Journal of Theoretical Biology 375 (2015) 21-31

Contents lists available at ScienceDirect - Journal of
T%?ogtical
. 5 ology
Journal of Theoretical Biology '
journal homepage: www.elsevier.com/locate/yjtbi .

Anergy in self-directed B lymphocytes: A statistical
mechanics perspective

@ CrossMark

Elena Agliari®, Adriano Barra ¥, Gino Del Ferraro?, Francesco Guerra ”, Daniele Tantari

@ Department of Computational Biology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
b Dipartimento di Fisica, Sapienza Universita di Roma, Ple A. Moro 2, 00185 Roma, Italy
¢ Dipartimento di Matematica, Sapienza Universita di Roma, Ple A. Moro 5, 00185 Roma, Italy

HIGHLIGHTS

e The network of interacting B and T clones is described as a bipartite spin-glass.

e The latter has the properties of an attractor network (learning and retrieval).

¢ The (idiotypic) network of interacting B clones is described as a diluted ferromagnet.
e T-clones dialogue with a subset of B clones only: those highly connected.

e Those clones (idiotypically too connected) that are not signaled are self-directed.
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Self-directed lymphocytes may evade clonal deletion at ontogenesis but still remain harmless due to a
mechanism called clonal anergy. For B-lymphocytes, two major explanations for anergy developed over
the last decades: according to Varela theory, anergy stems from a proper orchestration of the whole
B-repertoire, such that self-reactive clones, due to intensive feed-back from other clones, display strong
inertia when mounting a response. Conversely, according to the model of cognate response, self-reacting
cells are not stimulated by helper lymphocytes and the absence of such signaling yields anergy. Through
statistical mechanics we show that helpers do not prompt activation of a sub-group of B-cells:
remarkably, the latter are just those broadly interacting in the idiotypic network. Hence Varela theory
can finally be reabsorbed into the prevailing framework of the cognate response model. Further, we
show how the B-repertoire architecture may emerge, where highly connected clones are self-directed as

a natural consequence of ontogenetic learning.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction
1.1. Streamlined summary of the biological problem

The adaptive response of the immune system is performed
through the coordination of a huge ensemble of cells (e.g. B cells,
helper and regulatory T cells, etc.), each with specific features, that
interact both directly and via exchanges of chemical messengers
such as cytokines and immunoglobulins (antibodies) (Janeway
et al, 2005). In particular, a key role is played by B cells, which are
lymphocytes characterized by membrane-bound immunoglobulin
(BCR) working as receptors able to specifically bind an antigen; upon
activation, B cells produce specific soluble immunoglobulin. B cells are
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divided into clones: roughly speaking, cells belonging to the same
clone share the same specificity, that is, they express the same BCR
and produce the same antibodies (hyper-somatic mutations apart
Janeway et al., 2005). When an antigen enters the host body, some of
its fragments are presented to B cells, whereby the clones with the
best-matching receptor, after the authorization of helpers through
direct contact via CD40-CD40L and via cytokines, undergo clonal
expansion and release a huge amount of antibodies in order to kill
pathogens and restore order.

This picture, developed by Burnet (1959) in the 50s and verified
across the decades, constitutes the “clonal selection theory” and,
when focusing on B-lymphocytes only, can be regarded as a one-
body theory (Barra and Agliari, 2010a): The growth (drop) of the
antigen concentration elicits (inhibits) the specific clones, without
any interaction among lymphocytes themselves.

In the 1970s a step forward was taken by Jerne who suggested
that, beyond antigenic stimulation, each antibody must also be
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detected and acted upon by other antibodies; as a result, the
secretion of an atypically large concentration of antibodies by an
active B clone (e.g. elicited due to an antigen attack) may even
prompt the activation of other B clones that best match those
antibodies (Jerne, 1974). This mechanism, experimentally well
established (see e.g. Cazenave, 1977; Bernabé et al., 1981), under-
lies a two-body theory and (possibly) gives rise to an effective
network of clones interacting via antibodies, also known as an
“idiotypic network”.

The B repertoire is enormous (~10° in humans) and continu-
ously updated due to the random V(D)] recombination occurring
during B-cell ontogenesis in the bone marrow (Janeway et al.,
2005). The latter process ensures the diversity of the repertoire
and therefore the ability of the immune system to recognize many
different antigens. On the other hand, it also inevitably produces
cells able to detect and attack self-proteins and this possibly
constitutes a serious danger. In order to avoid the release of such
auto-reactive cells, safety mechanisms are at work during the
ontogenesis. Nevertheless some of them succeed in escaping
through “receptor editing” (self-reactive cells substitute one of
their receptors on their immunoglobulin surface) (Kitamura, 2008)
or “clonal anergy” (self-reactive cells that have not been elimi-
nated or edited in the bone marrow become unresponsive,
showing reduced expression level of BCR) (Goodnow, 1992, 2005).

In the last decades, two main theories have been proposed to
explain clonal anergy, both supported by experimental evidence:
The former, introduced by Lundkvist et al. (1989), Stewart et al.
(1989), Varela and Coutinho (1991), considers B cells only, while
the latter, referred to as the “model of cognate response” (or
sometimes “two-signal model”) (Goodnow, 1992, 2005; Goodnow
et al., 2010), considers both B and helper T cells.

According to Varela theory, each clone y corresponds to a node
in the idiotypic network, with a (weighted) coordination number
(i.e. the sum of the binding strengths characterizing its possible
interactions with all other clones) W,,, which represents a measure
of the tolerance threshold of the clone. Thus clones corresponding
to poorly (highly) connected nodes respond readily (hardly) to the
corresponding stimulus. In this way the idiotypic network main-
tains a regulatory role, where a “core” of highly (weighted)
connected clones acts as a safe-bulk against self-reactions. Experi-
mental evidence of this phenomenon has been obtained over the
years (Lundkvist et al., 1989; Stewart et al., 1989; Varela and
Coutinho, 1991; Lider et al., 1988; Urbain et al., 1977) and even
recently (Shoenfeld, 2004). Even so, given the huge size of the
B-repertoire and evidences against Varela theory as well, an
extensive experimental exploration has always been out of reach,
in such a way that the initial promising perspectives offered by the
theory were never robustly actualized, and interest in this expla-
nation diminished.

