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1. Introduction

In the past few years a match between the study of systems defined on lattices by means
of statistical mechanics [25] and the study of networks by means of graph theory [13]
gave rise to very interesting models such as the small world magnets [34, 32] and the scale
free networks [14]. However, a complete analysis starting from the simple fully connected
mean field Ising model [6, 19] and going up to these recent complex models [4, 28] is
still not complete (even though several important steps have been obtained, examples
being provided by [27, 12, 21]) and important models have not yet been taken into
account. Among these, a certain role is played by the mean field diluted Ising model: an
Erdös–Renyi network [20] which has spins as nodes and their interactions as links. The
interactions are encoded in a matrix connecting pairs of spins which, when the connectivity
allows the link to be present, shares the same value for all the couples.

Despite their easy formalization [31], diluted ferromagnets are poorly investigated
with rigorous tools [22]. Inspired by a recent work on these systems in which the authors
presented a detailed analysis of the ergodic region and the zero-temperature line [18] we
extend recent techniques developed in a series of papers [3, 5, 2, 10] to this model with
the aim of analyzing its critical behavior. We systematically develop the interpolating
cavity field method [5] and use it to sketch the derivation of a free energy expansion:
the higher the order of the expansion, the deeper we could go beyond the ergodic region.
Within this framework we perform a detailed analysis of the scaling of magnetization (and
susceptibility) at the critical line. The critical exponents turn out to be the classical ones.
At the end we perform extensive Monte Carlo (MC) simulations for different graph sizes
and bond concentrations and we compare results with theory. Indeed, also numerically,
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we provide evidence that the universality class of the diluted Ising model is independent
of the dilution. In fact the critical exponents that we measured are consistent with those
pertaining to the Curie–Weiss model, in agreement with analytical results. The critical
line is also well reproduced.

The paper is organized as follows. In section 2 we describe the model, in section 3
we introduce the cavity field technique, which constitutes the framework that we are
going to use in section 4 to investigate the free energy of the system at general values of
temperature and dilution. Section 5 deals with the criticality of the model; there we find
the critical line and the critical behavior of the main order parameter, i.e. magnetization,
we provide its self-averaging and we work out a picture by means of which we explain
the breaking of the ergodicity. Section 6 is devoted to numerical investigations, especially
focused on criticality. Finally, section 7 is left for an outlook and conclusions.

2. Model and notation

Given N points and families {iν , jν} of iid random variables uniformly distributed on these
points, the (random) Hamiltonian of the diluted Curie–Weiss model is defined on Ising
N -spin configurations σ = (σ1, . . . , σN) through

HN(σ, α) = −
PαN∑

ν=1

σiνσjν (1)

where Pζ is a Poisson random variable with mean ζ and α > 1/2 is the connectivity.
The expectation with respect to all the (quenched) random variables defined so far will
be denoted by E, while the Gibbs expectation at inverse temperature β with respect to
this Hamiltonian will be denoted by Ω, and clearly depends on α and β. We also define
〈·〉 = EΩ(·). The pressure, i.e. minus β times the free energy, is by definition

AN(α) =
1

N
E ln ZN(β) =

1

N
E ln

∑

σ

exp(−βHN(σ, α))

where we implicitly introduced the partition function ZN(β) too. When we omit the
dependence on N we mean to have taken the thermodynamic limit which we assume to
exist for all the observables that we deal with, in particular for the free energy [22, 11, 26]
(however we will look for firmer ground on this point through numerical investigation in
section 6). The quantities encoding the thermodynamic properties of the model are the
overlaps, which are defined on several configurations (replicas) σ(1), . . . , σ(n) by

q1···n =
1

N

N∑

i=1

σ
(1)
i · · ·σ(n)

i .

Particular attention must be paid to q1 = m = N−1
∑N

i σi which is called the
magnetization.

When dealing with several replicas, the Gibbs measure is simply the product measure,
with the same realization of the quenched variables, but the expectation E destroys the
factorization. Sometimes for the sake of simplicity we will use θ = tanh(β).

doi:10.1088/1742-5468/2008/10/P10003 3

http://dx.doi.org/10.1088/1742-5468/2008/10/P10003


J.S
tat.M

ech.
(2008)

P
10003

Criticality in diluted ferromagnets

3. Interpolating with the cavity field

In this section first we introduce the cavity field technique along the lines of [5] by
expressing the Hamiltonian of a system made of N + 1 spins through the Hamiltonian
of N spins by scaling the connectivity degree α and neglecting vanishing terms in N as
follows:

HN+1(α) = −
Pα(N+1)∑

ν=1

σiνσjν ∼ −
Pα̃N∑

ν=1

σiνσjν −
P2α̃∑

ν=1

σiνσN+1 (2)

such that we can use the more compact expression

HN+1(α) ∼ HN(α̃) + ĤN(α̃)σN+1 (3)

with

α̃ =
N

N + 1
α

N→∞−→ α, ĤN (α̃) = −
P2α̃∑

ν=1

σiν . (4)

So we see that we can express the Hamiltonian for N + 1 particles via that for N
particles, paying two prices: the first is a rescaling in the connectivity (vanishing in
the thermodynamic limit), and the second is an added term, which will be encoded, at
the level of the thermodynamics, by a suitable cavity function as follows: let us introduce
an interpolating parameter t ∈ [0, 1] and the cavity function ΨN(α̃, t) given by

Ψ(α̃, β; t) = lim
N→∞

ΨN(α̃, β; t) lim
N→∞

E

[
ln

∑
{σ} eβ

∑Pα̃N
ν=1 σiν σjν +β

∑P2α̃t
ν=1 σiν

∑
σ eβ

∑Pα̃N
ν=1 σiν σjν

]

= lim
N→∞

E

[
ln

ZN,t(α̃, β)

ZN(α̃, β)

]
. (5)

The three terms appearing in the decomposition (3) give rise to the structure of the
following theorem which we prove by assuming the existence of the thermodynamic limit.
(Actually we still do not have a rigorous proof of the existence of the thermodynamic
limit but we will provide strong numerical evidence in section 6.)

