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Abstract. In this work we aim to bridge theoretical immunology and disordered
statistical mechanics. We introduce a model for the behavior of B-cells which
naturally merges the clonal selection theory and the autopoietic network theory
as a whole. From the analysis of its features we recover several basic phenomena
such as low-dose tolerance, dynamical memory of antigens and self/non-self
discrimination.
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1. Introduction

The purpose of the immune system is to detect and neutralize the molecules, or
cells, dangerous to the body (antigens, which could be foreign invaders—e.g. viruses
or bacteria—or deranged—e.g. cancerous—cells of the host), without damaging healthy
cells [1]. Despite the evident differences, to accomplish its function the immune system
exhibits properties analogous to the nervous system [11]: it ‘learns’ not to attack healthy
cells and it ‘develops a memory’ of the pathogens encountered as time goes by. In
theoretical immunology there are two main strands to explain the functioning of the
immune system that ultimately represent two approaches, reductionist and systemic, for
the modeling of nature in general. In the first and most popular approach, lymphocytes
basically operate independently or, better, the researcher focuses on the action of the
single lymphocyte and on the details of its interactions (i.e. internal cascade signals,
etc) rather than on the global behavior of all the lymphocytes interacting with each
other. In the second approach, pioneered in immunology by Elrich [19] and Jerne [24],
the immune system is thought of as a whole and designed as a network of cells stimulated
to proliferate by the affinity interactions of their exchanging antibodies (a functional
idiotypic network [27]). Interestingly, the two approaches are not incompatible but
complementary. While the former deals primarily with the response to a stimulus, the
latter allows us to explain the ability to learn and memorize of the immune system and the
tolerance to low doses of antigen [14]. In the past, the immune network theory has been
investigated, although not exhaustively, with disordered statistical mechanics tools [31].
However, recent and deep advances in the field of statistical mechanics of highly diluted
networks [6, 22, 2, 21, 30, 36] now allow us to combine the two viewpoints described above
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and to develop a unified and quantitative theory. Indeed, reductionist and systemic
approaches can be recovered as special cases of null and non-negligible connectivity,
respectively. This unification should be extremely promising from a biological as well
as a mathematical point of view.

We start by introducing the one-body theory and noticing that in immunology it
corresponds to what we call a ‘Burnet-like behavior’. Then we extend our model including
the two-body theory and show that it recovers what we call a ‘Jerne-like behavior’; as a
natural consequence, we will show how this leads to the approach of Counthino–Varela for
the systemic self/non-self distinction [39, 40]. After these results, we show how hysteresis,
with its remanent magnetization, can play the role of the generator of memory cells from
plasma cells, according to the Clonal Selection Theory [7, 8]. Finally, we show how low-
and high-dose tolerances, as well as the bell-shaped response, appear as emergent features
in our model, while in theoretical immunology analysis they are often postulated a priori.

Even though not exhaustive, our model may act as an alternative starting backbone
for this field of research.

2. Fundamentals of theoretical immunology

The main constituents of an (adaptive) immune system are B-lymphocytes (B-cells),
together with T-lymphocytes, and free antibodies produced by B-cells. B-cells and T-
cells have specific protein molecules on their surfaces, called receptors. The receptors of
B-cells are antibodies (Immunoglobulin, Ig), which can recognize and connect to antigens
in order to neutralize them. Finally, the purpose of killer T-cells is to attack and kill
infected or deranged cells. The receptors of B- and T-cells have specific three-dimensional
structures, called ‘idiotypes’. A family of B-cells generated by a proliferating B-cell are
called ‘clones’; a clone and the antibodies which it produces have the same idiotypes.

In a healthy human body at rest, it is estimated that the total number of ‘sentinel’
clones generated from a single B-cell (the amount of identical lymphocytes) is about 102

to 104, the total number of clones amounts to some 1012–1014, such that diverse clones are
around 1010–1012, and the number of antibodies is about 1018. Remarkably, the amount of
epitopes/idiotopes belonging to a given antibody are present in a smaller number, i.e. of
the order of 102.

When antigens enter the body, those clones which recognize it will bind to it. Aided by
helper T-cells, B-cells of an activated clone will proliferate, becoming antibody-producing
cells. The latter will secrete large numbers of free antibodies, which attach to the antigen,
neutralize it and trigger killer cells into action.

Each clone of B-cells always produces the same antibody (hyper-mutations apart,
which will not be discussed here—see, for instance, [23, 38]).

The above is (a part of) ‘clonal selection theory’ and has been confirmed
experimentally.

We notice that this approach, pioneered by Burnet [7], takes into account an enormous
amount of different data, and absolutely does not rely on interactions among different
lymphocytes, as it deals with the external antigen interaction with the immune system,
where the network works at a completely hidden level.

The idea of an internal network appeared early in immunology [19], and its
concretization happened when Jerne, in the 1970s, suggested that each antibody must
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have several idiotopes which are detected by other antibodies. Via this mechanism,
an effective network of interacting antibodies is formed, in which antibodies not only
detect antigens, but also function as individual internal images of certain antigens and
are themselves being detected and acted upon. These mutual interactions provide a
‘dynamical memory’ of the immune system, by keeping the concentrations of antibodies
(especially those representing encountered antigens) at appropriate levels. This can be
understood as follows: at a given time a virus is introduced into the body and starts
replication. As a consequence, at high enough concentrations, it is found by the proper B-
lymphocyte counterpart: let us consider, for simplicity, a virus as a string of information
(i.e. 1001001). The complementary B-cell producing the antibody Ig1, which can be
thought of as the string 0110110 (the dichotomy of a binary alphabet in strings mirrors the
one of the electromagnetic field governing chemical bonds) which then will start a clonal
expansion and will release high levels of Ig1. As a consequence, after a while, another
B-cell will meet 0110110 and, as this string never (macroscopically) existed before, attacks
it by releasing the complementary string 1001001, which, actually, is a ‘copy’ (internal
image) of the original virus but with no DNA or RNA charge inside. The interplay among
these keeps a memory of the past infection. However, in the 1990s, the network theory
was considered to be marginal: it did not appear as a part of a whole although it gave an
appealing mechanism for the implementation of memory in the immune system.

Beyond memory storage, another feature of the immune system is very impressive: it
is able to attack antigens but not host molecules or cells. Immunologists name this ability
as the distinction among self and non-self : self/non-self discrimination is of fundamental
importance as several diseases may appear if it is non-properly working (this is the case
of auto-immune pathologies [34]).