Conversely, according to the modern model of the cognate
response, the activation of a B-cell (i.e. antibody production and
clonal expansion of its lineage) requires two signals in a given
(close) time interval: the first one is delivered by the antigen
binding to the BCR, the second one is provided by a helper T
lymphocyte, which links to B-cells via direct interaction through
CD40-CD40L and elicits the B-growth through cytokines. Cytokines
constitute a wide class of cell-signaling protein molecules (Theze,
1999) and some of them, e.g. interleukines and interferones, work
as immunomodulating agents; the vast majority of these are
produced by helper T cells. The effect of a particular cytokine on
a given cell depends on the cytokine, its abundance, etc., and it can
induce either up regulation or down regulation, leading to
enhancement or suppression of the immune response respec-
tively. For example, Interleukin-2 (IL-2) acts in an autocrine
manner to stimulate B and T cell proliferation, while Interleukin-
10 (IL-10) inhibits responses by blocking activation of accessory

cell functions and the synthesis of pro-inflammatory cytokines
such as IL-2 (or TNF-a and IL-5) (Janeway et al., 2005). In general,
the secretion of a certain cytokine depends on the inflammatory
state and on the concentration of ligands on helper receptor (TCR)
(Kuchroo et al., 2002), but we will not retain this level of
resolution in this paper.

In the absence of the second signal, armed B clones enter a
“safe mode” (Kitamura, 2008; Schwartz, 2005), being unable to
either proliferate or secrete immunoglobulins. This explanation for
anergy has largely prevailed: being based on a local mechanism,
its experimental evidence is indisputable. However, it raises the
puzzling question of how self-directed B-cells become “invisible”
to helpers (Hartley et al., 1991). Furthermore, it does not incorpo-
rate previous findings of Varela's picture, whose experimental
evidence should however be consistent with this prevailing
scheme.

The aim of this paper is to try to answer these questions
through techniques stemming from theoretical physics. Interest-
ingly, the scenario we outline robustly evidences the fact that
highly connected B cells are transparent to helpers, hence merging
the two mechanisms for anergy: Note that this statement does not
imply that Varela theory and the model of the cognate response
(two-signal model) are equivalent, but, only that Varela theory can
be framed within the model of the cognate response and, in this
sense, the two theories are only different perspectives of the
prevailing one, the cognate response. The major benefit from our
investigation is that now all data collected in support of Varela
theory, which where somehow split from the rest of modern
immunology can be easily framed within the actual scaffold.

1.2. An overview on the statistical mechanics approach

In this work we adopt a statistical-mechanics approach to
modeling the immune system. Being theoretically firmly based
on the law of large numbers and on the maximum entropy
principle (Jaynes, 1957a, 1957b), statistical mechanics aims to
figure out collective phenomena, possibly overlooking the details
of the interactions to focus on the very key features: trying to
summarize its philosophy in a practical example, despite some-
how counterintuitive, there is absolutely no need of all the
microscopic descriptions regarding a molecule of water to predict
that a huge ensemble of these molecules will change its phase (e.g.
liquid, vapor) when tuning its temperature across the evaporation
threshold. Although this perspective certainly implies a certain
degree of simplification, it has been successfully applied to a wide
range of fields, e.g., material sciences (Allen and Tildesley, 1987;
Frenkel and Smith, 2002), sociology (Daurlauf, 1999; Brock and
Daurlauf, 2001), informatics (Mezard and Montanari, 2007), eco-
nomics (Coolen, 2005; Bouchaud and Potters, 2000), artificial
intelligence (Amit, 1992; Coolen et al., 2005), and system biology
(Martelli et al., 2009; Kaufman, 1969). Statistical mechanics was
also proposed as a candidate instrument for theoretical immunol-
ogy in the seminal work by Parisi (1990). In fact, many emergent
properties of the immune system can be nicely fitted within the
systemic perspective offered by statistical mechanics, as, for
instance, discussed by Germain: “as one dissects the immune
system at finer and finer levels of resolution, there is actually a
decreasing predictability in the behavior of any particular unit of
function”, furthermore, “no individual cell requires two signals
(...) rather, the probability that many cells will divide more often is
increased by costimulation” (Germain, 2001). Understanding this
averaged behavior is just the goal of statistical mechanics.

Moreover, concepts such as “decision making”, “learning process”
or “memory” are widespread both in immunology (Chakraborty and
KoSmrlj, 2011; Depino, 2010; Floreano and Mattiussi, 2008) and in
statistical mechanics (or, more precisely, in a branch of the field,



E. Agliari et al. / Journal of Theoretical Biology 375 (2015) 21-31 23

namely neural networks Amit, 1992; Coolen et al., 2005). Indeed,
clones, existing as either active or non-active and being able to
collectively interact, could replace the digital processing units (e.g.
flip-flops in artificial intelligence Hopfield and Tank, 1987, or neurons
in neurobiology Tuckwell, 2005) and cytokines, carrying either
eliciting or suppressive chemical signals, could replace connections
(e.g. cables and inverters in artificial intelligence, or dendrites and
synapses in neurobiology).

As a last remark, we stress that, as it is typical in a statistical
mechanics formalization (see e.g. Coolen et al., 2005), we first
develop the simplest scenario assuming symmetry for the inter-
actions among B and T cells. This assumption has the strong
advantage of allowing us to create a clear equilibrium picture that
is still able to capture the main features of the system under study,
whose off-equilibrium properties (immediately achievable in the
opposite, fully asymmetric, limit) should yet retain strong simila-
rities with the present picture and will be addressed in future
investigations (as has already been done in the neural counterpart
Amit, 1992; Coolen, 2005).

Having sketched the underlying philosophy of our work, we
highlight our two key results: We first consider the B-T network
and show that T cells are unable to communicate with highly
connected B-cells; Then, we consider the set of B clones and show
that a minimal (biased) learning process, during B-cell clonal
deletion at ontogenesis, can shape the final repertoire such that
highly connected B clones are typically self-directed. These two
points together allow us to merge the model of the cognate
response and the theory of Varela.

The plan of the paper can be summarized by the following
logical concatenation of notes:

Part 1: Anergy induced by T cells and the model of the cognate
response.