Theorem 1. In the N → ∞ limit, the free energy per spin is allowed to assume the
following representation:

A(α, β) = ln 2 − α
∂A(α, β)

∂α
+ Ψ(α, β; t = 1). (6)

Proof. Consider the N + 1-spin partition function ZN+1(α, β) and let us split it as
suggested by equation (3):

ZN+1(α, β) =
∑

{σN+1}

e−βHN+1(α) ∼
∑

{σN+1}

e−βHN (α̃)−βĤN (α̃)σN+1

=
∑

{σN+1}

eβ
∑Pα̃N

ν=1 σiν σjν +β
∑P2α̃

ν=1 σiν σN+1 = 2
∑

{σN}

eβ
∑Pα̃N

ν=1 σiν σjν +β
∑P2α̃

ν=1 σiν (7)
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where the factor 2 appears because of the sum over the hidden σN+1 variable. Defining a
perturbed Boltzmann state ω̃ (and its replica product Ω̃ = ω̃ × · · · × ω̃) by

ω̃(g(σ)) =

∑
{σN} g(σ)e−βHN (α̃)

∑
{σN } e−βHN (α̃)

, Ω̃(g(σ)) =
∏

i

ω̃(i)(g(σ(i)))

where the tilde takes into account the shift in the connectivity α → α̃, and multiplying
and dividing the rhs of equation (7) by ZN(α̃, β), we obtain

ZN+1(α, β) = 2ZN(α̃, β)ω̃(eβ
∑P2α̃

ν=1). (8)

Now taking the logarithm of both sides of equation (8), applying the average E and
subtracting the quantity [ ln ZN+1(α̃, β)], we get

E[ln ZN+1(α, β)] − E[ln ZN+1(α̃, β)] = ln 2 + E

[
ln

ZN(α̃, β)

ZN+1(α̃, β)

]
+ ΨN (α̃, β; t = 1). (9)

In the large N limit the lhs of equation (9) becomes

E[ln ZN+1(α, β)] − E[ln ZN+1(α̃, β)] = (α − α̃)
∂

∂α
E[ln ZN+1(α, β)]

= α
1

N + 1

∂

∂α
[ ln ZN+1(α, β)] = α

∂AN+1(α, β)

∂α
(10)

and then by considering the thermodynamic limit the theorem follows. �	
Hence, we can express the free energy via an energy-like term and the cavity function.

While it is well known how one deals with the energy-like form [18], the same cannot be
said of the cavity function, and we want to develop its expansion via suitably chosen
overlap monomials in a spirit close to that of stochastic stability [3, 15, 30], such that, at
the end, we will not have the analytical solution for the free energy in the whole (α, β)
plane, but we will manage its expansion close to (immediately below) the critical line. To
see how the machinery works, let us start by giving some definitions and proving some
simple theorems:

Definition 1. We define the t-dependent Boltzmann state ω̃t as

ω̃t(g(σ)) =
1

ZN,t(α, β)

∑

{σ}

g(σ)eβ
∑Pα̃N

ν=1 σiν σjν +β
∑P2α̃t

ν=1 σiν (11)

where ZN(α, β) extends the classical partition function in the same spirit as the numerator
of equation (11).

As we will often deal with several overlap monomials, let us divide them into two big
categories.

Definition 2. We can split the class of monomials of the order parameters into two
families:

• We define as ‘filled’ or equivalently ‘stochastically stable’ all the overlap monomials
built from an even number of the same replicas (i.e. q2

12, m2, q12q34q1234).

• We define as ‘fillable’ or equivalently ‘saturable’ all the overlap monomials which are
not stochastically stable (i.e. q12, m, q12q34).

doi:10.1088/1742-5468/2008/10/P10003 5

http://dx.doi.org/10.1088/1742-5468/2008/10/P10003


J.S
tat.M

ech.
(2008)

P
10003

Criticality in diluted ferromagnets

We are going to show three theorems that will play a guiding role for our expansion:
as this approach has been deeply developed in similar contexts (as a fully connected
Ising model [6] or fully connected spin glasses [5] or diluted spin glasses [8], which are the
boundary models of the subject of this paper) we will not show all the details of the proofs,
but we sketch them as they are really intuitive. The interested reader can go deeper on
this point by looking at the original works.

Theorem 2. For large N , setting t = 1 we have

ω̃N,t(σi1σi2 · · ·σin) = ω̃N+1(σi1σi2 · · ·σinσn
N+1) + O

(
1

N

)
(12)

such that in the thermodynamic limit, if t = 1, the Boltzmann average of a fillable multi-
overlap monomial turns out to be the Boltzmann average of the corresponding filled multi-
overlap monomial.

Theorem 3. Let Q2n be a fillable monomial of the overlaps (this means that there exists a
multi-overlap q2n such that q2nQ2n is filled). We have

lim
N→∞

lim
t→1

〈Q2n〉t = 〈q2nQ2n〉 (13)

(example: for N → ∞ we get 〈m1〉t → 〈m2
1〉, 〈q12〉t → 〈q2

12〉, 〈q12q34〉t → 〈q12q34q1234〉).
Theorem 4. In the N → ∞ limit the averages 〈·〉 of the filled monomials are independent
of t in the β average.

Proof. In this sketch we are going to show how to get theorem 2 in some detail; it
automatically has as a corollary theorem 3 which ultimately gives, as a simple consequence
when applied to filled monomials, theorem 4.