In a nutshell, following the classical vision and according to the (sometimes called
reductionist [17]) antigen-driven view of the immune system, newborn lymphocytes learn
from the beginning the difference among self and non-self (it is assumed the existence of an
a priori learning in specific regions of the body—i.e. thymus—where all the lymphocytes
are made to interact with self and all the responding ones are killed). As a consequence,
the presence of auto-immunity in the system is due to a non-proper elimination of those
B-cells which, at their early stage, failed to learn such a difference. This defines the
allopoietic viewpoint.

It must be stressed that, without a two-body interaction, which makes possible the
existence of a network, this property cannot be spread on the whole system and, indeed,
we must assume that each lymphocyte stores the whole required information by itself,
namely the reductionist viewpoint.

However, within the idiotypic network theory started by Jerne, the emergence of
an interaction network allows the following speculations on autopoiesis due to Varela,
Counthino and co-workers [39, 40]: the mutual interaction among lymphocytes rules out
the need for an a priori learning for these cells, as tolerance to self may turn out to
be an emerging property of the immune network thought of as a whole. In fact, it is
the modulation and the mutual influence among interacting immunoglobulins (and their
corresponding clones indirectly) that makes clones to be either in a quiescent or responsive
state as a consequence of a given stimulus, which may be due to ‘self’ or ‘non-self’ agents.
In other words, antibodies are randomly produced and, as a consequence, may react
against anything (their idiotopes form somehow a ‘base’ in a proper space): however,
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clones producing self-reacting antibodies are always taken to be quiescent, in such a way
that they can produce only low—but not zero—concentrations of Igs [34] by the interaction
with the network of all the others. Indeed, we stress that experimentally low doses of self
antibodies are commonly found in healthy bodies [35, 33].

The last point we highlight is the so-called ‘tolerance phenomenon’: in a nutshell the
immune system is not reactive when stimulated by a ‘too low dose’ of antigen, whose
particular value strongly depends on the particular antigen. Furthermore, even too high
a dose of antigen may yield tolerance as well.

3. Antibodies as vectors in the base of idiotopes

We model the B-core of the immune system as an imitative, eliciting system: stimulation
is expressed by a firing lymphocyte towards its nearest neighbors while suppression is
expressed by a quiescent one. Hence, in our scheme, it is not the sign of the coupling to
establish the kind of interaction (either imitative or anti-imitative), which here is always
positive or zero, but the state of the single lymphocyte itself.

We want to formalize this scenario within a statistical mechanics context where
interacting antibodies ultimately reflect the interaction among lymphocytes due to the
one-to-one postulate previously introduced: from a ‘field theory language’ [28], the
antibodies are the ‘fields’ that the lymphocytes produce for interacting: these can interact
both among themselves and directly with the lymphocytes. As the ratio among the
amount of antibodies versus lymphocytes is much greater than 1 we focus primarily on the
antibody–antibody interaction: how to extend this to the former case is straightforward
as lymphocytes display antibodies on their external surface.

In order to get a network of Igs links, we relax the earlier simplifying assumption of
‘a perfect mirror of a mirror’ for the interacting Igs. In fact, we are going to consider
interactions among antibodies formed by idiotopes such that the better the matches
among idiotopes, the stronger the stimulus received by the respective clones via their
immunoglobulins.

We consider the most generic antibody as a chain made up of the possible expression
of L idiotopes. The assumption that each antibody can be thought of as a string of
the same length is based on two observations: the molecular weight for each Igs is very
accurately close to 15 × 104 and each idiotope on average is as large as each other [16].

Therefore, the elementary L idiotopes are

ξ1 = (1, 0, 0, . . . , 0)

ξ2 = (0, 1, 0, . . . , 0)

· · ·
ξL = (0, 0, 0, . . . , 1),

(1)

and they form an orthogonal base in the L-dimensional space of the antibodies Υ. A
generic antibody ξi can then be decomposed as a linear combination of these eigenvectors
ξi = λ1

i ξ
1 + λ2

i ξ
2 + · · · + λL

i ξL, with λμ
i ∈ (0, 1) accounting for the expression (1) of

a particular μth idiotope on the ith antibody or its lacking (0). For example, both
the strings (1001000), (1001001) are reactive with (0110110), but the second is better
as it matches all the entries. As a counterpart the strings with several differences
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in idiotope/epitope linking (i.e. 0111110 in the same example) do not match and
the corresponding lymphocytes are disconnected in the network they belong to (it is
straightforward to understand that there are no links inside the lymphocytes of the same
clone, namely they act paramagnetically among each other). The fact that the interaction
of two Igs is stronger when their relative strings are more complementary responds to
the kind of interaction among their proteic structures: protein–protein interactions are
dominated by weak, short-range non-covalent forces which arise when the geometry of the
two proteins is complementary.

This naturally enlarges the idea of ‘a mirror of a mirror’ into an effective affinity
matrix Jij ≥ 0, which, although described throughout in the next section, we use now as
the starting point of the following speculation.

4. One-body and two-body Hamiltonian

The Hamiltonian H encodes the interactions among lymphocytes as well as the
interactions among lymphocytes and the external antigens, providing a measure for the
‘energy’ of the system.

First of all, let us formalize the interactions taking place within the system. We
consider an ensemble of M identical lymphocytes σα

i , α = 1, . . . , M , all belonging to the
ith clone and N all different clones i = 1, . . . , N . In principle M , the size of available
lymphocytes exhibiting the same idiotypicity (in an healthy human body at rest), can
depend on the clone itself. Anyhow, here, for the sake of simplicity, we are going to use
the same M for all the clones.

If the match among antibodies had to be perfect for recognizing each other, then in
order to reproduce all possible antibodies obtained by the L epitopes, the immune system
would need N ∼ O(2L) lymphocytes. Conversely, if we relax the hypothesis of the perfect
match, only a fraction of such a quantity is retained to manage the repertoire, such that
we can define the following scaling among lymphocytes and antibodies:

N = f(L) exp(γL), (2)

where γ ∈ [0, 1] encodes for the ratio of the involved lymphocytes (the order of magnitude)
and f(L) is a generic rational monomial in L for the fine tuning (as often introduced in

complex systems [37], we will see that f(L) ∼ √
L).

Interestingly, a far-from-complete system is consistent with the fact that binding
between antigens and antibodies can occur even when the match is not perfect:
experimental measurements showed that the affinity among antibody and anti-antibody
is of the order of 65/70% or more (but strictly less than 100%) [29, 7, 9, 32]. Furthermore,
the experimental existence of more than one antibody responding to a given stimulus
(multiple attachment [10]) confirms this statement.