® Experimental evidence: The (bulk of the) response of B-cells is
prompted by two signals: the presence of an antigen and the
“consensus” by a helper T lymphocyte (Janeway et al., 2005).

® Theoretical consequence: The ensembles made by B and helper
clones interact as a (diluted Agliari et al., 2012a, 2013b) bilayer
restricted Boltzmann machine (a two-party spin-glass in the
language of disordered statistical mechanics).

® Experimental evidence: Helper cells do not prompt response in
B-cells self-directed, thus the latter behave anergically.

Part 1I: Anergy induced by B cells and the theory of Francisco
Varela.

® Experimental evidence: Antibodies (as any other protein) are
not random objects (for instance, randomly generated proteins
may not even be able to fold into a stable structure Rabello et
al.,, 2008) (Mora et al., 2010).

® Theoretical consequence: Therefore, once expressed through e.
g. bit-strings of information, for example, the related entropy is
not maximal (see Appendix Three).

® Theoretical consequence: In the idiotypic network where
B-clones are nodes and (weighted) links among them mirror
the interactions through the related antibodies, nodes with
higher weighted connectivity are more inhibited in reaction
and typically self-directed.

Global consequence: The system of helpers' is (thermodynami-
cally) equivalent to an associative “neural” network, whose equili-
brium states correspond to optimal orchestrations of T cells leading
to maximal signal on the proper B clones, which are therefore

1 Note that we mean both helpers and suppressors with the term “helpers”.

prompted to react. Remarkably, the activation of B-clones with
highly weighted connectivity corresponds to negligible basins of
attraction in the free energy landscape of T cells, hence they are
rarely signaled by helpers. This last point allows to incorporate
Varela theory for anergy directly within the two-signal model
scenario.

1.3. Preliminary remarks on the structure of the B-network

There are several approaches in estimating the structure, size
and shape of the mature B repertoire. For instance, in their
pioneering works, Jerne and Burnet used a coarse-grained descrip-
tion in terms of epitopes and paratopes (Jerne, 1974; Burnet, 1959),
which Perelson extended (and symmetrized) introducing a shape
space (Perelson, 1997). De Boer and coworkers dealt directly with
peptides of fixed length (Burroughs et al., 2004), while Bialek,
Callan and coworkers recently used the genetic alphabet made up
of the VD] genes codifying for the heavy and light chains of the
immunoglobulins (Mora et al., 2010; Murugan et al., 2012).

Proceeding along a perspective of general information theory,
we associate to each antibody, labeled as y, a binary string ¥, of
length L, which effectively carries information on its structure and
on its ability to form complexes with other antibodies or antigens.
Since antibodies secreted by cells belonging to the same clone
share the same structure, the same string ¥, is used to encode the
specificity of the whole related B clone. In this way, the repertoire
will be represented by the set B of properly generated strings and
its cardinality Np =|B| is the number of clones present in the
system. We expect that L must be relatively short with respect to
the repertoire size Ng, i.e. L=y In N, y e R™ (Barra and Agliari,
2010a). This choice stems from both the probabilistic combinator-
ial usage of the VD] recombination (Mora et al., 2010) (when
thinking of bit-string entries as genes) and direct experimental
evidence (Dreyer and Bennett, 1965) (when thinking of bit-string
entries as epitopes).

Antibodies can bind each other through interactions that are
mainly hydrophobic and electrostatic and chemical affinities range
over several orders of magnitude (Janeway et al., 2005): This
suggests that the more complementary two structures are, the
more likely (on an exponential scale) their binding. We therefore
define y as a Hamming distance

I 7R 7 1
)(;u/_kgl[ /4( y)+ u( ;4)]> ()

to measure the complementarity between two bit-strings ¥, ¥,
and introduce a phenomenological coupling (whose details will be
deepened in Section 4, see also Barra and Agliari, 2010a; Agliari et
al., 2012b)

S oc €%, )

where a tunes the interaction strength. In this way, a network
emerges where nodes are B-clones, and (weighted) links are given
by the coupling matrix J (see Fig. 1 (left column, upper panel), and
Barra and Agliari, 2010a; Agliari et al., 2012b; Brede and Behn,
2001, 2003; Schmidtchen et al., 2012 for details). This formalizes
Jerne's idiotypic network.

For the sake of completeness, we stress that, once a clone has
been selected for expansion, it undergoes a process called “hyper-
somatic mutation” intended to increase its affinity (complemen-
tarity) with the antigen detected (Janeway et al.,, 2005) and to
improve the immune response. In the present paper we do not
enter into these details as we want to analyze the development of
anergy, which is a mechanism at work before clonal expansions.

As several links may stem from the same node, say y, it is
useful to define its weighted degree as W, = Zf“: 1Juw- When the
system is at rest, we can argue that all B clones are inactive, so that
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Fig. 1. (left column) Schematic representation of the immune networks considered here, where we fixed N 6:=30 and Nz=20. The upper graph describes the B-B network:
each B-cell x4 corresponds to a different arch, whose length is proportional to the related weighted degree W, and the interaction between cells 4 and v corresponds to the
link connecting the related arches, whose thickness is proportional to J,,. The middle plot describes the bipartite B-T network: the external set of white circles corresponds
to the set of T cells, while the internal set of colored circles corresponds to the set of B cells and their size is proportional to the related weighted degree, according to the plot
in the left panel. The interaction ¢ between T cells and B cells can be either excitatory (bright link) or inhibitory (dark link). The lower graph describes the T-T network: the
white circles correspond to the set of T cells and connections between them are drawn according to the formula ¥, (&¢/)/W,, as explained in the text; the color and
thickness of the link carry information about the sign and the magnitude of the related coupling, respectively. (right column) Schematic representation of the consequence of
retrieval capabilities by the helper network in the bipartite network made up of both helpers and B-clones (different colors in the B-branch account for different clonal
specificity): in the upper panel a free-energy landscape of the helper network with four minima (each corresponding to retrieval of instruction for a particular B-clone) is
shown. The black ball represents the state of the system, which is driven into the yellow hole (e.g. due to antigenic stimulation). In the bipartite network (lower panel) this
configuration corresponds to all helpers (white nodes) parallel to the sign of the cytokines linking them to the yellow B clone, here green (black) links represent positive
(negative) cytokine interactions. This layout confers maximal strength on the retrieved clone, which undergoes clonal expansion. The latter is represented in the middle plot
where the size of the four different B clones is shown versus time. (For interpretation of the references to color in this figure caption, the reader is referred to the web version
of this paper.)

if clone y is stimulated, W), can be interpreted as the “inertia” of
clone y in reaction, due to all other cells (Barra and Agliari, 2010b):
This mechanism naturally also accounts for the “low dose phe-
nomenon” (Janeway et al., 2005; Barra and Agliari, 2010a, 2010b).

