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Conceptual analogies among statistical mechanics
and classical or quantum mechanics have often
appeared in the literature. For classical two-body
mean-field models, such an analogy is based on the
identification between the free energy of Curie–Weiss-
type magnetic models and the Hamilton–Jacobi action
for a one-dimensional mechanical system. Similarly,
the partition function plays the role of the wave
function in quantum mechanics and satisfies the
heat equation that plays, in this context, the role
of the Schrödinger equation. We show that this
identification can be remarkably extended to include
a wider family of magnetic models that are classified
by normal forms of suitable real algebraic dispersion
curves. In all these cases, the model turns out to be
completely solvable as the free energy as well as
the order parameter are obtained as solutions of an
integrable nonlinear PDE of Hamilton–Jacobi type.
We observe that the mechanical analogue of these
models can be viewed as the relativistic analogue
of the Curie–Weiss model and this helps to clarify
the connection between generalized self-averaging
in statistical thermodynamics and the semiclassical
dynamics of viscous conservation laws.
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1. Introduction
A powerful approach for mean-field spin glass models is based on the formal analogy between
mean-field statistical mechanics and the Hamilton–Jacobi formulation of classical mechanics.

Such an analogy has been pointed out and investigated over the past few decades, and
tracing back in time the genesis of such an approach, because of the vast popularity of these
magnetic mean-field models, is not a simple task. Newman pointed out the analogy in 1981, as
did Bogolyubov and co-workers in the early 1980s [1,2]; more recently, Choquard & Wagner [3]
as well as the present authors and colleagues (see [4–8] and also [9–12]) have done the same.

However, the discovery of such an analogy turns out to be nothing but the tip of an
iceberg requiring further exploration. This correspondence is indeed very profound and shows
a hidden (and at first glance even counterintuitive) relation between the minimum action
principle in mechanics (which is often used to describe determinism) and the second principle of
thermodynamics (which is often used to justify randomness and stochasticity). Indeed, one can
show that the free energy of a statistical mechanical model can be interpreted as the Hamilton–
Jacobi function of a suitable one-dimensional mechanical system. For the Curie–Weiss model,
the Hamilton–Jacobi equations imply that the magnetization satisfies the celebrated Burgers
equation, perhaps the simplest scalar model for the propagation of nonlinear waves in a viscosity
regime. The thermodynamic limit for the magnetic model is equivalent to the inviscid limit of
the Burgers equation and leads to the so-called inviscid Burgers equation that is also known as
the Riemann–Hopf equation. This limit is interpreted as a second principle definition because
it turns out to be equivalent to a minimal action principle for the free energy function. The
Riemann–Hopf equation is the simplest example of the nonlinear conservation law introduced
to describe the propagation of nonlinear hyperbolic waves in the zero dispersion regime. Despite
its simplicity, this equation already possesses several interesting features that make it suitable
for the description of thermodynamic phase transitions. For instance, solutions to the Rieman–
Hopf equation generically fail as they develop a gradient catastrophe in finite time. The gradient
catastrophe point is associated with the caustics of the characteristic lines and it is usually
interpreted as the critical point for a magnetic phase transition. The critical point develops into
a classical shock wave that explains the mechanism responsible for discontinuities of the order
parameter or its derivatives.

A model based on the Riemann–Hopf equation is completely integrable via the characteristics
method and its general solution provides the equation of state, that is, the consistency equation, of
the model. This description seems to be very general, as it has also been observed in the context
of van der Waals models and their virial extensions [9] and in pure glassy scenarios [5] and it
leads to the construction of a one-to-one correspondence table between some standard concepts
in classical thermodynamics and the theory of classical shocks and conservation laws [11].
Although the Riemann–Hopf equation turns out to provide an accurate description of the
model away from the critical region, in the vicinity of the critical point a suitable multi-scale
asymptotic analysis of the Burgers equation is required. It was shown in [13] that the asymptotic
behaviour in the vicinity of the critical point is universally expressed in terms of the Pearcey
integral and it is argued in [14] (see also [15]) that such a description extends to more general
Burgers-type equations.