We can think of each lymphocyte as a binary variable σα
i = ±1 (where i stands for

the ith clone in some ordering and α for the generic element in the i subset) such that,
when it assumes the value −1, it is quiescent (low level of antibody secretion) and when
it is +1 it is firing (high level of antibody secretion).

The ability of newborn lymphocytes to spontaneously secrete a low dose of its
antibody (corresponding to its genotype) even when not stimulated is fundamental in
order to retain the network equilibrium and can be deepened in [25]. We stress once
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again that within our approach the upper bound of the available firing lymphocytes is
conserved M �= M(t) and the exponential growth of a clone i exposed to the external
antigen is translated here in the evolution from a scenario where almost all its M are in
the state σi = −1 to a scenario with all σi = +1, due to the effect of a positive local field
acting on the ith subset.

To check immune responses we need to introduce the N order parameters mi as local
magnetizations:

mi =
1

M

M∑

α=1

σα
i , (3)

where i labels the clone and α the lymphocyte inside the clone’s family; the global
magnetization is given by the average of all the mi as 〈m〉 = N−1

∑N
i mi.

It is important to stress that the magnetizations, which play the role of the principal
order parameters, account for the averaged concentration of firing lymphocytes into the
immune network, such that, as mi ∈ [−1, 1], we can define the concentrations of the firing
ith lymphocytes as

ci ≡ exp

[
τ
(mi + 1)

2

]
, τ = log M. (4)

Note that, in general, the state of lymphocytes is not constant and, as a result, mi and
ci are time-dependent. Moreover, the concentration is not normalized and ranges over
several orders of magnitude, from O(100) when no firing lymphocyte is present up to
O(1012) ∼ M when all the lymphocytes of the ith clone are firing. Strictly speaking, the
quiescence of a given clone is a collective state where ∼102/103 clones are present; this can
be understood, within a thermodynamical framework, relaxing the idea that the system
works at ‘zero temperature’ (that is not really physical), in fact, a small amount of noise
would change the quiescent concentration from strictly 1 to a slightly higher value.

Now, let us turn to the external field and start with the ideal case of perfect coupling
among a given antigen and its lymphocyte counterpart: let us associate the field hk with
the antigen displaying a sharp match with the kth antibody, hence described by the string
ξ̄k with entries ξ̄μ

k = 1 − ξμ
k . In general, the coupling with an arbitrary antibody i is hk

i .
Following classical statistical mechanics [5, 18], the interaction among the two can be

described as

H1 = −
N∑

i=1

hk
i mi. (5)

To take into account a ‘network’ of clones we should include their interaction term
H2, that is

H2 = − 1

N

N,N∑

i<j

Jijmimj, (6)

where the prefactor 1/N accounts for the fact that the summation is performed on two
variables and it correctly yields an extensive average of the energy.

Hence, with Jij > 0, two generic clones i and j in mutual interaction, tend to imitate
one another: if i is quiescent, it tries to make j quiescent as well—suppression—while if
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the former is firing it tries to make the latter fire—stimulation—and symmetrically j acts
on i.

The matrix Jij encodes how the generic i and j elements are coupled together such
that its high positive value stands for an high affinity among the two; conversely, a null
value accounts for the missing interaction.

The complete Hamiltonian, taking into account both antigenic stimulus and
interactions among lymphocytes, is H = H1 + H2.

If the affinity matrix is symmetric, so that detailed balance holds, the stochastic
evolution of our immune model approaches the Maxwell–Boltzmann distribution, which
determines the thermodynamic equilibria.

Finally, we notice that, when mapping from physics, we found implicitly paved the
bridge with immunology; in fact, as suggested in [12], the two important ‘thermodynamic
observables’ of the immune system are its economy and its specificity. Still following [12],
if we assume that the immune system tries to maximize its specificity (entropy in our
parallel) and to minimize its cost (energy in the same parallel) the way to statistical
mechanics is naturally merged.

5. Topology and affinity pattern of the emergent network

We consider a system made of N idiotypically different clones, each denoted by an italic
letter i and associated with a binary string ξi of length L encoding the specificity of the
antibody produced. Each entry μ of the ith string is extracted randomly according to
the discrete uniform distribution in such a way that ξμ

i = 1 (ξμ
i = 0) with probability

1/2; this choice corresponds to a minimal assumption which can be possibly modified, yet
preserving the structure of our model.

Now, given a couple of clones, say i and j, the μh entries of the corresponding strings
are said to be complementary, iff ξμ

i �= ξμ
j . Therefore, the number of complementary

entries χij ∈ [0, L] can be written as

χij =

L∑

μ=1

[ξμ
i (1 − ξμ

j ) + ξμ
j (1 − ξμ

i )] =

L∑

μ=1

[ξμ
i + ξμ

j − 2ξμ
i ξμ

j ]. (7)

The affinity between two antibodies and, more generally, among two entities described
by a vector in the idiotype basis, is expected to depend on how complementary their
structures are (see also [4, 20]). In fact, the non-covalent forces acting among antibodies
depend on the geometry, on the charge distribution and on hydrophilic–hydrophobic
effects which give rise to an attractive (repulsive) interaction for any complementary
(non-complementary) match. Consequently, in our model we assume that each
complementary/non-complementary entry yields an attractive/repulsive contribution. In
general, attractive and repulsive contributions can have different intensities and we
quantify their ratio by a parameter α ∈ R

+. Hence, we introduce the functional
fα,L : Υ × Υ → R as

fα,L(ξi, ξj) ≡ [αχij − (L − χij)], (8)

which provides a measure of how ‘affine’ ξi and ξj are. In principle, fα,L(ξi, ξj) can range
from −L (when ξi = ξj) to αL (when all entries are complementary, i.e. ξi = ξ̄j). Now,
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when the repulsive contribution prevails, that is fα,L < 0, the two antibodies do not see
each other and the coupling among the corresponding lymphocytes Jij(α, L) is set equal

to zero; conversely, we take Jij(α, L) = exp[fα,L(ξi, ξj)]/〈J̃〉α,L, 〈J̃〉α,L being a proper
normalizing factor.