Let us assume for a generic overlap correlation function Q, of s replicas, the following
representation:

Q =

s∏

a=1

∑

ial

na∏

l=1

σa
ial

I({ial })

where a labels the replicas, the internal product takes into account the spins (labeled by
l) which contribute to the shape a part of the overlap qa,a′ and runs for the number of
times that the replica a appears in Q, the external product takes into account all the
contributions of the internal one and the I factor fixes the constraints among different
replicas in Q; so, for example, Q = q12q23 can be decomposed into this form noting that
s = 3, n1 = n3 = 1, n2 = 2, I = N−2δi11,i31

δi21,i32
, where the δ functions fix the links between

replicas 1, 2 → q1,2 and 2, 3 → q2,3. The averaged overlap correlation function is

〈Q〉t = E

∑

ial

I({ial })
s∏

a=1

ωt

( na∏

l=1

σa
ial

)
.

Now if Q is a fillable polynomial, and we evaluate it at t = 1, let us decompose it, using
the factorization of the ω state on different replicas, as

〈Q〉t = E

∑

ial ,ibl

I({ial }, {ibl})
u∏

a=1

ωa

( na∏

l=1

σa
ial

) s∏

b=u

ωb

( nb∏

l=1

σb
ibl

)

doi:10.1088/1742-5468/2008/10/P10003 6
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where u stands for the number of unfilled replicas inside the expression for Q. So we split
the measure Ω into two different subsets ωa and ωb: in this way the replicas belonging to
the b subset are always even in number, while the ones in the a subset are always odd in
number. Applying the gauge σa

i → σa
i σ

a
N+1, ∀i ∈ (1, N), the even measure is unaffected by

this transformation (σ2n
N+1 ≡ 1) while the odd measure takes σN+1 inside the Boltzmann

measure:

〈Q〉 =
∑

ial ,ibl

I({ial }, {ibl})
u∏

a=1

ω

(
σa

N+1

na∏

l=1

σa
ial

) s∏

b=u

ω

(
σb

N+1

nb∏

l=1

σb
ibl

)
.

At the end we can replace in the last expression the subindex N + 1 of σN+1 by k for any
k �= {ial } and multiply by 1, as 1 = N−1

∑N
k=0. Up to O(1/N), which go to zero in the

thermodynamic limit, we have the proof. �	

It is now immediately understood that the effect of theorem 2 on a fillable overlap
monomial is to multiply it by its missing part, to be filled (theorem 3), while it has no
effect if the overlap monomial is already filled (theorem 4) because of the Ising spins
(i.e. σ2n

N+1 ≡ 1 ∀n ∈ N).
Now the plan is as follows: we calculate the t-streaming of the Ψ function in order to

derive it and then integrate it back once we have been able to express it as an expansion
in power series of t with stochastically stable overlaps as coefficients. At the end we free
the perturbed Boltzmann measure by setting t = 1 and in the thermodynamic limit we
will have the expansion holding with the correct statistical mechanics weight:

∂Ψ(α̃, β, t)

∂t
=

∂

∂t
E[ln ω̃(eβ

∑P2α̃t
ν=1 σiν )]

= 2α̃E[ln ω̃(eβ
∑P2α̃t

ν=1 σiν +βσi0 )] − 2α̃E[ln ω̃(eβ
∑P2α̃t

ν=1 σiν )] = 2α̃E[ln ω̃t(e
βσi0 )]. (14)

Now using the equality eβσi0 = cosh β + σi0 sinh β, we can write the rhs of equation (14)
as

∂Ψ(α̃, β, t)

∂t
= 2α̃E[ln ω̃t(cosh β + σi0 sinh β)] = 2α̃ log cosh β − 2α̃E[ln(1 + ω̃t(σi0)θ)].

We can expand the function log(1 + ω̃tθ) in powers of θ, obtaining

∂Ψ(α̃, t)

∂t
= 2α̃ ln cosh β − 2α̃

∞∑

n=1

(−1)n

n
θn〈q1,...,n〉t. (15)

We learn by looking at equation (15) that the derivative of the cavity function is built
from non-stochastically stable overlap monomials, and their averages depend on t, making
their t-integration non-trivial (we stress that all the fillable terms are zero when evaluated
at t = 0 due to the gauge invariance of the model). We can escape this constraint
by iterating them again and again (and then integrating them back too) because their
derivative, systematically, will develop stochastically stable terms, which turn out to be
independent via the interpolating parameter and their integration is straightforwardly
polynomial. For this task we introduce the following.

doi:10.1088/1742-5468/2008/10/P10003 7
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Proposition 1. Let Fs be a function of s replicas. Then the following streaming equation
holds:

∂〈Fs〉t,α̃
∂t

= 2α̃θ

[ s∑

a=1

〈Fsσ
a
i0〉t,α̃ − s〈Fsσ

s+1
i0

〉t,α̃
]

+ 2α̃θ2

[ 1,s∑

a<b

〈Fsσ
a
i0σ

b
i0〉t,α̃ − s

s∑

a=1

〈Fsσ
a
i0σ

s+1
i0

〉t,α̃ +
s(s + 1)

2!
〈Fsσ

s+1
i0

σs+2
i0

〉t,α̃
]

+ 2α̃θ3

[ 1,s∑

a<b<c

〈Fsσ
a
i0
σb

i0
σc

i0
〉t,α̃ − s

1,s∑

a<b

〈Fsσ
a
i0
σb

i0
σs+1

i0
〉t,α̃

+
s(s + 1)

2!

s∑

a=1

〈Fsσ
a
i0
σs+1

i0
σs+2

i0
〉t,α̃ +

s(s + 1)(s + 2)

3!
〈Fsσ

s+1
i0

σs+2
i0

σs+3
i0

〉t,α̃
]

(16)

where we neglected terms O(θ3).