In this paper, we determine the formal analogy between mean-field models and one-
dimensional mechanical systems at the level of the partition function that in this context plays the
role of a (real-valued) quantum-mechanical wave function and satisfies a linear PDE. Consistent
with the description outlined above, the associated Hamilton–Jacobi function is interpreted as the
free energy of the model. In particular, we focus on a class of solvable generalized models of N
interacting spins where the Hamiltonian function is given, as in the cases mentioned above, by
the linear combination of the potential associated with the internal spin interaction and the one
associated with the external field

HN = Hint(mN) + hHext(mN), (1.1)
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where

mN =
∑

i σi

N
is the mean magnetization per spin particle. We argue that a natural generalization of the Curie–
Weiss model can be obtained from the assumption that the internal and external potentials
satisfy a certain polynomial relation referred to as the dispersion curve. This implies, as for the
Curie–Weiss model, that the partition function solves a linear PDE, where temperature and
external magnetic field coupling are the independent variables and the number of particles
N plays the role of a scale parameter. The solution in the large N limit is obtained via the
standard WKB approach leading to a Hamilton–Jacobi-type equation for the free energy function.
Similarly to the semiclassical approximation of quantum mechanical models and the geometric
optics approximation of the Maxwell equations, the Hamilton–Jacobi-type equation so obtained
provides an accurate description of the magnetic system in the thermodynamic limit away from
the caustic lines associated with the boundary of the critical region. We analyse in detail models
associated with a second-order dispersion curve whose normal form reduces to a conic. We note
that the parabolic case, referred to as the F-type scenario, gives the Curie–Weiss model. The elliptic
and the hyperbolic case, the P-type and K-type scenario, respectively (i.e. Poisson-like and Klein–
Gordon-like), can be viewed as a deformation of the Curie–Weiss model involving infinitely many
p-spin contributions. We observe that in all cases the Hamilton–Jacobi-type equation for the free
energy reduces to a Riemann–Hopf-type equation for the expected value of the magnetization.
The model is then completely integrable via the characteristics method (e.g. [16]) and the critical
point of the gradient catastrophe is signified by the occurrence of a magnetic phase transition.

The paper is structured as follows: in §2, we illustrate the methodology in general terms.
Section 3 is dedicated to examples, one for each case. Section 4 contains our conclusion and
outlooks.

2. Generalized models and techniques for mean-field many-body problems
Given N Ising spins σi = ±1, i ∈ {1, . . . , N}, let us consider a general ferromagnetic model of a
Hamiltonian of form

HN

N
= −F(mN) − hG(mN), (2.1)

where

mN = 1
N

N∑
i=1

σi

is the magnetization, F(mN) models the generic p-spin mean-field interaction and G(mN) accounts
for the interaction with an external magnetic field h (that, in many cases, is one body, i.e. G(mN) =
mN).

Note that, generally, with the adjective ferromagnetic, we mean models whose interaction
matrix has only positive entries, e.g. HN = −(1/N)

∑N
i<j Jijσiσj, with Jij = J > 0 for all the

N(N − 1)/2 couples. However, as the effect of J on the model’s thermodynamics is only to shift
the critical temperature, in the following we simply set J ≡ 1.

The Boltzmann average of the magnetization is standardly denoted as follows:

〈m〉 = lim
N→∞

∑2N

{σ } σi exp(−βHN)∑2N

{σ } exp(−βHN)
, (2.2)

where the sum is evaluated over all spin configurations {σ }, and β = 1/kBT, where T is the
temperature and kB is the Boltzmann constant (that we set to one in proper units). The main
object of interest is the free energy function f (β, h) = −α(β, h)/β, where

α(β, h) = lim
N→∞

1
N

ln
2N∑
{σ }

exp(−βHN) (2.3)

is called the mathematical pressure.
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The free energy is related to the thermodynamic average of the intensive entropy S and
the internal energy E via the standard formula f = E − β−1S (or, alternatively, in terms of the
mathematical pressure, α(β, h) = S − βE) that allows us to deduce all thermodynamic properties
of the system induced by the Hamiltonian HN . However, as the mathematical pressure α(β, h) is
more convenient for computational purposes w.r.t. f (β, h), and its usage largely prevailed in the
community of disordered statistical mechanics (where most of the applications—of the theory we
are going to develop—lie), in the following we will use the former with a little language abuse.

(a) Generalized thermodynamic limit and its variational formulation
We introduce two scalar variables t ∈ R+ and x ∈ R (which can be thought of as time and space
in the mechanical analogy that we are going to develop), and we consider, first, F such that F(m) =
F(−m), ∂2

xxF(m) > 0 and F(0) = 0, and then we set G(m) ≡ m; next, we consider the class of models
associated with a Hamiltonian −N[F(m) + hm] ≡ H : (0, 1) � m 	→ H(m).