Finally, it is worth considering how W is distributed as this
provides information about the occurrence of inertial nodes in the
system. Exploiting the fact that couplings J,, are log-normally
distributed (Agliari et al., 2012b), one can approximate the
distribution P(W) as

P(W) ~ e~ (los Wowip2e?, 3

1
W 2ro
in such a way that mean and variance read as E(W)=e#+7"/2,
V(W) = (€% —1)e2#+9° respectively (a detailed discussion on the
parameters ¢ and px can be found in Section 3 and in
Appendix Five).

We underline that the log-normal distribution evidenced here
agrees with experimental findings (Carneiro et al., 1996a, 1996b).

Furthermore, its envelope remains log-normal even if the network
is under-percolated (Agliari et al., 2012b). Thus, in order to achieve
a broad weighted connectivity, the effective presence of a large,
connected B-network is not a requisite, but, basically, the mere
existence of small-size components, commonly seen in experi-
ments (Cazenave, 1977; Bernabé et al., 1981), is needed.

2. Anergy induced by T cells and the cognate response model
2.1. Stochastic dynamics for the evolution of clonal size

We denote with b, € R the “degree of activation” of the B clone
p with respect to a reference value by, such that if the clone is in its
equilibrium state (i.e. at rest) b, =by, while if the clone has
expanded (is suppressed) b, > bg (b, < bg). Again, we adopt the
simplest assumption and fix a unique reference state bo=0 for all
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the clones; the case of tunable by was treated in Agliari et al.
(2011).

Concerning T cells, both helper and regulatory sub-classes
share information with the B branch in a complex ensemble of
paths (Janeway et al., 2005) that here we summarize saying “via
cytokines”. Hence, we group them into a unique ensemble of size
Nr, and denote the state of each clone by h; (i=1, ..., Nt); hereafter
we call them simply “helpers”. We take h;= + 1 such that h;=+1
stands for an active state (secretion of cytokines) and vice versa for
—1. Actually the choice of binary variables is neither a biological
requisite nor a mathematical constraint, but it allows us to keep
the treatment as simple as possible, while still preserving the
qualitative features of the model that we want to highlight.

Now we introduce the relative dynamics for the Np B clones and
the Ny T clones. As the state of the former is denoted by a real variable,
the corresponding dynamics will be of Langevin-type. As the state of
the latter is denoted by a binary variable, the corresponding dynamics
will be of Glauber-type. These are not restrictions imposed by the
theory, but rather the simplest (and more CPU-time efficient) ways to
show the spontaneous emergence of the phenomenon of anergy,
which is the goal of the present investigation.

We define € = Np/Nr and, to take advantage of the central limit
theorem (CLT), we focus on the infinite volume (thermodynamic
limit, TDL), such that, as Ng— 0o and Ny — oo, € is kept constant.
This mirrors the fact that the global amount of helpers and of
B-clones is comparable.

Recalling that B clones receive two main signals, i.e. from other
B clones and from T clones, we can introduce the Langevin
dynamics for their evolution as

db,u(Ak)

z Tt =b+—e r z E Ny At ﬁnﬂ, @)

where 7 rules the characteristic timescale of B cells and /3 tunes the
amplitude of a Brownian noise 7. The coupling between the y-th B
clone and the i-th T clone is realized by the ensemble of cytokine
& (see Fig. 1, left column, middle panel) and Ay is a generic k
antigenic peptide that interacts with B-clones through the cou-
pling Ji,, which is mediated by antigen presenting cells (APC)
(Janeway et al., 2005).

As long as all the interactions are symmetric, the Langevin
dynamics admits a Hamiltonian description as

db,(A d
l:i(t k)— db, HN, Ny (b, R, 5)"‘\/7’7,4,

where, by integration over by,

% Juw 2 "
= (by—by hib,
NTNB g:1 zl1 ) \/‘121,4;15 :

- Z JurbuAy. (5)
pn=1

Each contribution appearing in the rh.s. of the previous
equation is now deepened:

® The first term comes from B-clone interactions via immuno-
globulin, which is translated into a diluted “ferromagnetic”
coupling J,, >0 (as B clones tend to “imitate” each another)
modulating an elastic membrane-like interaction. According to
this term, two different B-clones at different concentrations
will tend to reach a common equilibrium at an intermediate
level of activation: the presence of a clone stimulates the
activation of the other, but at the same time their Abs tend to
neutralize each other until reaching a dynamical equilibrium
configuration where the two effects are balanced.

® The second term represents the coupling between B and T
clones, mediated by cytokines. The cytokine &' is meant to

connect cells of the i-th helper clone and those of the p-th B
one. The message conceived can be either excitatory (&' = +1,
e.g. an eliciting IL-2) or inhibitory (& = —1, e.g. a suppressive
IL-35) and here is assumed to be a quenched variable, such that
the one with inhibitory effects can be associated to a regulatory
cell, conversely, the one with stimulating effect can be asso-
ciated to an helper cell. Note that the choice + 1 for & is only a
convenient requisite for encoding two opposite effects, while,
clearly, their world is by far richer (Kuchroo et al., 2002), and, in
principle, also mathematically accessible.

® The third term mimics the interaction of the generic b, clone with
the antigenic peptide Ay (shown by an APC), where ], encodes
their coupling strength and can be defined according to Eq. (2).

Interestingly, in the Hamiltonian (5), the first term recovers Jerne's
idiotypic network theory, the second one captures the two-signal
model and the third one recovers Burnet's clonal selection theory.
Within this statistical mechanics framework the three approaches
are not conflicting, but, rather, interplaying.