Otherwise stated, nodes can interact pairwise according to a coupling Jij(α, L), which
is defined as

Jij(α, L) ≡ Θ(fα,L(ξi, ξj))
exp[fα,L(ξi, ξj)]

〈J̃〉α,L

, (9)

where Θ(x) is the discrete Heaviside function returning x if x > 0 and 0 if x ≤ 0.
Some remarks are in order here. The choice of an exponential law connecting the

affinity fα,L(ξi, ξj) between two strings and their relevant coupling Jij follows empirical
arguments. In fact, we expect the latter to depend sensitively on how complementary
the two strings are, possibly spanning several orders of magnitude. Notice that this
choice is also consistent with general experimental findings [41] and Parisi’s intuition [31].
Moreover, the prefactor 1/〈J̃〉α,L is taken in such a way that Jij has5 a finite (unitary)

average for any value of α and L. More precisely, 〈J̃〉α,L is just the average of J̃ij(α, L) ≡
Θ(fα,L(ξi, ξj)) exp[fα,L(ξi, ξj)], calculated over all possible matchings between ξi and ξj.

This system can be envisaged by means of a graph G, whose nodes represent
lymphocytes and a link between them is drawn whenever the pertaining coupling is
positive (see figure 1 for a sketch of the graph). The number of nearest neighbors of
the generic site i, referred to as the coordination number or degree, can be recovered as a
sum of adjacency matrix elements: ki =

∑
j∈V Aij .

In our model the graph describing the interaction among lymphocytes is a random
graph where links are drawn with probability pα,L which, in general, depend on the way
strings ξ’s are extracted and on the way affinity fα,L is defined.

Here, due to the uniform distribution underlying the extraction of ξ’s, we have that
the probability that ξμ

i and ξμ
j are complementary equals 1/2 independently of i, j and

μ. Therefore, the probability that they display χij (hereafter simply χ) complementary
entries follows a binomial distribution which is

P(χ) =

(
1

2

)L(
L
χ

)
. (10)

Correspondingly, we have that lymphocytes i and j are connected together, namely that
fα,L(ξi, ξj) > 0, when χij(α + 1) − L is positive (see equation (8)) and this occurs with
probability

pα,L =

L∑

χ=�L/(α+1)�+1

P(χ), (11)

where �x
 = max{n ∈ N |n ≤ x}.

5 Henceforth we will drop the dependence on α and L, if not ambiguous.
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Figure 1. Representation of the idiotypic network. Each clone is represented by
only one of its lymphocytes; the thickness of links denotes the strength of the
corresponding coupling.

Now the emergent graph, denoted as G(N, pα,L), is a weighted, random graph
exhibiting non-trivial correlations among links. In fact, it is easy to see that, if i is
connected to both j and k, it is rather unlikely that the latter are also connected together,
that is, triangles correspond to frustrated configurations. Nonetheless, when α is large
the requirements for two strings to be connected is weaker and the complementarity they
need to display can be rather small. Under such conditions the link probability pα,L (see
equation (11)) can be assumed as independent of the chosen couple, so that the degree
distribution for G(N, pα,L) can be written as

P (k) =

(
N
k

)
pk

α,L(1 − pα,L)N−k, (12)

representing the probability that a generic node has k nearest neighbors; the average
degree follows as 〈k〉 = pα,L(N − 1) or, more simply, for N large, we use 〈k〉 =
pα,LN . Notice that, consistent with the above-mentioned assumptions, a binomial degree
distribution is typical of Erdös–Renyi random graphs [26]. In figure 2 we show some
numerical results which corroborate the validity of equation (12) when α is close to 1.

As is well known, by increasing the link probability from 0 upwards, the (infinite)
Erdös–Renyi random graph undergoes a percolation transition; namely there exists a
critical link probability pc such that, when the link probability starts to get larger than
pc = 1/N , a so-called ‘giant component’, displaying a size O(N), i.e. infinite in the
thermodynamic limit, suddenly appears [26].

Analogously, for G(N, p) large values of pα,L will give rise to a complete graph of
N vertices, while small values of pα,L will give rise to a graph disconnected in a set of
components. Therefore, it is important to analyze in more detail the behavior of pα,L as
a function of α and L. For α = 1 it is straightforward to see that p1,L = 1/2, due to the
symmetry of the distribution P(χ) with respect to χ = L/2.
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Figure 2. Degree distribution P (k) for different values of N , L and α; data
from numerical (•) and analytical estimates (green lines), see equation (12), are
compared: the good agreement confirms the analytical derivation based on the
lack of correlation among links.

More generally, for large L we can adopt a continuous description and write pα,L (see
equation (11)) as

pα,L ≈
∫ L

L/(α+1)

P(χ) dχ ≈
∫ L

L/(α+1)

√
2

πL
e−(χ−L/2)2/(L/2) dχ (13)

=
1

2

[
Erf

(√
L

2

)
− Erf

(
(1 − α)

(1 + α)

√
L

2

)]
, (14)

where we replaced the distribution P(χ) with the normal distribution, having mean L/2
and variance L/4; in fact, for L large enough, the skew of the distribution P(χ) is not
too great and we can approximate the binomial distribution by the normal distribution.
From equation (13) we can calculate the derivative of pα,L with respect to α, which is

∂pα,L

∂α
≈
√

2L

π

1

(1 + α)2
e−(L/2)α̃2

, (15)

where we called α̃ ≡ (1 − α)/(1 + α).
We now turn to the coupling strength introduced in equation (9) and we notice that

we can write J̃ij = exp[χij(α + 1) − L] whenever χij > L/(α + 1), otherwise J̃ij = 0.
Hence, its mean value, averaged over all possible matchings between two binary strings,
can be written as (see equations (9) and (11))

〈J̃〉α,L ≈
∫ L

L/(α+1)

eχ(α+1)−L

√
2

πL
e−(χ−L/2)2/(L/2) dχ

=
1

2
e(L/8)(α2+6α−3)

{
Erf

[
α2 + 4α − 1

2(1 + α)

√
L

2

]
+ Erf

[
1 − α

2

√
L

2

]}
. (16)

doi:10.1088/1742-5468/2010/07/P07004 11

http://dx.doi.org/10.1088/1742-5468/2010/07/P07004


J.S
tat.M

ech.
(2010)

P
07004

A statistical mechanics approach to autopoietic immune networks

Now, we focus on the regime L � 1 and, according to the value of the (finite)
parameter α, we distinguish among the following cases:

• α = 1
The expressions in equations (14)–(16) can be evaluated exactly obtaining,
respectively:

p1,L ≈ 1

2
Erf

(√
L

2

)
=

1

2

[
1 −O

(
e−L/2

√
L

)]
, (17)

∂pα,L

∂α

∣∣∣
α=1

≈ 1

2

√
L

2π
, (18)

and

〈J̃〉1,L ≈ 1

2
eL/2 Erf

(√
L

2

)
=

1

2
eL/2

[
1 −O

(
e−L/2

√
L

)]
≈ eL/2pα,L. (19)

• α < 1:

pα,L ≈
√

1

2πL

1

α̃
e−L/2α̃2

[
1 + O

(
1

L

)]
, (20)

hence pα,L → 0 as L → ∞. Moreover, for α > −1 +
√

2 ≈ 0.41:

〈J̃〉α,L ≈ e(L/8)(α2+6α−3)

[
1 −O

(
e−L(1−α)2/8

√
L

)]
, (21)

which is diverging for α > −3 + 2
√

3 ≈ 0.46.