We now prove that, under the above assumptions, the thermodynamic limit for the system
defined via HN is well defined. We have the following theorem.

Theorem 2.1. The thermodynamic limit for the free energy αN(t, x) exists and is

lim
N→∞

1
N

ln ZN(t, x) = inf
N

1
N

ln ZN(t, x) = α(t, x), (2.4)

where Z(x, t) is the partition function

ZN(t, x) =
2N∑
{σ }

exp(N(tF(mN) + xmN)), (2.5)

with ∀t > 0 and ∀x ∈ R (which, in order to bridge with thermodynamics, should be related to temperature
and magnetic field via t = 1/T and x = h/T).

The proof of this statement works within the classical Guerra–Toninelli scheme [17]. It is
sufficient to prove the model sub-additivity as stated in the following lemma.

Lemma 2.2. The extensive free energy related to the generalized models defined by −H(m)/N = F(m) +
hG(m) is sub-additive in the volume N, namely

ln ZN(t, x) ≤ ln ZN1 (t, x) + ln ZN2 (t, x). (2.6)

Proof. Let us split the system into two subsystems of size N1 and N2 such that N = N1 + N2.
Let m1 and m2 be the partial magnetizations associated with the two subsystems such that m =
(N1/N)m1 + (N2/N)m2. Hence, because of the convexity of F, we have

F(m) = F
(

N1

N
m1 + N2

N
m2

)
≤ N1

N
F(m1) + N2

N
F(m2). (2.7)

By virtue of the above inequality, the partition function (2.5) satisfies the following:

ZN(t, x) ≤ ZN1 (t, x) · ZN2 (t, x), (2.8)

which proves the lemma. �

The route from lemma 2.2 to theorem 2.1 is the classical one set out by Ruelle [18].
Now we proceed showing that the variational formulation of statistical mechanics is preserved

even in this extended scenario. Let us prove the following theorem.
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Theorem 2.3. Given the variational parameter −1 ≤ M ≤ +1 and the trial free energy

α̃(t, x|M) = ln 2 + ln cosh(x + t∂xF(M)) + t(F(M) − M∂xF(M)), (2.9)

and its optimized value (w.r.t. M)

α̂(t, x) = max
M

α̃(t, x|M),

then we can write α(t, x) = α̂(t, x).

Proof. Let us introduce the auxiliary function g(m, M) as

g(m, M) = exp(−tN(F(m) − F(M) − ∂xF(M)(m − M))). (2.10)

Clearly, because of the convexity we have g(m, M) ≤ 1. Let us consider only those values of M that
can also be assumed by m and let us restrict only those values of the sum over M, which will be
denoted with a star, i.e.

∑
M →∑∗

M. Then

∗∑
M

g(m, M) ≥ 1, (2.11)

because, with probability one, a term in the sum will have m = M and its corresponding
g(M, M) ≡ 1; as all the others are non-negative, equation (2.11) holds. Then, we have

ZN(t, x) =
∑
σ

etNF(m) exNm ≥
∑
σ

etNF(m) exNmg(m, M) = eNα̃N(t,x|M), (2.12)

as 1 ≥ g(m, M); thus, the sum factorizes, the F(m) terms cancel and we can conclude the first
bound—namely, taking the thermodynamic limit and optimizing w.r.t. M

α(t, x) ≥ α̂(t, x). (2.13)

To prove the reverse bound, we can write

ZN(t, x) ≤
∑
σ

etNF(m) exNm
∗∑
M

g(m, M) =
∗∑
M

eNα̂(t,x|M) ≤
∗∑
M

eNα̂(t,x). (2.14)

Thus, αN(t, x) ≤ α̂ + ln(1 + N)/N because
∑∗

M now gives N + 1 identical terms (because, as
stated above, there is no longer dependence on M during the summation procedure), hence
ZN(t, x) ≤ (N + 1) exp Nα̂(t, x): taking the logarithm of ZN(t, x) and dividing by N, we obtain
the expression above, which in the thermodynamic limit returns the expected bound and ends
the proof. �

In the following subsections, we will investigate those values of M(t, x) that optimize the
evolution through the mechanical approach.