As for the helpers, we introduce the Glauber dynamics as

1
P(hl - = h') 1 +exp[2ﬁAHNT Np (hl)]’ (6)
where
My Ny = \/71 2 é:ﬂb h+ Z-]UAI @
ip

Two important (and related) differences, and one consequence,
should be carefully remarked when comparing the two dynamics.

® First, focusing on BCR and TCR couplings, the B-clone dynamics
include an interaction term among B-cells (which accounts for
the idiotypic network mimicking BCR-BCR and BCR-AD inter-
actions), while an analogous term for T cells is neglected in the
helper dynamics. This reflects a structural difference between
TCR and BCR: beyond contact interactions, BCR's can also be
coupled also via antibodies (hence they can interact even
beyond a peer-to-peer mechanism, in a “long-range” fashion)
while TCR's cannot (Janeway et al., 2005).

® Second, TCR is expected to be much more specific than BCR
because the clonal deletion experienced by T-cells during ontogeny
in the thymus is much more selective than the corresponding
deletion undergone by B-cells in the bone marrow (Kosmrlj et al.,
2009; Murugan et al., 2012; Efroni et al., 2003, 2007), hence the
capacity of interaction between TCRs is further reduced.

® Although beyond the focus of the present paper, we stress that
these differences are also reflected in the interactions with the
antigens: B cells and T cells are coupled with antigens through
different clone-specific parameters, i.e. J and J, respectively.
Hence the cross-correlation (JJ) tunes the degree of overlap
between their receptors (and acts as a measure of the efficiency
of the double check realized by B and T cells through the
cognate-response): Clearly, for (JJ>1, T cells do not provide
any safety mechanism, while if the correlation is null, hence
(JJ)—0, no antigen would be able to arm both B and T cells and
the immune response would not be mounted: Between these
two extrema the diversity of BCR and TCR constitutes the
hallmark of the response of adaptive immune systems.

We now proceed with the exploration of the structure of the phase-
space displayed by the model and, to this end, we drop the antigenic
terms, that is, the “external fields” (hence we set A;,=0 for all k). This
is a standard procedure in statistical mechanics as it allows to obtain
a complete picture of the unperturbed landscape. In particular, we
will see that the system displays several equilibrium configurations,
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each corresponding to the activation of a particular subset of clones
tuning a particular response. Then, fields (i.e. antigens) will be
resumed to show that the presence of an antigen prompts the
system to select the configuration where activated clones are exactly
those able to attack that particular antigen (and not self-ones).

Moreover, close to equilibrium, the anti-antibodies can be
neglected (b,b, ~0), thus, remembering that Z,’,"B]ﬂy:W,l, the
global (field-free) Hamiltonian of the process reduces to

__ 1B H
- HNT,NB UHNT Ng

N,
LS wop
21/:1

HNT,NB

\/_Tl;1 bg:l glhby (8)
This means that, while for any given configuration of {h;} the
Langevin dynamic for the B clones has an equilibrium distribution
P(blh) c e P and, in the same way, for any given configuration
of {b,}, P(hlb)oce” ﬂHNrNB is the equilibrium distribution for the
Glauber dynamic of T clones, the global coupled process admits an
equilibrium joint probability distribution

P(b,h|p;&,]) oc e~ P , 9

whose properties will be addressed in the next section through
statistical mechanics.

2.2. The equivalence with associative networks

Once the effective Hamiltonian is defined through Eq. (8), the
classical statistical mechanics package can be introduced. This
implies the partition function

B Np.Np
—(B/2) ¥ Wb +(B//N) X E'hib,
ZNT«NB (ﬂlg; W) = Z H u=1 ! i
{hy
(10)

and the quenched free-energy

AB.clPW) = lim - InZy, n,(BIE W), (11
Nr.Np—ocoNT T8
where [ averages over both the £ and the W distributions.
Notice that the idiotypic contribution in the stochastic process
(4) implicitly generates a Gaussian distribution for the activity of
the B-clones

P(bu|W) oc exp(— Wb, /2). (12)

This is consistent with commonly observed data and ensures
convergence of the integrals in the partition function (10). Inter-
estingly, W, ! plays as variance for P(by).

A crucial point is that the integrals over {b,} in the partition
function (10) can be calculated explicitly to give

f Nl Ny g”

2 Z
ij

ZN,,NE(/)’|§,W)=ZEXP< J hh) (13)
{hy Wy

by which the complete Hamiltonian (where a generic antigen A is
present for the sake of completeness) ruling helper's dynamics can
be extracted and reads as

1 Nl (N S
HNTNB_ 2N; E <§VV,, hih;—

Nr

ZJahiA,
ij i
which is consistent with Eq. (7), upon marginalization over {b,}. The
previous expression deserves attention because it corresponds to a
(log-normally weighted) Hopfield model for neural networks (Barra
et al, 2012; Amit, 1992) (see Fig. 1, left column, lower panel). Its
Hebbian kernel suggests that the network of helpers, driven by the
antigen A, is able to orchestrate strategies (thought of as patterns of
cytokines) if the ratio € = Ng /N1 does not exceed a threshold (Agliari
et al,, 2011). This is in agreement with the breakdown of immuno-

surveillance occurring whenever the amount of helpers is too small
(e.g. in long-term HIV infections) or the amount of B is too high (e.g.
in strong EBV infections): These capabilities of the system are
minimally addressed in the present paper and again we refer to
Agliari et al. (2011) for further insights and to Agliari et al. (2013c,
2012a) for the investigation of its parallel processing performances
(namely the ability of managing several clones simultaneously
Vertosick and Kelly, 1989; Agliari et al., 2013a, 2013b). At a first

glance, it may appear strange that a quiescent T-cell, say flj (hence
Fl]' = —1), supplying the clone b, (candidate for clonal expansion) for

an inhibiting cytokine 5; (hence 5; = —1 too) results in stimulation

(as the field experienced by b, due to this T-clone is S;Ej =+1);
however, as schematically shown in the bottom right picture of
Fig. 1, the B-clone receives the maximum expansion signal when all
the T-cells (helpers) secreting eliciting cytokines are firing as well as
when all the Suppressors (hence
T-cells secreting inhibitory signals) are quiescent (for otherwise
conflicting signals would weaken B expansion).