• α > 1:

pα,L ≈ 1 −O
(

e−(L/2)α̃2

√
L

)
, (22)

hence pα,L → 1 as L → ∞. Moreover, analogously to the previous case:

〈J̃〉α,L ≈ e(L/8)(α2+6α−3)

[
1 −O

(
e−L(1−α)2/8

√
L

)]
. (23)

The asymptotic expressions above are all consistent with numerical results which
indeed confirm the validity of the Gaussian approximation already for L ∼ 102. Moreover,
we notice that, in the limit L → ∞, the link probability p1,L is a step function with
diverging derivative in α = 1 and pα,L = 1 for α > 1, while pα,L = 0 for 0 ≤ α < 1. In
figure 3 we show the behavior of pα,L as L and α are varied.

In order to characterize the dilution of the graph under study, a proper parameter is
the average coordination number 〈k〉 = pα,LN , which must be finite in order to have a
well-defined thermodynamic limit for N → ∞ [2, 15, 21]; all other cases would be either
trivial (〈k〉 → 0) or unphysical (〈k〉 → ∞).
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Figure 3. Left: link probability pα,L for a system of N = 4000 lymphocytes as a
function of α and L. Right: standard deviation σJ

α,L as a function of the system
size N ; the parameter L is properly rescaled in order to keep 〈k〉 fixed and equal
to 60 (red) or 100 (black); different symbols represent different choices for α, as
shown by the legend. The straight line represents the first bisector.

Then, the number of nodes N follows as

N =
〈k〉
pα,L

≈ 2〈k〉
Erf
(√

L
2

)
− Erf

(
α̃
√

L
2

) , (24)

where we used equation (14). In particular, for α < 1, one can write (see equation (20))

N ≈
√

2πL 〈k〉α̃ exp

(
L

2
α̃2

)
, (25)

which should be compared with equation (2), to get f(L) ∼ √
L.

The role of topology in the idiotypic network has been stressed by Varela et al [39],
who showed that the larger the number of antibodies recognized by a given antibody ξi

(i.e. the larger ki), the lower the reactivity of the antibody itself, i.e. the greater their
degree of tolerance. As a result, self/non-self discrimination turns out to be an emergent
property of the immune network which is therefore able to organize the mature repertoire.
In our model the adjacency matrix is actually weighted since links are endowed with a
weight Jij , so that we introduce an effective, or weighted, degree wi as

wi(α, L, 〈k〉) ≡
N∑

j=1

Jij(α, L). (26)

Notice that the local quantity wi provides finer information with respect to ki,
being directly connected with the ‘internal’ stimulus felt by lymphocyte i: recalling the
Hamiltonian of equation (6), and assuming, for the sake of simplicity, the zero-noise limit
so that all lymphocytes are quiescent (mj = −1, ∀j), the local field acting on i is just

ϕi = −∑N
j=1 Jijmj = wi.

For a given realization of the system (α, L, 〈k〉) the average weighted degree can be
calculated as

w̄ =

∑N
i=1 wi

N
=

∑N
i=1

∑N
j=1 Jij

N
= (N − 1)J̄ ≈ (N − 1)〈J〉α,L, (27)
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where the last approximation holds for large N and L; analogously, we can write
〈w〉α,L,〈k〉 ≈ w̄. Hence, being that 〈J〉α,L equals 1 by definition, we have that 〈w〉α,L,〈k〉
scales linearly with N .

The variance for Jij can be estimated via equations (9) and (10):

〈J2〉α,L =
1

〈J̃〉2α,L

∫ L

L/(α+1)

exp [2χ(α + 1) − 2L]

√
2

πL
e−(χ−L/2)2/L/2 dχ

=
e(L/2)(α2+4α−1)

2〈J̃〉2α,L

[
Erf

(
α(3 + α)

1 + α

√
L

2

)
− Erf

(
α

√
L

2

)]
.

Now, with some algebra and recalling equation (16), we get the following estimate:

〈J2〉α,L ≈ 2e(L/4)(α+1)2

[
Erf

(
α(3+α)

1+α

√
L
2

)
− Erf

(
α
√

L
2

)]

[
Erf

(
α2+4α−1
2(1+α)

√
L
2

)
+ Erf

(
1−α

2

√
L
2

)]2 (28)

=
1

2
e(L/4)(−α2+2α+1) 1

α
√

2πL

[
1 −O

(
1

L

)]
. (29)

After noticing that, for 1 − √
2 < α < 1 +

√
2 the exponent is positive, yielding

〈J2〉α,L � 〈J〉2α,L = 1, we can write the standard deviation for the coupling strength
as

σJ
α,L ≈

√
〈J2〉α,L ∼ 1

4
√

L
e(L/8)(−α2+2α+1). (30)

Moreover, due to the uncorrelatedness among Jij ’s, one can use Bienayme’s theorem
and write

σw
α,L ≈

√
N〈J2〉α,L ≈ e(L/8)(−α4+6α2+3)/(1+α)2 , (31)

where in the last expression we used equation (25).
In figure 3 we show, as a function of N and for several choices of α, the standard

deviation σJ
α,L; notice that, while N is varied, L is properly scaled in order to keep 〈k〉

fixed. The log–log scale plot highlights a regime, for large enough N , where a power law
growth for σJ

α,L holds.
We conclude this section with a comment concerning the properties of small-length

loops. Due to the lack of a perfect match among antibodies, a given lymphocyte, say
σ1, undergoing clonal expansion, may elicit one (or more) of the best Jerne counterparts
(even spurious states may respond), say σ2. The latter undergoing clonal expansion too
may elicit another lymphocyte among the best Jerne spurious states, say σ3, and so on
in a cascade fashion. Now, since σ1 and σ3 both have large affinity, i.e. complementarity,
with σ2, they are expected to be similar. As a result, possible loops of length l = 3 are
expected to be ‘weak’, corresponding to a frustrated configuration where at least one weak
edge is present, while for l = 4 this kind of frustration can be avoided. In order to check
the intrinsic robustness of a given circuit � = {i1, i2, . . . , il} of length l, we can introduce

the overall strength as J� = l−1
∑l

k=1 Jik,ik+1
, with il+1 ≡ i1. The measurements of J�

performed over several different realizations confirmed the previous remark: the average
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overall strength for l = 4 turns out to be more than twice the one pertaining to l = 3; the
former is larger than 1, while the latter is smaller than 1 (we recall that 1 is the expected
coupling strength).