(b) Dispersion curve and generalized models
Let us assume that the potentials F(mN) and G(mN) that define the Hamiltonian (2.1) belong to the
dispersion curve given by the equation

Pd(F, G) = 0, (2.15)

where

Pd(η, ξ ) =
∑
k,l

ck,lη
kξ l

is a polynomial of degree d = max{k + l | ck,l �= 0}. Introducing the linear differential operator of
order d

Ld =
∑
k,l

ck,l∂
k
t (−∂x)l,
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one can readily verify that, given the condition (2.15), the partition function (2.5) can be obtained
as a solution to the following linear differential equation:

Ld[ZN] = 0. (2.16)

Equation (2.16) can be viewed as the statistical analogue of a quantum mechanical wave equation,
where ZN plays the role of the wave function. More explicitly, setting ν = 1/N, equation (2.16)
becomes ∑

k,l

νk+lck,l∂
k
t (−∂x)lZN = 0. (2.17)

From the definition of the free energy αN in (2.3), we get αN = ν log ZN and then ZN = eαN/ν .
Substituting the above change of variable into equation (2.17), we obtain at leading order

as ν → 0 (according to the standard WKB approximation) the following Hamilton–Jacobi-type
equation:

Pd(αt, αx) = 0,

where α = limN→∞ αN .
Let us now analyse the particular class of models associated with a polynomial relation of the

form (2.15) of degree d = 2, that is,

c1F2 + c2FG + c3G2 + c4F + c5G + c6 = 0. (2.18)

The quadratic equation (2.18) can be reduced via a suitable linear change of variables to one of
the following canonical forms:

F2 + G2 − 1 = 0, (2.19)

F2 − G2 − 1 = 0 (2.20)

and F − G2 = 0. (2.21)

The corresponding partition function satisfies one the following normal forms:

ν2(Ztt + Zxx) = Z, (2.22a)

ν2(Ztt − Zxx) = Z (2.22b)

and Zt − νZxx = 0. (2.22c)

Many-body problems associated with a quadratic dispersive curve will be referred to as P-type,
K-type and F-type according to whether their canonical form is the Poisson equation (2.22a), the
Klein–Gordon equation (2.22b) or the Fourier (or heat) equation (2.22c), respectively.

Proposition 2.4. The WKB approximation of equations (2.22), standardly performed by the
substitution Z = eα/ν , gives, in the thermodynamic limit ν → 0 (i.e. N → ∞), one of the following three
equations for the free energy α:

α2
t + α2

x = 1, (2.23a)

α2
t − α2

x = 1 (2.23b)

and αt − α2
x = 0. (2.23c)

Equations (2.23) show that the free energy α plays the same role as the Hamilton–Jacobi function
in classical mechanics.

Moreover, equations (2.23) are completely integrable and can be solved via the
method of characteristics. Differentiating equations (2.23) w.r.t. x, we obtain the following
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Riemann–Hopf-type equation:
ut = (V(u))x, (2.24)

where u = αx and the function V(u) is given as follows:

P-type V(u) = −
√

1 − u2

K-type V(u) =
√

1 + u2

F-type V(u) = u2.

In particular, based on the classical method of characteristics, we have the following theorem.

Theorem 2.5. The general solution u to equation (2.24) is readily obtained via the method of
characteristics and is given by the formula

x + V′(u)t = f (u), (2.25)

where f (u) is an arbitrary function of its argument that is locally fixed by the initial condition on u. In
particular, given the initial datum

u(x, 0) = U(x),

we have that f = U−1 is the inverse function of U(x). The free energy, i.e. the solution to the corresponding
equation in (2.23), is obtained by direct integration as follows:

α =
∫ x

0
u(ξ , t) dξ + Φ(t),

where function Φ(t) is such that Φ ′ = V(u(0, t)).

It is well known that the generic solution to the conservation laws of the form (2.24) fails
in finite time by developing a gradient catastrophe. At the point of the gradient catastrophe
that is the analogue of caustics in the geometric optics limit and in the semiclassical limit of
quantum mechanics, the WKB approximation fails and the classical solution develops a multi-
valuedness. The appropriate description of the system beyond the region where the classical
solution is multi-valued requires the study of equations (2.22). However, the critical point of the
gradient catastrophe is signified by a phase transition from a disordered (‘classical’) to an ordered
(‘quantum’) state. Clearly, whether or not a phase transition will occur depends on the particular
model that is specified by the initial datum via the function f (u) in (2.25). More specifically, we
have the following theorem.