2.3. High connectivity leads to anergy

To prove that “high connectivity (in the idiotypic network)
leads to anergy” we need to show two things: The first is that
highly connected B-clones are not signaled by helpers, and this
will be achieved in this section. The second step consists in
showing that highly connected B-clones are usually self-directed,
and this will be studied in the next section.

As anticipated, the network made up of helper cells can work as
a neural network able to retrieve “patterns of information”. There
are overall Np patterns of information encoded by cytokine
arrangement {£} and the retrieval of the pattern x# means that
the state of any arbitrary i-th T clone agrees with the cytokine &,
namely h;&! = +1. This ultimately means that clone g is maxi-
mally stimulated. A schematic representation of retrieval per-
formed by T cells and of its consequence on the repertoire of B
cells is depicted in the right column of Fig. 1.

Here, with respect to standard Hopfield networks, Hebbian
couplings are softened by the weighted connectivity W), and this
has some profound effects. In fact, the patterns of information
which can be better retrieved (i.e. the clones which can be more
intensively signaled) are those corresponding to a larger signal,
that is, a smaller W. Thus, B-clones with high weighted connec-
tivity (the safe-bulk) cannot be effectively targeted and, in the TDL,
those B-clones exhibiting W —co are completely “transparent” to
helper signaling, hence allowing finally to include data collected in
support of Varela theory into the two-signal model.

Deepening this point is now mainly technical. We introduce the
Np pattern-overlaps (m,), which measure the extent of pattern
retrieval, ie. signaling on clone y, and are defined as
(my) = EN; 'Q(ZN E'hy), where £ is the standard Boltzmann state
(Ellis, 1985) associated to the free energy (11). The Hamiltonian
corresponding to Eq. (13) can therefore be recast as

1 NZN<NE ff"é")hh

Hig Ny (HIE, W) = TIN, 2 W
ij =

NT Ng m

=-= ;1 W, 14)
Now, free energy minimization implies that the system sponta-
neously tries to reach a retrieval state where (m,)— 1 for some .
Of course, this is more likely for clones ¢ with smaller W,,, while
highly connected ones are expected not to be signaled (patholo-
gical cases apart, i.e. no noise ff— oo, or giant clonal expansions
b() - OO)
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Note that (m,)=1 (gauge-invariance apart) means that all the
helpers belonging to the clone i are parallel to their corresponding
cytokine. Hence if &' is an eliciting messenger, the corresponding
helper h; will be firing, conversely for cf;‘ =1 the corresponding
helper h; will be quiescent, so to confer to the b, clone, overall, the
maximal expansion signal (the random environment becomes a
deterministic field).

In order to figure out the concrete existence of this retrieval, we
solved the model through standard replica trick (Mezard et al.,
1987), at the replica symmetric level (see Appendix One), and we
numerically found solutions for the obtained self-consistence
equations, which read off as

(e, )y =& tanh [Bami&' /Wi +/er2) )2z w,
(e, py = tanh? [fm €' /W1 +Verz) )z,

T 1 Ns q
(r(e,p)) = Nlrlinxm”§1 m (15)

In this set of equations, we used the label 1 to denote a test B-
clone p=1, which can be either a self-node (i.e. with a high value
of W4, infinite in the TDL) or a non-self-clone (i.e. with a small
value of Wy, zero in the TDL). While the first equation defines the
capability of retrieval by the immune network as explained above,
q is the Edward-Anderson spin-glass order parameter (Mezard et
al., 1987) and r accounts for the slow noise in the network due
both to the number of stored strategies and to the weighted
connectivity (these equations generalize the Hopfield equations
Amit, 1992 which clearly are recovered by setting W, =1 for all
H= 1: s NB)

As shown in the Appendix Two, the equations above can be
solved in complete generality. Here, for simplicity, we choose =1
as the test-case (hence Bj is the B-clone that has to be expanded)
and describe the outcome obtained by replacing all W), with u # 1
with their average behavior, namely (W)= [dWP(W)W; this
assumption makes the evaluation of the order parameter r much
easier, while still preserving the qualitative outcome.

We now focus on the two limiting cases: W, < (W), which
accounts for a non-self-node, and W{>(W), which mirrors the self-
counterpart.

In the former case, the slow noise is small (vanishing as
(W) — o00). Consequently, the non-self-nodes live in a free environ-
ment and the corresponding equations for their retrieval collapse
to the non-saturated Hopfield model (Amit, 1992). Hence, retrieval
should always be possible (ergodic limit apart), therefore, in this
case, helpers can effectively signal clone 1.

Conversely, in the latter case, for a self-node, it is straightfor-
ward to check that the noise rescaling due to W implies a critical
noise level for the retrieval [5’1 ~ W{1 ~0 (as W; is ideally
diverging in the thermodynamic limit, see Fig. 4 and Section 5).
An alternative view is in terms of the basins of attraction for the
free energy of the B-H network: Mirroring the toy phase diagram
built of four minima (i.e. instructions for B-clones) only of Fig. 1
(top right), in Fig. 2 we show how progressively, while increasing
the connectivity of two (out of the four) clones, their minima in
the corresponding landscape disappear, hence the related B-clones
can no longer be signaled. As a result, under normal conditions,
the retrieval of patterns enhancing self-node clonal expansions is
never performed by helpers: This behavior mimics anergy as a
natural emergent property of these networks.

3. Anergy induced by B cells and Varela theory

So far we have shown that helper cells are unable to exchange
signals with highly connected B-clones, however, the reason why

the latter should be self-directed is, so far, still puzzling. We now
build a basic model for the ontogenetic process of B cells, which
solely assumes that self-proteins are not random objects, and we
show that survival clones expressing large self-avidity are those
highly connected.

3.1. Ontogeny and the emergence of a biased repertoire

During ontogenesis in the bone marrow, B-cell survival requires
sufficiently strong binding to at least one self-molecule (positive
selection), but those cells which bind too strongly are also deleted
(negative selection). Such conditions ensure that surviving B cells
are neither aberrant nor potentially harmful to the host (KoSmrlj
et al., 2009, 2008).