Moreover, while small loops are rather likely to occur, extensive (of the order of
N) circuits (i.e. a so-called Jerne cascade) do not emerge; the reason is, at least, twofold:
firstly, extensive loops would yield the activation of self lymphocytes which are particularly
inhibited due to their large weighted connectivity, and secondly, each link implies a loss
of information (due to the lack of a perfect match among immunoglobulins) in such a way
that, after some iterations, no other (indirect) responses are possible. Interestingly, these
points are intrinsic in our model and in agreement with experiments [9].

6. Self/non-self recognition

Let us consider again the whole idiotypic network made of N different clones, each
characterized by a specific string of L idiotopes; once α is fixed, the affinity between
two different nodes is specified by equation (8) from which the coupling in equation (9)
follows.

Before turning to the analysis of the distribution P (w) and showing how it naturally
allows us to distinguish between self-and non-self-addressed antibodies, it is worth recalling
the famous experiment led by Stewart, Varela and Coutinho [39, 40]: they measured the
affinity of a collection of antibodies and analyzed the related affinity matrices, finding that
these matrices are organized in blocks. More precisely, they distinguished a high affinity
block, two blocks of groups which are mirrors of each other, and a low affinity remnant;
then they showed that various groups play different roles: the mirror groups provide their
model with various oscillation periods, while highly connected nodes maintain a ‘basic
network background level’ and may be looked on as self-addressed antibodies. Indeed,
their large connectivity prevents them from readily react to a stimulus. This point of view
is extremely interesting as it outlines a natural interpretation of the topological properties
of the immune network. Moreover, from an autopoietic point of view it also sheds light on
the auto-immunity diseases: their origin would therefore lie on the ‘inadequate connection’
of self-reactive clones.

We considered different systems (α, L, 〈k〉) and by numerical analysis we derived
the distribution P (w), which, on a semilogarithmic scale, can be fitted by a Gaussian
distribution; the relevant best fits are represented by the green curves in figure 4. Such
distributions naturally outline three main groups characterized by high (right-hand-
side tail), intermediate (central region) and low (left-hand-side tail) weighted degree,
respectively. Hence, recalling that a large weight implies a low reactiveness, lymphocytes
displaying low and high weighted degree can be labeled as non-self-and self-addressed
lymphocytes, respectively. It is important to notice that, since the distribution P (w)
covers several orders of magnitude, the former will easily react even by low dose of affine
agents, implicitly defining the low-dose tolerance; on the other hand, for larger w, the
ability to react decreases progressively, up to prohibitive values of antigenic concentrations.

Now, starting from P (w) we want to focus on couples of Ig and anti-Ig and figure
out possible correlations in their weighted degrees. We first select non-self-addressed
lymphocytes, namely nodes in the network corresponding to the left-hand side of the
weighted degree distribution, and we look for their most tightly connected neighbors
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Figure 4. Weighted connectivity distributions (green line) for systems made up
of N = 4000 lymphocytes characterized by idiotypic strings of length L = 100
and α = 0.78; the average connectivity 〈k〉 = 290. In blue we show the
distribution of low-connected clones (left panel) or high-connected clones (right
panel) chosen and in red the distribution of the pertaining ‘anti-clones’. Notice
the semilogarithmic scale plot. The insets show the relative matching χij/L
among all the couples Ig and anti-Ig detected in the whole system.

among the remaining N − 1. This way, we distinguish couples (i, ī), where i should be
meant as a lymphocyte producing Ig directed against non-self agents and ī as a lymphocyte
producing so-called anti-Ig, able to respond to a significant growth in Ig concentration,
according to Jerne’s idea of an idiotypic network.

As shown in figure 4, when i belongs to the low weighted degree region, the
corresponding ī typically falls in the intermediate region of the distribution, hence fitting
the ‘mirror block’; this holds for several choices of α, L and 〈k〉 (see the left panel).

Let us now turn to the right-hand side of the weighted degree distribution and,
analogously, we distinguish couples (j, j̄), where j represents a lymphocyte producing
Ig directed against self agents and j̄ is the relevant anti-Ig (see the right panel). In this
case anti-Ig still belongs to the highly connected group, that is they should as well be
meant as directed to self agents. This result is easy to see: since by definition j exhibits a
large weight wj, it follows that, typically, Jjj̄ ∼ wj as the main contribution to wj comes
from Jjj̄ and, analogously, Jjj̄ ∼ wj̄. Otherwise stated, when a highly connected node is
selected, there exists a correlation between wj and wj̄; on the other hand, when a lowly
connected node is considered, the contribution of Jīi to wi and wī, respectively, is small
enough not to bias wī. The very origin of such a different behavior of self and non-self
anti-Ig lies in the wide range spanned by w.

As considered further in the following, anti-Ig’s play a crucial role in the establishment
of memory effects, so that the ‘mirror block’ here acquires the fundamental function of
memory storage. Interestingly, such a memory storage here turns out to be effectively
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managed since it is restricted to non-self-directed Ig only. Conversely, self-directed Ig and
relevant anti-Ig both set up the highly connected group.

7. Low-dose tolerance

In this section we want to investigate the effects elicited by a concentration c of a given
antigen. Let us consider the antigen with specificity ξ̄k, namely displaying a perfect match
with antibody ξk. Therefore we can rewrite the Hamiltonian (2.7) as

H(σ,J,h) = − 1

N

N,N∑

i<j

Jijmimj −
N∑

i=1

ckh
k
i mi, (32)

where ck can be possibly tuned to mimic variations in the antigen concentration. This
way, an arbitrary lymphocyte i is subject to two stimuli, one deriving from the presence
of the antigen and the other from the presence of the remaining lymphocytes. This can
be formalized by saying that the field acting on the ith node is

ϕi = − 1

N

N∑

j=1

Jijmj + ckh
k
i . (33)

It is worth underlining that the coupling between an antigen, say ξ̄k, and a clone, say ξi,
follows the same rule as for the coupling between immunoglobulins (see equation (9)), that
is hk

i is proportional to exp(fα,L(ξi, ξ̄k)) whenever the affinity is positive. As a result, the
presence of an antigen is ‘felt’ differently by clones, according to their reciprocal affinities.