Theorem 2.6. The critical point (xc, tc, uc) is given, if it exists, as a solution to the following equations:

xc + V′(uc)tc = f (uc), V′′(uc)t = f ′(uc) and V′′′(uc)t = f ′′(uc), (2.26)

such that
f (3)(uc)
V′′(uc)

− V(4)(uc)f ′(uc)
V′′(uc)2 > 0.

3. Examples

(a) Fourier scenario
The mechanical interpretation of the Curie–Weiss model, which is associated with the F-type
normal, has already been extensively discussed in a number of papers (e.g. [4]). Let us briefly
recall the main leading to the definition of such an analogy.

Definition 3.1. The Curie–Weiss Hamiltonian is defined by the Hamiltonian of form

1
N

HN(mN) = −1
2

m2
N + hmN . (3.1)
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We are interested in an explicit expression of the free energy in terms of the order parameter.
A number of methods have been proposed over the decades and are currently available (see, for
example, [4] for a recent review) to evaluate the free energy including a solution method based
on a mechanical analogy.

Following the interpolation procedure introduced in [8], let us consider the interpolating free
energy (or interpolating action)

αN(t, x) = 1
N

ln
2N∑
{σ }

exp

(
−t · Nm2

N
2

+ x · mN

)
= 1

N
ln

2N∑
{σ }

exp(X · E), (3.2)

such that α(t = −β, x = 0) = limN→∞ αN(t = −β, x = 0), i.e. it returns to the thermodynamical free
energy in the absence of an external field.

Note that, in the last term of equation (3.2), we have introduced the two-vector space–time as
X = (t, −x) and the two-vector energy–momentum as E/N = (〈m2

N〉/2, 〈mN〉).

Theorem 3.2 ([8]). The free energy (3.2) satisfies the following Hamilton–Jacobi-type equation:

∂αN(t, x)
∂t

+ 1
2

(
∂αN(t, x)

∂x

)2
− VN(t, x) = 0, (3.3)

where VN(t, x) = N−1∂2
x α(x, t) = 1

2 (〈m2
N〉 − 〈mN〉2).

Proof. By a direct calculation, it is straightforward to show that expression (3.2) for the free
energy solves equation (3.3). �

In the domain where the function α(x, t) is sufficiently smooth (i.e. smooth enough to have a
unique maximizer in the variational problem of theorem 2.1), in the thermodynamic limit, we
have

lim
N→∞

VN(t, x) = lim
N→∞

1
2

(〈m2
N〉 − 〈mN〉2) = 0,

and the corresponding free energy

α(t, x) = ln 2 + ln cosh(x + m(t, x)t) − m(t, x)2

2
t

is the solution to the Hamilton–Jacobi equation (3.3) with the initial datum

α(0, x) = ln 2 + ln cosh x (3.4)

that is obtained via a direct evaluation of the sum in (3.2) and where m(t, x) is the unique
maximizer in the variational problem defined by theorem 2.1. In particular, at zero external field
where the phase transition occurs, we have [7]

α(β) = ln 2 + ln cosh(βm) − 1
2 βm2, (3.5)

where we recall that t = β.
Remarkably, the principles of thermodynamics (such as the free energy minimization) come

into play here as the Maupertius minimum action principle and imply the extremization of
this expression w.r.t. the order parameter giving the celebrated self-consistency equation 〈m〉 =
tanh(β〈m〉).

As is well known, the self-consistency equation predicts a paramagnetic phase at β < 1,
with 〈m〉 ≡ 0 and a bifurcation at the critical noise level βc = 1, from which two branches of
the magnetization (symmetric around zero) arise and the system undergoes a phase transition
towards a ferromagnetic phase. As figure 1 shows, the magnetization develops a gradient
catastrophe at the origin x = 0, where m vanishes, and at t = 1. The critical values are obtained
via equations (2.26).
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Figure 1. Analysis of the F-type. (a) Magnetization profile at x = 0 versus t. Magnetization profile versus x at, respectively,
(b) t = 0.5< tc, (c) t = 1.0= tc, and (d) t = 2> tc. Beyond the gradient catastrophe that occurs at t = 1.0, the solution
exhibits a multi-valued solution associated with metastable states of the system. The initial datum (at t = 0) is also reported
for visual comparison.
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Figure 2. Analysis of the K-type. (a) Magnetization profile at x = 0 versus t. Magnetization profile versus x at, respectively,
(b) t = 0.5< tc, (c) t = 1.0= tc, and (d) t = 2> tc. Similarly to the Curie–Weiss model, the magnetization profile fails in
the origin at t = 1 and developsmulti-valuedness for t > 1. The initial datum (at t = 0) is also reported for visual comparison.