Proof. The proof works by direct calculation:

∂〈Fs〉t,α̃
∂t

=
∂

∂t
E

⎡

⎣
∑

{σ} Fse
∑s

a=1(β
∑Pα̃N

ν=1 σa
iν

σa
jν

+β
∑P2α̃t

ν=1 σa
iν

)

∑
{σ} e

∑s
a=1(β

∑Pα̃N
ν=1 σa

iν
σa

jν
+β

∑P2α̃t
ν=1 σa

iν
)

⎤

⎦

= 2α̃E

⎡

⎣
∑

{σ} Fse
∑s

a=1(βσa
i0

+β
∑Pα̃N

ν=1 σa
iν

σa
jν

+β
∑P2α̃t

ν=1 σa
iν

)

∑
{σ} e

∑s
a=1(βσa

i0
+β

∑Pα̃N
ν=1 σa

iν
σa

jν
+β

∑P2α̃t
ν=1 σa

iν
)

⎤

⎦ − 2α̃〈Fs〉t,α̃

= 2α̃E

[
Ω̃t(Fse

∑s
a=1 βσa

i0 )

Ω̃t(e
∑s

a=1 βσa
i0 )

]
− 2α̃〈Fs〉t,α̃

= 2α̃E

[
Ω̃t(FsΠ

s
a=1(cosh β + σa

i0 sinh β))

Ω̃t(Π
s
a=1(cosh β + σa

i0
sinh β))

]
− 2α̃〈Fs〉t,α̃

= 2α̃E

[
Ω̃t(FsΠ

s
a=1(1 + σa

i0θ))

(1 + ω̃t(σ
a
i0
)θ)s

]
− 2α̃〈Fs〉t,α̃. (17)

Now noting that

Πs
a=1(1 + σa

i0θ) = 1 +

s∑

a=1

σa
i0θ +

1,s∑

a<b

σa
i0σ

b
i0θ

2 +

1,s∑

a<b<c

σa
i0σ

b
i0σ

c
i0θ

3 + · · ·

1

(1 + ω̃tθ)s
= 1 − sω̃tθ +

s(s + 1)

2!
ω̃2

t θ
2 − s(s + 1)(s + 2)

3!
ω̃3

t θ
3 + · · ·

(18)
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we obtain

∂〈Fs〉t,α̃
∂t

= 2α̃E

[
Ω̃t

(
Fs

(
1 +

s∑

a=1

σa
i0
θ +

1,s∑

a<b

σa
i0
σb

i0
θ2 +

1,s∑

a<b<c

σa
i0
σb

i0
σc

i0
θ3 + · · ·

))

×
(

1 − sω̃tθ +
s(s + 1)

2!
ω̃2

t θ
2 − s(s + 1)(s + 2)

3!
ω̃3

t θ
3 + · · ·

)]

− 2α̃〈Fs〉t,α̃. (19)

from which our theorem follows. �	

4. Free energy analysis

Now that we have exploited the machinery we can start applying it to the free energy.
Let us first work out its streaming with respect to the plane (α, β):

∂A(α, β)

∂β
= −〈H〉

N
=

1

N
E

(
1

ZN

∑

{σ}

PαN∑

ν=1

σiνσjνe
−βHN (α)

)

=
1

N

∞∑

k=1

kπ(k − 1, αN)E[ω(σikσjk
)k]

= α
∞∑

k=1

π(k − 1, αN)E

[
ω(σikσjk

eβσik
σjk )k−1

ω(eβσik
σjk )k−1

]

= αE

[
ω(σikσjk

(cosh β + σikσjk
sinh β))

ω(coshβ + σikσjk
sinh β)

]
= αE

[
ω(σikσjk

) + θ

1 + ω(σikσjk
)θ

]
(20)

by which we get (and with similar calculations for ∂αA(α, β) that we omit for the sake of
simplicity)

∂A(α, β)

∂β
= αθ − α

∞∑

n=1

(−1)n(1 − θ2)θn−1〈q2
1,...,n〉 (21)

∂A(α, β)

∂α
= ln cosh β −

∞∑

n=1

(−1)n

n
θn〈q2

1,...,n〉. (22)

Now remembering theorem 1 and assuming critical behavior (that we will verify a fortiori
in section 5) we move to a different formulation of the free energy by considering the
cavity function as the integral of its derivative. In a nutshell the idea is as follows: due to
the second-order nature of the phase transition for this model (i.e. criticality that so far is
assumed) we can expand the free energy in terms of the whole series of order parameters.
Of course it is impossible to manage all of these infinite overlap correlation functions to get
a full solution of the model in the whole (α, β) plane, but it is possible to show by means
of rigorous bounds that close to the critical line (that we are going to find soon) higher
order overlaps scale with higher order critical exponents, so we are allowed to neglect
higher orders close to this line and we can investigate deeply criticality, which is the topic
of the paper.
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For this task let us expand the cavity functions as

Ψ(α̃, β, t) =

∫ t

0

∂Ψ

∂t′
dt′

= 2α̃t log cosh β + β̃

∫ t

0

〈m〉t′,α̃ dt′ − 1
2
β̃θ

∫ t

0

〈q12〉t′,α̃ dt′ + O(θ3) (23)

where β̃ = 2α̃θ → β ′ = 2αθ for N → ∞. Now using the streaming equation as dictated by
proposition 1 we can write the overlaps appearing in the expression of Ψ as polynomials of
higher order filled overlaps so as to obtain a straightforward polynomial back-integration
for the Ψ as they will no longer depend on the interpolating parameter thanks to theorem 4.

For the sake of simplicity the α̃ dependence of the overlaps will be omitted, keeping
in mind that our results are all taken in the thermodynamic limit and so we can quietly
exchange α̃ with α in these passages.

