Eg log cosh��h + g��q̄� +

�2

4
�1 − q̄�2.

�53�

VII. CONSERVATION LAWS

In the same way we did for the CW model, we can get the relationship among overlap from
momentum and energy conservation laws, holding in RS regime. It is remarkable that the vanish-
ing, in thermodynamic limit, of an overlap polynomial is associated to a Nöther streaming of
mechanical quantities.

With the aim to deepen this last paragraph, let us state the following.
Lemma 1: Given F��1

¯�s� as a smooth, well behaved function of s replicas, we have

D�F� =
N

2�F��
a�b

s

qab
2 − s�

a

s

qa,s+1
2 +

s�s + 1�
2

qs+1,s+2
2 �� .

The proof of this lemma works via a long and direct calculation, and we will not report it
here.2,7

We stress that the linearity of D implies that all our relations approach zero as O�1 /N�.
We have, in general, that conservation laws for momentum and energy are given by the

streaming equation

DN�q12� = − �xVN�x,t� , �54�

DN�q12
2 � = − 2�tVN�x,t� . �55�

Of course, in the RS phase, the right hand term of �54� and �55� vanishes when N→�. Although
such an approach does not give any information about the way they vanish in thermodynamic limit
�we can always write it is o�1��, we can write down our relation without problems since the
presence of D forces them to be at least O�1 /N�. Explicitly, we get

N�q12
3 − 4q12q23

2 + 3q12q34
2 � − N�q12��q12

2 − 4q12q23 + 3q12q34� = o�1� ,

N�q12
4 − 4q12

2 q23
2 + 3q12

2 q34
2 � − N�q12��q12

3 − 4q12q23
2 + 3q12q34

2 � = o�1� ,

i.e., conservation of momentum and energy along the streaming lines of the systems �or along free
trajectories �50�� implies that in the RS regime

�q12
3 − 4q12q23

2 + 3q12q34
2 ��x,t� − �q12��x,t��q12

2 − 4q12q23 + 3q12q34��x,t� � O� 1

N
� ,
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�q12
4 − 4q12

2 q23
2 + 3q12

2 q34
2 ��x,t� − �q12��x,t��q12

3 − 4q12q23
2 + 3q12q34

2 ��x,t� � O� 1

N
� .

Combining the previous results, we get a third relation

�q12
4 − 4q12

2 q23
2 + 3q12

2 q34
2 ��x,t� − �q12�2�q12

2 − 4q12q23 + 3q12q34��x,t� � O� 1

N
� , �56�

which, in particular, we find physically meaningful when setting x=0 and t=�2 because the replica
symmetric assumption on the vanishing of the potential is clearly reflected into the overlap labels
in the last identity.

If now we neglect the magnetic field �h=0� as we are in the replica symmetric regime, the
gauge symmetry holds such that the SK Hamiltonian is left invariant under the transformation
�→��̄, with �̄ as a dichotomic variable out from the N-spin Boltzmann average. Matching Refs.
2 and 7, in fact, it is straightforward to check that gauging the energy conservation we get �again
we stress that it holds only at h=0, and obviously at t=�2 and x=0�

�1 − �q12
2 ���q12

4 − 4q12
2 q23

2 + 3q12
2 q34

2 � � O� 1

N
�

and, consequently,

�q12
4 − 4q12

2 q23
2 + 3q12

2 q34
2 � � O� 1

N
� ,

obtaining the well known relation constraining overlaps.12

VIII. CONCLUSIONS AND OUTLOOK

In this work we built a self-consistent method to solve for the thermodynamics of mean field
systems, encoded by self-averaging order parameters.

Such a method minimally relies on statistical mechanics essentially just on the boundary
conditions of our partial differential equations, and however, involves just straightforward one-
body problems.

Within our approach that we tested on the CW prototype, we obtained the explicit expression
for the free energy as a solution of an HJ equation defined on a 1+1 Euclidean space time, whose
velocity field obeys a suitably defined Burgers’ equation in the same space.

The critical line defining ergodicity breaking is obtained as a shock wave for a properly
defined Cauchy problem. The behavior of the magnetization, thought of as this velocity field, both
in the ergodic and in the broken ergodicity phases has also been obtained rigorously.

As instruments involved in our derivation, we obtained rigorously also the existence of the
thermodynamic limit for the free energy and the self-averaging of the order parameter.

Despite the problems in relating conserved quantities and discrete symmetries, in our continu-
ous framework, Noether theory is straightforwardly applicable and gives the well known factor-
ization of the momenta of the order parameter, as expected, being the CW a mean field model.

Furthermore we applied the method even to the replica symmetric phase of the SK model,
finding full agreement with Guerra’s results and stressing other points as the study of the caustics
�which shares some similarities with the AT line� and the study of the symmetries, which turn out
to be polynomial identities, typical of complex systems �first of all the Aizenman–Contucci rela-
tions�.

We emphasize that, actually, we believe in the method working for a large range of models
�i.e., with general interacting variables as spherical spins, several interacting spins as P-spin
models, etc.�. However, of course, it is still not enlarged to cover the case of not self-averaging
order parameters �which is mathematically challenged even with already structured methods�.
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Furthermore a certain interest should be payed trying to apply the method to finite dimen-
sional problems.

We plan to report soon on these topics and their possible applications.
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