(b) Klein–Gordon scenario
As discussed above, the Curie–Weiss Hamiltonian is an F-type normal form (2.23c) associated
with the classical (Euclidean) kinetic energy. Let us now focus on the K-type normal form (2.23b)
whose mechanical analogue can be viewed as a relativistic extension of the Curie–Weiss model
(figure 2).

Definition 3.3. The Hamiltonian of the K-type model is defined as follows:

−HN(mN)
N

=
√

1 + m2
N + hmN . (3.6)

Let us observe that introducing the variable v (the relativistic speed) via m = γ v with γ =
(1 − v2)−1/2, we have

√
1 + m2 = (1 − v2)−1/2. By direct calculation, we can prove the following

theorem.

Theorem 3.4. The interpolating action/free energy is

αN(t, x) = 1
N

ln
2N∑
σ

exp(t
√

1 + m2
N + x · NmN) = 1

N
ln

2N∑
σ

exp(X · E) (3.7)

 on November 6, 2014rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


10

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140589

...................................................

and obeys the following relativistic Hamilton–Jacobi equation:(
∂αN(t, x)

∂t

)2
−
(

∂αN(t, x)
∂x

)2
+ VN(t, x) = 1

and VN(t, x) = 1
N

((∂2
ttαN(t, x)) − (∂2

xxαN(t, x))).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.8)

Note that the potential is given, up to a scale factor 1/N , by the D’Alambertian of the action, that
is, a relativistic invariant, and, consequently, the left-hand side of the Hamilton–Jacobi equation
is also Lorentz-invariant.

As observed above, the thermodynamic free energy is obtained via the identification t = β and
x = βh.

(i) Generalized free energy by the minimum action principle

Introducing the standard notation of covariant and contravariant vectors, equation (3.8) becomes

∂αN

∂xμ

∂αN

∂xμ
+ 1

N
�αN = 1, (3.9)

where square represents the D’Alambert operator, and (3.9) can be interpreted as the Hamilton–
Jacobi equation describing the motion of a relativistic particle in the potential VN(t, x) =
(�αN(t, x))/N.

We observe that, as in the Curie–Weiss case, the potential vanishes in the thermodynamic limit
as long as the function αN(t, x) is smooth.

Hence, in the thermodynamic limit, equation (3.8) gives

∂αN

∂xμ

∂αN

∂xμ
= m0c2 ≡ 1, (3.10)

which, from a field theory perspective, gives the semi-classical Klein–Gordon scenario [19].

Remark 3.5. In relativistic mechanics, the generalized momentum is defined as

Pμ =
(

E
c

, γ mv

)
,

where v is the classical velocity of the particle, γ = 1/
√

1 − v2 is the Lorentz factor and E = γ (we
set the rest energy m0c2 = 1) is the relativistic energy; hence, consistent with our findings, we have(

E
c

)2
− (γ mv)2 = 1

1 − v2 − v2

1 − v2 = 1. (3.11)

Moreover, observing that the covariant gradient of the action is the contravariant momentum
(e.g. [20])

∂α

∂xμ
= (αt, −αx) = Pμ

we have the following identification between the statistical mechanical and relativistic dynamical
variables:

Pμ = (γ , γ v) =
(√

1 + m2, m
)

. (3.12)

Remark 3.6. Let us observe that the expansion of the energy in the Taylor series around m = 0,
i.e.

E =
√

1 + m2 = 1 − 1
2

m2 + O(m4),

corresponds to the non-relativistic limit, where the leading-order constant is identified with the
rest energy (normalized as m0c2 = 1) and the first-order contribution is the Curie–Weiss potential
associated with the Euclidean kinetic energy.
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Figure 3. Analysis of the P-type. (a)Magnetization profile at x = 0 versus t. Magnetization profile versus x at (b) t = 0.5< tc,
(c) t = 1.0= tc, and (d) t = 2> tc, respectively. The initial datum (at t = 0) is also reported for a visual comparison. Note that
in the high noise region, in addition to the (stable) solution, saym= 0, two additional (instable) extremal points (maxima) for
the free energy appear as a consequence of the infinite ferromagnetic contributions.