To simulate this process, we model the ensemble of self-
molecules as a set S of strings @, of length L, whose entries are
extracted independently via a proper distribution. The overall
number of self-molecules is |S| = Ns, thatis, g =1,...,Ns.

As stated in the Introduction, although a certain degree of
randomness seems to be present even in biological systems,
proteins are clearly non-completely random objects (Rabello et
al.,, 2008): Indeed, the estimated size of the set of self-proteins is
much smaller than expected from randomly generated sets (Mora
et al., 2010). Within an information theory context, this means that
the entropy of such repertoire is not maximal, that is, within the
set S some self-proteins are more likely than others (see Appendix
Three).

In order to account for this feature, we generate S extracting
each string entry i according to the simplest biased-distribution
1+a
2
where d(x) is the Dirac delta (returning 1 if x=0 and 0 otherwise)
and ae[—1,1] is a parameter tuning the degree of bias, i.e. the
likelihood of repetitions among string-bits. Of course, when @ =0
the complete random scenario is recovered. We stress that here,
looking for minimal requisites, we neglect correlations among
string entries (Mora et al., 2010), in favor of a simple mean-field
approach where entries are identically and independently
generated.

As underlined above, a newborn B cell, represented by an
arbitrary string ¥, undergoes a screening process and the condi-
tion for survival can be restated as

Ip< glga?s({;((&”, D)} < x> (17)

Pre(@ @) = 8+ 1) sk -1 E 16)

xp and yy being the thresholds corresponding to positive and
negative selection, respectively.

As explained in Appendix Four, the value of the parameters y,
and yy can be fixed according to indirect measurements, such as
the survival probability of new-born B cells. It is widely accepted
that human bone marrow produces daily ~107 B cells, but only
~10% are allowed to circulate in the body (Chakraborty and
KosSmrlj, 2011; KoSmrlj et al., 2008). The remaining 90% undergo
apoptosis since they are targeted as self-reactive ones
(Wardemann et al., 2003; Allman et al, 1993; Rolink et al.,
1998); therefore the expected survival probability for a new-
born B cell is Pg,y = 0.1 (see Fig. 3, left panel).

Thus, having properly fixed y, and yy, we extract randomly and
independently a string ¥ and we check whether Eq. (17) is
fulfilled; if so, the string is selected to make up the repertoire 3.
We proceed sequentially in this way until the prescribed size Ng is
attained (see Appendix Four for more details).

Before proceeding it is worth noticing that the final repertoire
B is expected to exhibit a certain degree of inhomogeneity
possibly described by a proper probability distribution including
self-addressed cells as well. However, due to the mean-field
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S R

Fig. 2. Schematic representation of the (free-energy) basins of attractions for a toy system starting (at left) with four minima (hence four retrievable patterns). Each
minimum contains information addressed to the corresponding B-clone so that four B-clones By, By, B3, B4 can be instructed in the initial configuration. From left to right we
fix W, = W, =1 always, while we increase progressively W; = W5 =1,5,10, 100 (and we show the resulting basins of attraction from left to right). Note that at the value of
the weighted connectivity W; = W3 =100, the corresponding minima completely disappear. Hence instructions to the corresponding B-clones (which are broadly
interacting as their W is much higher than W, = W4 = 1) cannot be supplied by helpers.
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Fig. 3. From left to right: the three panels show plots from simulations where we generated random strings ¥ and we compared them with those in S which are generated
according to the distribution of Eq. (16). Strings ¥ fulfilling the condition (17) are retained and their survival probability Ps,, is measured and plotted versus a (left panel).
The final repertoire 5 also proves to be biased with degree a depending on @ (central panel). Moreover, we measured the Spearman correlation coefficient p, averaged over 5,
between W, and maxo < s{x(¥,.®)} (right panel). Note that a positive value denotes the existence of correlation and gives strong numerical evidence for Varela's theory. Data
represented in these plots refer to a system where we fixed the size of the B-repertoire N5 = 10° and y=2, c=0.5, A=0.4, yp=0.6L (see Appendix Four of the Supplementary
Information file for more details). Data were averaged over 10° realizations. The rightmost figure represents a portion of the B-T network: colored and white circles represent
B and T cells, respectively; green and black lines mean interactions via cytokines, while springs of different size mean idiotypic coupling of different magnitude. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

assumption underlying Eq. (16), we expect that no fine structure that interactions are based on complementarity, the set 3 presents
for B is captured. A possible way to include this feature is to “hubs” because nodes associated to strings which deviates from
incorporate an ultrametric structure (Mezard et al., 1987) to obtain the typical biased pattern are expected to interact with the whole
a tree-like organization for the repertoire. This would implicitly bulk as well as with the self-repertoire. This picture is in (quali-
define a hierarchy of antibodies similar to the “cognitive para- tative) agreement with recent findings (Madi et al., 2011).
digm” (which actually shares several similarities with our To corroborate this fact we measured the correlation p between
approach), discussed for instance by Cohen (1992a, 2007), which the weighted degree W, of a node and the affinity maxe.s
suggests the existence of “dominant self-antigens” able to properly {x(¥,, D)} with the self-repertoire finding a positive correlation
channel the immune response. (see Fig. 3, right panel). We also checked the response of the
Here, following our assumptions we analyze the final repertoire B-repertoire when antigens are presented, finding that, when a
and, as anticipated, we find that the occurrence of string entries is string @, e S is taken as antigen, the best-matching node, display-
not completely random, but is compatible with a biased distribu- ing large W, needs an (exponentially) stronger signal on BCR in
tion such as order to react.
1+a 1—a Such results mirror the theory of Varela (Stewart et al., 1989;
Prep(‘P¥|a) = 6(FY +1)——+6(P — D—— (18) Varela and Coutinho, 1991), according to which “self-directed” nodes
display a high (weighted) connectivity, which, in turn, induces
where a proves to be correlated with a. inhibition. Moreover, the distinction between self-addressed and

More precisely, positive values of a@ (i.e. corresponding to non-self-addressed is not dichotomic but rather continuous, consis-
strings with more entries equal to 0) yield a biased mature tently with Cohen (1992b).

repertoire with a >0 (see Fig. 4, central panel) as this ensures Finally, it is worth underlining that, by taking a biased dis-
that a self-string and a string from the repertoire B typically tribution for string entries (i.e., a # 0), the distribution P(W) for
display a low degree of complementarity and therefore no auto- weights occurring in the idiotypic network still retains its loga-

reactions are expected. Consequently, in the set B generated in this rithmic shape, namely
way, nodes with larger W, are those carrying strings more

dissimilar with respect to the typical one, namely those displaying ~ P(W) = N 20%, (19)
a relative large number of entries equal to 1. Such strings are also W2z
likely to exhibit large affinity with the self-repertoire. with
Otherwise stated, due to negative selection, the B repertoire
displays a bias concordant with the one of the self-repertoire S, for Np())?