In the absence of any antigen it is reasonable to consider all lymphocytes in a quiescent
state, i.e. mj = −1 (under the assumption of negligible noise) for any j; this provides the
initial state assumed to be stationary when no antigen is at work. Hence, as the field hk

is switched on, we have

ϕi =
1

N
wi − chk

i , (34)

where we used equation (26). Now, if ϕi is negative, the state for the ith lymphocyte
which minimizes the energy is the firing one, namely mi = +1. Hence, assuming that all
lymphocytes are quiescent, the condition for lymphocyte i to fire is

ckh
k
i >

wi

N
. (35)

This means that the minimal concentration necessary in order to elicit an immune response
by i is directly proportional to its degree wi and inversely proportional to its coupling hk

i .
This also suggests that, in the presence of the antigen ξ̄k, the most reactive idiotype is
not necessarily ξi, but rather it may be a spurious one which exhibits the lowest ratio
wi/h

k
i . Interestingly, the threshold mechanism determined by equation (35) consistently

mimics the low-dose tolerance phenomenon: the immune system attacks antigens or, more
generally, proteins, if their concentration is larger than a minimum value, which depends
on the particular protein.

Implicitly this mechanism suggests a possible interpretation even of the high-dose
tolerance: as what elicits a given lymphocyte is the product of the weighted connectivity
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with another agent (antigen or internal molecules) times its concentration (properly
expressed via a magnetization function), it cannot distinguish among self or antigen in
an high dose. Responding to a high dose of antigen should, in principle, allow a response
even to the self, whose defense turns out to be a primary goal.

These analytical estimates have been checked by means of numerical simulations: for
a given system (α, L, 〈k〉) we run several experiments, each for a different applied field
ξ̄i, where the concentration of the antigen is tuned from 0 up to the minimal value c̃i

necessary to elicit an immune response of i; data are reported in figure 6. On the x axis
we set the weighted degree of the first reactive lymphocyte (typically the ith one) and
on the y axis we set the minimal concentration c̃i, multiplied by hi

i = exp(αL); a linear
dependence between w and c̃ is evidenced by the fit, in agreement with equation (35). We
therefore recover the important result from Varela et al [39, 40] that the reactivity of an
antibody is closely related to its degree, where, here, the degree is more specifically meant
as the weighted degree.

The linear scale between c̃ and w has some significant consequences: the tolerated
concentration of antigen directly reflects the (weighted) inhomogeneity of the graph.
Otherwise stated, if the weighted degree spans a range, say O(10k), the tolerated
concentration relevant to all lymphocytes making up the system is expected to span an
analogously wide range. Hence, recalling that non-self-addressed Ig’s belong to the left tail
of the weighted degree distribution, while self-addressed Ig’s lie on the right tail, we have
that the doses typically tolerated by the former are of k orders of magnitude less that those
tolerated by the latter. Now, as previously shown, the weighted degree distribution P (w)
exhibits a standard deviation scaling exponentially with L or, analogously, algebraically
with N , being 1/2 a lower bound for the exponent. As a consequence, we expect that

the region spanned by w grows not slower than
√

N ; this means that for real systems the
difference between doses tolerated by self and non-self is at least O(107).

We finally stress that the low-dose tolerance emerges as a genuine collective effect
directly related to the properties of the idiotypic network and, in particular, on the
distribution of the weighted degree.

8. Multiple responses and spurious states

As explained in section 7, the introduction of a concentration ci of a given antigen
described by the external field hi is able to increase the magnetization (concentration)
of the node (lymphocyte) i, provided that c is sufficiently high. In general, if the
concentration is large enough, several clones, different from i, may prompt a response:
some of them, say j1, . . . , jp (hereafter called spurious, once again in order to stress
similarities with neural networks), respond because of a non-null, though small, coupling
with the external field. Some others, say j′1, . . . , j

′
p′ (hereafter called Jerne states for

consistency), respond because they display a strong interaction Jjj′ with the former or
with the specific Ig i. Spurious states can be very numerous according to the particular
antigen considered and to its concentration; under proper conditions the response of
spurious states can be even more intensive than the specific response from i. In fact,
the reactivity of a given node j is determined not only by the relevant antigenic stimulus
hi

j , but also by its local environment, namely by the concentration of firing lymphocytes
to which j is connected.
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Figure 5. Analysis of spurious states for different realizations of a system made
up of N = 1000 families and M = 10 clones per family; we assumed α = 0.84 and
L = 140. Left panel: field coupling hi

j (for reactive spurious states (triangles))
and interaction strength Jij (for reactive anti-antibodies (circles)) as a function of
their weighted connectivity; each realization is depicted in a different color. Right
panel: schematic representation of connections between reactive antibodies.

While in a neural network framework spurious states correspond to ‘errors’ during
the retrieval (once a stimulus is presented) and should be avoided, in an immune network
spurious states are fundamental to an effective functioning of the whole machinery. In fact,
when an antigen is introduced into the body, all the set of responders (proper lymphocyte
and spurious states) do contribute to attack the enemy and neutralize it. Moreover, the
reaction of spurious states can, in turn, have important consequences on the generation
of memory cells and on the effectiveness of the secondary response. Accordingly, one can
investigate whether it is possible to figure out proper strategies which can limit or increase
the number of such spurious states.

Here, we just want to analyze the overall response of the system, outlining which
kind of clone does react, that is, we distinguish between spurious states and Jerne states.
Results for different realizations of a system (α, L, 〈k〉), where the antigenic concentration
is set as c ∼ 102c̃, are shown in figure 5; different symbols are used for spurious states
(triangles) and for Jerne states (circles). For such concentrations the number of reactive
spurious states is approximately twice the number of reactive Jerne states and a clear
correlation between their weighted connectivity Jj′i/Jjj′ is also shown. Interestingly, Jerne
states require a larger stimulus to react and this is due to the fact that the reaction is not
directed, but rather mediated by the specific Ig i or by a spurious state j.