Proposition 3.7. The free energy of the K-type model at zero external field is

α(β) = ln 2 + ln cosh

(
m√

1 + m2
β

)
+ β√

1 + m2
. (3.13)

The associated self-consistency condition ∂α/∂m = 0 becomes

m = tanh

(
β

m√
1 + m2

)
. (3.14)

Proof. Let us note that equation (3.10) describes the free motion of a relativistic particle and can
be readily integrated. Observing that the relativistic Lagrangian L = −γ −1 is preserved along the
characteristics x + vt, then the action is computed as follows:

α(t, x) = α(0, x) +
t∫

0

dt′

γ
= ln 2 + ln cosh(−x) + t

γ

= ln 2 + ln cosh(vt − x) + t
γ

= ln 2 + ln cosh

(
m√

1 + m2
t − x

)
+ t√

1 + m2
. (3.15)

Evaluating α(β, 0), one obtains the solution (3.13). �

Remark 3.8. Let us observe that the free energy and the self-consistency equation for the Curie–
Weiss model are readily recovered from the Taylor expansion around m = 0 of equations (3.13)
and (3.14), respectively.

(c) Poisson scenario
We finally discuss the case of the elliptic dispersion curve.

Definition 3.9. The Hamiltonian of the P-type model is defined as follows:

−HN(mN)
N

= −
√

1 − m2
N + hmN . (3.16)

As discussed above, the partition function is obtained as a solution to the Poisson
equation (2.22a). Moreover, the free energy α = −ν log Z in the thermodynamic limit satisfies
equation (2.23a) and is given according to the following theorem.

 on November 6, 2014rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


12

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140589

...................................................

Theorem 3.10. Fixing h = 0, the free energy of the coupled generalized ferromagnetic P-type model is

α(β) = ln 2 + ln cosh

(
β

m√
1 − m2

)
− β√

1 − m2
. (3.17)

Moreover, the self-consistency equation is as follows:

m = tanh

(
β

m√
1 − m2

)
. (3.18)

Remark 3.11. Similarly to the K-type case, the free energy and the self-consistency equation
for the Curie–Weiss model are readily recovered from the Taylor expansion around m = 0 of
equations (3.17) and (3.18), respectively.

As shown in figure 3, owing to the ill-posedness of the initial value problem, the solutions
do not evolve continuously from the initial datum producing a multi-valued solution due to the
occurrence of an additional two instable extremal points for the free energy as a consequence of
the infinite ferromagnetic contributions.

4. Conclusion
In this paper, we have discussed in detail a formal analogy between the thermodynamic evolution
of mean-field spin systems and one-dimensional Hamiltonian systems.

We focused our attention on the class of spin models associated with an algebraic dispersion
curve that contains the celebrated Curie–Weiss model as a particular case. The partition function
for a finite number N of particles plays the role of the quantum wave function and obeys a linear
PDE. The thermodynamic limit is obtained via the standard WKB analysis, where the Hamilton
principal function is identified with the free energy of the thermodynamic system. The Hamilton–
Jacobi equation can be treated via standard techniques and it is shown that the magnetization
is a solution to a Riemann–Hopf-type equation. Hence, the model is completely integrable and
solvable by the characteristics method.

Within this framework, thermodynamic phase transitions are associated with the occurrence
of caustics in the semiclassical approximation. In particular, the critical point is identified as the
point of gradient catastrophe where the magnetization satisfies the Riemann–Hopf equation.

All these features are discussed in detail for the class of models associated with a second-
order dispersion curve. The reduction of the dispersion curve to the canonical form leads to
three families of models associated with the conics: F-type parabolic, K-type hyperbolic and
P-type elliptic. F-type models are associated with the semiclassical dynamics of a non-relativistic
particle. Such models are reduced to the Curie–Weiss model that has been extensively studied
in the literature (e.g. [3,7]). K-type models give a class of infinitely many p-spin contributions
(namely higher order interactions in the Hamiltonian, e.g. from m2 to m4, m6, . . . , mp) to the
interaction and the thermodynamic limit is associated with the semiclassical limit of a relativistic
particle. P-type models describe infinitely many ferromagnetic p-spin contributions to the
interaction associated with elliptic dynamics. In particular, we observe that, due to the ill-
posedness of the initial value problem, ferromagnetic contributions sum up to produce two
meta-stable states (local maxima of the free energy) in the ergodic region.

We observe that both K-type and P-type extensions of the Curie–Weiss model can be viewed as
‘relativistic’ extensions of the Curie–Weiss model as the speed remains bounded, although only
the K-type is associated with a Lorentz invariant Hamiltonian system.
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