(20)

otherwise two arbitrary strings from B and S, respectively, could
interact strongly. Now, as a consequence of the bias and the fact \/U) +({*a— (J> )/Ng
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Fig. 4. Upper panels: three examples of idiotypic networks with decreasing connectivity (from A to C), referring to the particular choice «=0.7, N=10* and to different values
of a (see also Agliari et al., 2012b). Lower panels: in the left plot a phase diagram depicting the distribution of the interaction strengths of the idiotypic network is shown.
More precisely, y=2 being fixed, we highlight different regions of the (a?,«) plane, each corresponding to a different behavior of the average coupling E(J) = {J)q and of the
variance V(J) = (%), — (2, as explained by legend. Different behaviors of E(J) and V(J) can be recast into different topological regimes as visualized by the graphs depicted in
the lower panels, representing particular realizations of the idiotypic network. In the right plot the cumulative of P(W) is shown for the upper panel network corresponding
to A (triangles) and C (squares), while circles represent real data on mice performed via ELISA technology in Carneiro et al. (1996a, 1996b). Note that while an overpercolated
network (case A a) — whose existence has been criticized over the years - is in contrast with data from mice (e), an under-percolate network (case C o) made up of motifs

commonly seen in experiments (Cazenave, 1977) displays remarkable agreement.

2 0% —N5()2
o° =log { Na()2 +2}, 21
where (J), and (J?), are, respectively, the mean value and the mean
squared value of coupling J,, defined in Eq. (2). A detailed
derivation of these values can be found in the Appendix Five.
Here we simply notice that, by properly tuning a and «, one can
recover, in the thermodynamic limit, different regimes character-
ized by different behaviors (finite, vanishing or diverging) for the
average E(J) = (J); and the variance V() = (%), —{J)2, respectively,
as reported in Fig. 4.

4. Discussion

In this paper we have modeled a subset of the adaptive
response of the immune system by means of statistical mechanics.
In particular, we have focused on the emergent properties of the
interacting lymphocytes starting from minimal assumptions on
their local exchanges and, as a fine test, we have searched for the
emergence of subtle possible features such as the anergy shown by
self-directed B-cells.

First, we reviewed and framed into a statistical mechanics
description, the two main strands for its explanation, i.e. the
cognate response model and the idiotypic network. For this task
we described the mutual interaction between B cells and (helper
and suppressor) T cells as a bi-partite spin glass, and we showed
its thermodynamical equivalence to an associative network made
up of T cells (helpers and suppressors) only. Then, the latter is
shown to properly orchestrate the response of B cells as long as
their connection within the bulk of the idiotypic network is rather
small. In the second part we adopted an information theory
perspective to infer that highly connected B clones are typically

self-directed as a natural consequence of learning during
ontogeny.

By merging these results we get that helpers are always able to
signal non-self-B lymphocytes, in such a way that the latter can
become activated, proliferate and produce antibodies to fight
against non-self-antigens. On the other hand, self-lymphocytes,
due to their large connectivity within the idiotypic network, do
not sense the signal sent by helpers.

Therefore, a robust and unified framework where the two
approaches act synergically is achieved and in particular Varela
theory is finally absorbed in the two-signal model. Interestingly,
this picture ultimately stems from a biased learning process at
ontogenesis and offers, as a sideline, even a theoretical backbone
to the theory of Varela. We stress that, while certainly Jerne's
interactions among B cells act as a key ingredient (and the
existence of anti-antibodies or small reticular motifs has been
largely documented), an over-percolated B network is not actually
required as the distribution of the weighted clonal connectivity
remains broad even for extremely diluted regimes (far beyond the
percolation threshold). This point may deserve further attention
because, from a mathematical and physical perspective, at the
time both Jerne and Varela suggested a possible role for an
underlying network of chemical exchanges, theories were devel-
oped regarding only overpercolated networks (which do not work
for B-cell interactions), while only recently a satisfactory picture of
underpercolated networks is finally available: Note that outcomes
from both the over-percolated and under-percolated networks
have been shown in Fig. 4 and only the underpercolated is in
agreement with experimental support.

Furthermore, we stress that, within our approach, while the
theory of Varela is reabsorbed into the model of the cognate
response, the converse is not true as clearly other cells (beyond
highly connected ones in the B-repertoire), through other paths,
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may lack helper signaling for other motivations and still become
anergic. Hence the cognate-response model is not necessarily
reabsorbed into the theory of Varela. For instance the entire
hierarchical organization of antigens underlying the theory of
immunological homunculus cannot be resolved within our
replica-symmetric framework (and we plan to develop a full
replica symmetry breaking scenario, where these other features
may spontaneously appear, in future works).

Still, the model developed is able to reproduce several other
aspects of real immune networks beyond showing anergy as a
spontaneous phenomenon, such as the breakdown of immuno-
surveillance by unbalancing the leukocitary formula (the ratio
Ng/Nr), the low-dose tolerance phenomenon, the link between
lymphocytosis and autoimmunity (for instance as is well docu-
mented in the case of A.L.P.S. Agliari et al., 2011), the capability of
the system to simultaneously cope with several antigen (Agliari
et al., 2013c, 2012a) acting as an autonomous parallel processor
and, last but not least, it shows also a remarkable scaling agree-
ment with experimental data on network connectivity.

Despite these achievements, several assumptions underlying
this minimal model could be relaxed or improved in future
developments, ranging from the symmetry of the interactions to
the fully connected topology of the B-T interactions (whose
investigation has already started in Agliari et al., 2013a, 2013b).
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