Furthermore it is also important to stress that apparently, without the introduction of
spurious states, the amount of antibodies is greater than the amount of lymphocytes and
this would be in conflict with the first postulate of immunology: consistency is obtained
thanks to the lack of a perfect match among antibodies (or antibody and antigen), which
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Figure 6. Left: threshold concentration c̃ of antigens ξhi as a function of the
weighted connectivity wi of the first reacting family, in systems with parameters
N = 1000, α = 0.84, 〈k〉 ∼ 150 (triangles) and N = 3000, α = 0.75, 〈k〉 ∼ 40
(circles), respectively. For both cases we used M = 100, L = 140 and a level of
noise much below the critical value. Right: numerical solution of equation (39):
different values of 〈k〉 correspond to different closed curves, whose internal region
provides the values of α and L which satisfy the inequality of equation (39),
namely the region of retrieval.

allows multiple attachments, ultimately accounting for a large over-counting of different
responses.

9. Dynamical memory

As is well known, the immune system is able to develop memory effects; for this to happen
the mutual interaction among lymphocytes is crucial. The activation of a lymphocyte i
must therefore be followed by the activation of the relevant anti-antibody ī, which, in turn,
may elicit the anti-anti-antibody ¯̄i and so on in a cascade fashion. It is just the modulation
and mutual influence among such interacting antibodies that keeps the concentration of
antibodies themselves at appropriate levels, which provides memory storage within the
system. In this section we want to analyze under which conditions, if any, a full firing state
of lymphocyte i, i.e. mi = 1, can determine a non-null concentration for the anti-antibody
ī to react.

Let us consider a system characterized by parameters α, L and 〈k〉 in such a way that
N is determined by equation (24). Assuming that mi = 1 and mk = −1 for any k �= i, we
have that, all in all, node ī is subjected to a field ϕī given by the presence of the other
N − 1 families:

ϕī = − 1

N

⎛

⎝
∑

j �=ī

Jijmj + Jīimi

⎞

⎠ =
1

N
(wī − 2Jīi), (36)

where we used
∑

i Jij = wi. We therefore derive that ī is also firing if

wī < 2Jīi. (37)
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As shown in section 6, anti-antibodies corresponding to non-self-addressed Ig typically
belong to the so-called mirror block of the affinity matrix and they display an average
connectivity wī ≈ 〈J〉α,L(N − 1). Moreover, the affinity between i and ī can be estimated
as Jīi ≈ 〈J〉α,L + 2σJ

α,L, since the coupling between Ig and anti-Ig lies on the right tail of
the coupling distribution. Therefore, recalling 〈J〉α,L = 1, we can rewrite equation (37)
as

N − 1 < 2(1 + 2σJ
α,L). (38)

Now, we can use equations (24) and (28) to write the previous expression as a function of
L, α and 〈k〉:

2〈k〉
Erf

(√
L
2

)
− Erf

(
α̃
√

L
2

) < 3 + 4
√

2e(L/4)(α+1)2

×

√
Erf

(
α(3+α)

1+α

√
L
2

)
− Erf

(
α
√

L
2

)

Erf
(

α2+4α−1
2(1+α)

√
L
2

)
+ Erf

(
1−α

2

√
L
2

) . (39)

A better insight into the previous expression can be achieved from figure 6 (right
panel) which shows its numerical solution for different values of 〈k〉 (each depicted in a
different color): for a given average degree 〈k〉, the region of the plan (α, L) contained
within the pertaining curve satisfies equation (39). For instance, let us assume 〈k〉 = 1012

and L = 140, then α must not be larger than approximately 0.75 if we want that a
response from the anti-anti-Ig follows the reaction of a specific Ig. By analyzing figure 6,
we notice that the less diluted the network, the smaller the region of ‘retrieval’. Indeed,
if we fix a given point on the (α, L) plane, increasing 〈k〉 implies a larger N and this
contrasts with the satisfiability of equation (39). On the other hand, this result is rather
intuitive as, when the coordination is large, the anti-antibody is less reactive with respect
to the stimulus. As for the region corresponding to large L and relatively large α, this
never overlaps with the retrieval region. In fact, for those values σJ

α,L is relatively small.

10. Summary

In this paper we pioneered an alternative way for theoretical immunology by plugging it
into a well-defined disordered statistical mechanics framework: our work is not meant as
an exhaustive picture of the (adaptive response of the) immune system, but rather as a
starting point in modeling its universal features by means of this technique.

We stress that, in our model, once the amount of available epitopes and their
distributions is given (namely the amount of ξ’s together with their distribution),
everything can be worked out. In particular, in the complex system framework we
developed, the immune network naturally achieves/recovers, qualitatively and partially
quantitatively, the following properties:

• The Burnet clonal expansion theory appears as the standard one-body response of
the system.

• The multi-attachment among antibodies is a natural property of the system and gives
rise to the Jerne network.
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• The Jerne antibody network, which is obtained as a random graph, encodes
dynamically the memory of the encountered antigens.

• The Varela–Counthino self/non-self distinction appears as an emerging property of
such a network.

• The low-dose tolerance is the inertia of the network when subjected to a response to
external fields.

• The existence of several antibodies acting against a given antigen play the role of
dynamical spurious states, generalizing the neural network static counterpart.

• The high-dose tolerance appears as a mechanism avoiding the breaking of self
recognition.

• Increasing the noise, both the quality and the quantity of the available retrievals
decrease.

All these different aspects of the immune system appear as features of the very same
unified theory, which relies on simple, minimal assumptions. Furthermore, a quantitative
agreement with experimental data also holds: for instance, the average connectivity of
the network as well as the reciprocal affinities of the cascade of complementary antibodies
are in good agreement with experiments.

With purely physical eyes our model describes the equilibrium of the immune system
as a (thermodynamically) symmetry broken random-bond diluted ferromagnet. However,
its non-equilibrium states (when antigens are present) map the latter into a random-field
random-bond diluted model, conferring to the system a glassy flavor.

Among the several outlooks, surely the out-of-equilibrium thermodynamics has to be
investigated as the model is shown to display a very rich ensemble of timescales and aging
is expected. Another important point is its learning, which would merge the approach of
neural networks [13] and dynamical graph theory with information theory. The extension
of the concept of Hopfield statistical memories into a dynamical counterpart should be
deepened as well as the Gardner saturation bound [3], which may play a key role in the
breaking of defenses in the body. The transition from a ‘simple’ system to a ‘spin glass’
due to the increase of pasted random fields also needs a deep analysis as it is concerned
with the genesis of auto-immune responses. The interplay among B-cells and T helper
cells should also be taken into account as T helpers play the role of a spin glass self-
regulation, adding a considerable amount of complex self-regulation. In the end, as our
results are qualitatively quite robust and the framework very stable under the change
in the epitope distributions, other, mathematically challenging (i.e. due to correlations),
choices for such distributions are surely biologically plausible and should be investigated.
We plan to report soon on several of the outlined directions of research.
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