The first equation that we deal with is

d〈m〉t
dt

= β̃[〈m2〉 − 〈m1m2〉t] (24)

where 〈m1m2〉 is not filled and so we have to go further in the procedure and derive it in
order to obtain filled monomials:

d〈m1m2〉t
dt

= 2β̃[〈m2
1m2〉t − 〈m1m2m3〉t] + β̃θ[〈m1m2q12〉

− 4〈m1m2q13〉t + 3〈m1m2q34〉t]. (25)

In this expression we stress the presence of the filled overlap 〈m1m2q12〉 and of 〈m2
1m2〉t

which can be saturated in just one derivation. Wishing to have an expansion for 〈m〉t up
to the third order in θ, it is easy to check that the saturation of the other overlaps in the
last derivative would carry terms of higher order and so we can stop the procedure at the
next step:

d〈m2
1m2〉t
dt

= β̃[〈m2
1m

2
2〉] + β̃[unfilled terms] + O(θ2) (26)

from which, integrating back in t,

〈m2
1m2〉t = β̃[〈m2

1m
2
2〉]t. (27)

Now inserting this result in the expression (25) and integrating again in t we find

〈m1m2〉t = β̃θ〈m1m2q12〉t + β̃2〈m2
1m

2
2〉t2 (28)

and coming back to 〈m〉t we get

〈m〉t = β̃〈m2〉t − β̃2θ

2
〈m1m2q12〉t2 −

β̃3

3
〈m2

1m
2
2〉t3 (29)

which is the attempted result. Let us move our attention to 〈q12〉t; analogously we can
write

d〈q12〉t
dt

= 2β̃[〈m1q12〉t − 〈m3q12〉t] + β̃θ[〈q2
12〉 − 4〈q12q13〉t + 3〈q12q34〉t] (30)
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and consequently obtain

〈q12〉t = β̃θ〈q2
12〉t + β̃2〈m1m2q12〉t2 + O(θ4). (31)

With the two expansions above, in the N → ∞ limit, putting t = 1 we have

Ψ(α, β, t = 1) = 2α ln cosh β +
β ′

2
〈m2〉 − β ′4

12
〈m2

1m
2
2〉 −

β ′2θ2

4
〈q2

12〉

− β ′3θ

3
〈m1m2q12〉 + O(θ6). (32)

At this point we have all the ingredients for writing down the polynomial expansion for
the free energy function as stated in the next part.

Proposition 2. A general expansion via stochastically stable terms for the free energy of
the diluted Ising model can be written as

A(α, β) = ln 2 + α ln cosh β +
β ′

2
(β ′ − 1) 〈m2

1〉

− β ′4

12
〈m2

1m
2
2〉 −

β ′2

8α

(
β ′2

2α
− 1

)
〈q2

12〉 −
β ′4

6α
〈m1m2q12〉 + O(θ6). (33)

It is immediately checked that the above expression, in the ergodic region where the
averages of all the order parameters vanish, reduces to the well known high temperature
(or high connectivity) solution [18] (i.e. A(α, β) = ln 2 + α log cosh β).

Of course we are neglecting θ6 and higher order terms because we are interested in an
expansion holding close to the critical line, but we are not allowed to truncate the series
for a general point in the phase space far beyond the ergodic region.

5. Critical behavior

Now we want to analyze the critical behavior of the model: we find the critical line
where the ergodicity breaks, we obtain the critical exponent of the magnetization and the
susceptibility, and at the end we show that within our framework the lack of ergodicity
can be explained as the breaking of commutativity of the infinite volume limit against our
cavity field, thought of as a properly chosen field, vanishing in the thermodynamic limit
too, accordingly to the standard prescription of statistical mechanics [1].

5.1. Critical line

Let us firstly define the rescaled magnetization ξN as ξN =
√

NmN . By applying the
gauge transformation σi → σiσN+1 in the expression for the quenched average of the
magnetization (equation (29)) and multiplying it by N so to switch to ξ2

N , setting t = 1
and sending N → ∞, we obtain

〈ξ2
1〉 =

β ′3

3(β ′ − 1)
〈ξ1ξ2m1m2〉 +

β ′2θ

2(β ′ − 1)
〈ξ1ξ2q12〉 + O

(
θ5

β ′ − 1

)
(34)

by which we see (again remembering criticality and so forgetting higher order terms)
that the only possible divergence of the (centered and rescaled) fluctuations of the
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Figure 1. Phase diagram: below αc = 0.5 there is no giant component in the
Erdös–Renyi graph; αc defines the percolation threshold. Above, left of the
critical line, the system behaves ergodically; conversely on the right, ergodicity
is broken and the system displays magnetization.

magnetization happens at the value β ′ = 1 which gives 2αθ = 1 as the critical line, in
perfect agreement with [18] (see figure 1). The same critical line can be found more easily
by simply looking at the expression (33) as follows: remembering that in the ergodic phase

the minimum of the free energy corresponds to a order parameter of zero (i.e.
√

〈m2〉 = 0),
this implies the coefficient of second order, a(β ′) = β ′/2(β ′ − 1), to be positive. Anyway,
immediately below the critical line, values of the magnetization different from zero must
be allowed (by definition; otherwise we were not crossing a critical line) and this can be
possible if and only if a(β ′) ≤ 0. Consequently (and using once more the second-order
nature of the transition) on the critical line we must have a(β ′) = 0 and this gives again
2αθ = 1.

5.2. Critical exponents and bounds

Now let us move to the critical exponents.
Critical exponents are needed to characterize singularities of the theory at the critical

line and, for us, these indexes are the ones related to the magnetization 〈m〉 and to the
susceptibility 〈χ〉 ≡ βN [〈m2〉 − 〈m〉2].

We define τ = (2α tanh β − 1) and we write 〈m(τ)〉 ∼ G0 · τ δ and 〈χ(τ)〉 ∼ G0 · τγ ,
where the symbol ∼ has the meaning that the term in the second member is the dominant
one, but there are corrections of higher order.

Remembering the expansion of the squared magnetization that we rewrite for
completeness:

〈m2〉 =
β ′3

3(β ′ − 1)
〈m2

1m
2
2〉 +

β ′2θ

2(β ′ − 1)
〈m1m2q12〉 + O

(
θ5

β ′ − 1

)
(35)
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and considering that using the same gauge transformation σi → σiσN+1 on equation (31),
we have for the two-replica overlap the following representation:

〈q2
12〉 = − β ′2

(β ′θ − 1)
〈m1m2q12〉 + O(θ6). (36)

We can proceed, via simple algebraic calculations, to writing down the free energy, of
course close to the critical line, depending only by the two parameters 〈m2〉 and 〈q2

12〉:

A(α, β) = ln 2 + α ln cosh β +
β ′

4
(β ′ − 1) 〈m2

1〉 −
β ′2

48α

(
β ′2

2α
− 1

)
〈q2

12〉 + O(θ6). (37)

By a comparison of the formula obtained by deriving A(α, β) as expressed by equation (37)
and the expression that we have previously found (equations (22)) that we report for the
sake of readability:

∂A(α, β)

∂α
= ln cosh β −

∞∑

n=1

(−1)n

n
θn〈q2

1,...,n〉 (38)

it is immediately seen that we have

∂

∂α

[β ′

4
(β ′ − 1)〈m2

1〉
]

= θ〈m2
1〉. (39)

If we put ourselves close to the value β ′ = 1 and make a change of variable τ = β ′ − 1
with ∂α = 2θ∂τ we get

∂

∂α

[
β ′

4
(β ′ − 1)〈m2

1〉
]
∼ θ

2

∂

∂τ
[τ〈m2

1〉] =
θ

2
〈m2

1〉 +
θτ

2

∂〈m2
1〉

∂τ
= θ〈m2

1〉 (40)

by which we easily obtain

∂〈m2
1〉

〈m2
1〉

=
∂τ

τ
⇒ 〈m2

1〉 ∼ τ ⇒
√

〈m2
1〉 ∼ τ 1/2. (41)

Therefore we get that the critical exponent for the magnetization, δ = 1/2, which turns
out to be the same as in the fully connected counterpart [6, 19], in agreement with the
disordered extension of this model [10].

Again, by simple direct calculations, once we get the critical exponent for the
magnetization it is straightforward to show that the susceptibility 〈χ〉 obeys

〈χ〉 ∼ |τ |−1 (42)

close to the critical line, by which we find its critical exponent to be once again in
agreement with the classical fully connected counterpart [1].

Now we want to show some wrong results which a naive calculation would suggest,
so as to emphasize the importance of the bounds relating different monomials that we are
going to discuss immediately after. Then in section 5.3, we explain what the physics is
behind this picture by providing a mechanism for the breaking of the ergodicity.

The point on which we focus is the following: if we wish to perform the same procedure
as we performed on 〈m2〉, applying blindly saturability below to the first critical line, to
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the two-replica overlap 〈q2
12〉 we would obtain

√
〈q2

12〉 ∼ τ2 = (β ′θ − 1) (43)

identifying θc2 = 1/(2α)1/2 as another critical temperature, or better, the critical
temperature typical of 〈q2

12〉. In the same way we could find θcn for every q2
1...,n, obtaining

θcn = 1/(2α)1/n

such that, at the end, we would obtain a scenario with several transition lines, one for
every order parameter.

This is not a possible scenario, as generally explained for instance in [7] and as
dictated, in this model, by the following.

Proposition 3. As soon as the first-order parameter (the magnetization) starts taking
values different from zero, the same happens to all the other order parameters:

〈q2
1,...,n〉 = EkEi[ω

n(σi1σi2)] ≥ (EkEi[ω(σi1σi2)])
n = 〈m2〉n ∀n. (44)

We omit the proof details as they are a simple application of the Jensen inequality
(see e.g. [19]).

5.3. Saturability breaking

So far we have shown that it is not possible to have several transition lines, one for
every order parameter. Now we want to understand why there is just one critical line by
applying the theory developed in [9] to this model.

Starting from theorem 1 that we recall for simplicity:

A(α, β) = ln 2 − α
∂A(α, β)

∂α
+ Ψ(α, β, t = 1) (45)

we want to show the phase transition expressed by the non-commutativity of the
thermodynamic limit and the vanishing perturbation.

Again for simplicity we report the expansion of A(α, β) that we have previously built:

A(α, β) = ln 2 + α ln cosh β +
β ′

4
(β ′ − 1) 〈m2

1〉 −
β ′2

48α

(
β ′2

2α
− 1

)
〈q2

12〉 + O(θ6) (46)

which we obtained by considering the cavity function as the integral of its t-derivative:

Ψ(α̃, t) =

∫ t

o

∂Ψ(α̃, t′)

∂t′
dt′ =

∫ t

o

2α̃ ln cosh β dt′ − 2α̃
∞∑

n=1

(−1)n

n
θn

∫ t

o

〈q1,...,n〉′t dt′ (47)

and performing, via the streaming equation, a procedure of saturating consecutive t-
derivatives upon the overlaps in order to express them as functions of higher order filled
terms. Then the only thing we had to do was send N to infinity, carrying out of the
integral the overlaps, and then putting t = 1 to evaluate Ψ(α, β, t = 1). The result of this
procedure brings us to equation (46).

But what if we exchanged the limit order by sending t → 1 first and taking the
thermodynamic limit after?
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It is easy to note that all the overlaps appearing in equation (47) are fillable, such
that we can avoid the saturation procedure simply by setting t = 1 first and then sending
N to infinity. In this way, thanks to theorem 3, each fillable overlap is transformed into
a filled t-independent one and this kills all the correlations among different replicas and
allows us to write

A(α, β) = ln 2 + α ln cosh β −
∞∑

n=1

(−1)n

n
θn〈q2

1,...,n〉 = ln 2 + α
∂A(α, β)

∂α
(48)

where clearly

lim
N→∞

lim
t→1

Ψ(α̃, β, t) = lim
N→∞

lim
t→1

∫ t

o

∂Ψ(α̃, β, t′)

∂t′
dt′

= lim
N→∞

lim
t→1

[ ∫ t

o

2α̃ log cosh β dt′ − 2α̃
∞∑

n=1

(−1)n

n
θn

∫ t

o

〈q1,...,n〉′t dt′
]

= 2α ln cosh β − 2α
∞∑

n=1

(−1)n

n
θn〈q2

1,...,n〉 = 2α
∂A(α, β)

∂α
. (49)

In particular, retaining just the first two terms of the expansions, we show the difference
between the two results:

• limt→1 limN→∞:

A(α, β) = ln 2 + α ln cosh β +
β ′

4
(β ′ − 1)〈m2

1〉 + O(θ3). (50)

• limN→∞ limt→1:

A(α, β) = ln 2 + α ln cosh β +
β ′

2
〈m2

1〉 + O(θ3). (51)

We immediately recognize that equation (50) is the correct expression, holding also below
the critical line. When the system lives in the ergodic region all the order parameters are
zero and it reduces to α ln cosh(β) which is the ergodic solution; if we cross the critical
line the formula takes into account the phase transition encoded in the coefficient of the
second order and gives the correct expression immediately below.

It is also straightforward to recognize as the ergodic solution equation (51), which
can be the correct one only above the critical line [18].

At the end we saw that there exists one and only one critical line for all the order
parameters. We saw that this line can be depicted as the breaking of commutativity
among the infinite limit operation and the setting of t = 1 (relaxing the Boltzmann factor
from the interpolant, avoiding the trivial way of having t = 0). Hence, what could be the
origin of the transition for all the other order parameters? The correlations among them
and the magnetization, as clearly evident in the free energy expansion (see equation (33)).
And lastly, what is the origin of these correlations? The saturability property that the
model exhibits, as stated by theorem 3. In fact, at the critical line (which is the last line,
from above, where gauge invariance is a symmetry of the Boltzmann state too, thanks to
the continuity of the transition), saturability easily shows that

lim
N→∞

〈m1q12〉t = 〈m1m2q12〉, (52)

explaining the birth of the correlations among the various order parameters (we reported
just the first two, as an example).
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5.4. Self-averaging properties

We have previously shown how filled overlaps become asymptotically independent of t
when N grows to infinity. Starting from this we can find identities stating the self-
averaging of the order parameters as 〈m2〉.

In particular we are going to take these overlaps and calculate their derivative with
respect to t; then by applying the gauge transformation and setting t = 1, N → ∞ we
can write down the self-averaging relations:

0 = ∂t〈m2
1〉t = β ′[〈m3

1〉t − 〈m2
1m2〉t] ⇒ [〈m4

1〉 − 〈m2
1m

2
2〉] = E[Ω(m4) − Ω2(m2)]. (53)

We find, consistently with [18], standard self-averaging for the magnetization.
More interesting is the situation concerning the overlap, but we actually lack a

complete mathematical control.
By applying the same trick as before we can equate to zero (in the large N limit) the

t-derivative of the squared overlap (which is stochastically stable); consequently we get
two terms:

0 = ∂t〈q2
12〉t = 2β ′[〈m1q

2
12〉t − 〈m3q

2
12〉t] + β ′θ[〈q3

12〉t − 4〈q2
12q13〉t + 3〈q2

12q34〉t] (54)

⇒ [〈m2
1q

2
12〉 − 〈m2

3q
2
12〉] = 0 [〈q4

12〉 − 4〈q2
12q

2
13〉 + 3〈q2

12q
2
34〉] = 0. (55)

A priori we cannot assume factorization of the series so to put to zero each term separately
(as we did in equation (55)); however, close to the critical line, surely the second term
is a higher order and we can reasonably set to zero the first. Furthermore as the second
term on the rhs has a pre-factor ∝α−1 differing from the first term, it would be difficult
to imagine the opposite.

It is in fact very natural to assume that the two terms can be set to zero separately in
the whole (α, β) plane and this is very interesting because the second term is a very well
known relation in the field of spin glasses [16, 24, 3, 23, 5] suggesting a common structure
among different kinds of disordered systems, the only sharing feature among diluted
ferromagnets and spin glasses being some kind of disorder (topological in the former,
frustrating in the latter).

We are not going to go deeper on this point as it is under investigation in [17] where
the same set of relations (and more) are found and discussed.

6. Numerics

In this section we analyze, from the numerical point of view, the ferromagnetic
system previously introduced by performing extensive Monte Carlo simulations with the
Metropolis algorithm [29].

The Erdös–Renyi random graph is constructed by taking N sites and introducing a
bond between each pair of sites with probability p = ᾱ/(N − 1), in such a way that the
average coordination number per node is just ᾱ. Clearly, when p = 1 the complete graph
is recovered.

The simplest version of the diluted Curie–Weiss Hamiltonian has a Poisson variable

per bond of HN = −
∑

ij

∑Pᾱ/N

ν=0 σiνσjν , and this gives the easiest approach when dealing
with numerics.
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For the analytical investigation we choose a slightly changed version (see equation (1)):
each link gets a bond with probability close to α/N for large N ; the probabilities of getting
two and three bonds scale as 1/N2, 1/N3 and are therefore negligible in the thermodynamic
limit.

Working with directed links (as we do in the analytical framework) the probability of
having a bond on any undirected link is twice the probability for a directed link (i.e. 2α/N).
Hence, for large N , each site has average connectivity 2α. Finally in this way we allow
self-loops, but they add just a σ-independent constant to HN and are irrelevant, but we
take the advantage of dealing with an HN which is the sum of independent identically
distributed random variables, which is useful for analytical investigation.

When comparing with numerics, consequently we must keep in mind that ᾱ = 2α.
In the simulation, once the network has been diluted, we place a spin σi on each

node i and allow it to interact with its nearest neighbors. Once the external parameter
β is fixed, the system is driven by the single-spin dynamics and it eventually relaxes to a
stationary state characterized by well defined properties. More precisely, after a suitable
time lapse t0 and for sufficiently large systems, measurements of a (specific) physical
observable x(σ, ᾱ, β) fluctuate around an average value only depending on the external
parameters β−1 and ᾱ.

Moreover, for a system (ᾱ, β) of a given finite size N , the extent of such fluctuations
scales as N−1/2 with the size of the system. The estimate of the thermodynamic
observables 〈x〉 is therefore obtained as an average over a suitable number of (uncorrelated)
measurements performed when the system is reasonably close to the equilibrium regime.

The estimate is further improved by averaging over different realizations of the same
system (ᾱ, β). In summary,

〈x(σ, ᾱ, β)〉 = E

[
1

M

M∑

n=1

x(σ(tn))

]
, tn = t0 + nT

where σ(t) denotes the configuration of the magnetic system at time step t and T is the
decorrelation parameter (i.e. the time, in units of spin flips, needed to decorrelate a given
magnetic arrangement).

In general, statistical errors during an MC run in a given sample turn out to be
significantly smaller than those arising from the ensemble averaging (see also [33]).
Figure 2 shows the dependence of the macroscopic observables 〈m〉 and 〈e〉 from the
size of the system; values are obtained starting from a ferromagnetic arrangement, at the
normalized inverse temperature β/ᾱ = 1.67. Notice that at this temperature the system
composed of N = 104 parts is already very close to the asymptotic regime. Analogous
results are found for different systems (ᾱ, β), with β far enough from βc.

In the following we focus on systems of sufficiently large size so as to permit discarding
finite size effects. For a wide range of temperatures and dilutions, we measure the average
magnetization 〈m〉 and energy 〈e〉, as well as the magnetic susceptibility χ, calculated as

χ(β, ᾱ) ≡ βN
[
〈m2〉 − 〈m〉2

]
.

Their profiles display the typical behavior expected for a ferromagnet and, consistently
with the theory, highlight a phase transition at well defined temperatures βc(α).

Now, we investigate in more detail the critical behavior of the system. We collect
accurate data for the magnetization and susceptibility, for different values of ᾱ and for
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Figure 2. Finite size scaling for the magnetization and the internal energy (inset)
for ᾱ = 10 and (β/ᾱ) = 1.67. All the measurements were carried out in the
stationary regime and the error bars represent the fluctuations about the average
values. We find good indications of the convergence of the quantities with the
size of the system and thus of the existence of the thermodynamic limit.

Table 1. Estimates for the critical temperature and the critical exponents δ and
γ obtained by a fitting procedure on data from numerical simulations concerning
Ising systems of size N = 36000 and different dilutions (we stress that analytically
we get δ = 0.5 and γ = −1). Errors on temperatures are <2%, while for exponents
they are within 5%.

ᾱ β−1
c δ γ

10 9.93 0.48 −0.97
20 19.92 0.49 −1.04
30 29.98 0.48 −1.04
40 39.59 0.50 −1.02

temperatures approaching the critical one. These data are used to estimate both the
critical temperature and the critical exponents for the magnetization and susceptibility.
In figure 3 we show data as a function of the reduced temperature τ = (|β −βc|/βc)

−1 for
ᾱ = 10 and ᾱ = 20. The best fit for observables is the power law

〈m〉 ∼ τ δ, β > βc (56)

χ ∼ τγ . (57)

We obtain estimates for βc(ᾱ), δ(ᾱ) and γ(ᾱ) by means of a fitting procedure. Results
are gathered in table 1. Within the errors (≤2% for βc and ≤5% for the exponents),
estimates for different values of ᾱ agree and they are also consistent with the analytical
results revealed in section 5
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Figure 3. Log–log scale plot of the magnetization (main figure) and susceptibility
(inset) versus the reduced temperature τ = (|β − βc|/βc)−1 for ᾱ = 10.
Symbols represents data from numerical simulations performed on systems of
size N = 36000, while lines represent the best fit.

We also checked the critical line for the ergodicity breaking, again finding optimal
agreement with the criticality investigated by means of analytical tools.

7. Conclusions

In this paper we developed the interpolating cavity field technique for the mean field
diluted ferromagnet. Once the general framework had been built we used it to analyze
criticality: we found analytically the critical line and the critical exponent of the
magnetization, whose self-averaging was also proved. We present an argument to explain
the transition from an ergodic phase to a broken ergodicity phase via the breaking of
commutativity of two limits, volume and applied field, as dictated by standard statistical
mechanics. We furthermore showed the existence of only one critical line where all the
multi-overlaps start taking positive values as soon as the magnetization becomes different
from zero. We proved this both mathematically by means of a rigorous bound and
physically via a mechanism that generates strong correlations among the magnetization
and overlaps at the (unique) critical line: shape saturability.

At the end a detailed numerical analysis of the model was presented: by sharp Monte
Carlo simulations the convergence of the energy density (and the magnetization) to its
limit was investigated, obtaining monotonicity in the system size. The critical line, as well
as scaling of the magnetization and the susceptibility, were also investigated, obtaining
full agreement among theory and the simulations.

Future works should extend these techniques to several lateral models such as the
bipartite diluted mean field Ising models, while the need for stronger techniques to go
well beyond the critical line is also to be satisfied—as well as their practical applications
to social science or biological networks. We plan to follow these research lines in the
future.
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