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PACS 89.75.Kd – Complex systems: Patterns
PACS 89.75.Fb – Structures and organization in complex systems
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Abstract – We study the phase diagram of a minority game where three classes of agents are
present. Two types of agents play a risk-loving game that we model by the standard Snowdrift
Game. The behaviour of the third type of agents is coded by indifference with respect to the game
at all: their dynamics is designed to account for risk-aversion as an innovative behavioral gambit.
From this point of view, the choice of this solitary strategy is enhanced when innovation starts,
while is depressed when it becomes the majority option. This implies that the payoff matrix of
the game becomes dependent on the global awareness of the agents measured by the relevance
of the population of the indifferent players. The resulting dynamics is nontrivial with different
kinds of phase transition depending on a few model parameters. The phase diagram is studied on
regular as well as complex networks.

Copyright c© EPLA, 2018

Introduction. – Risk and uncertainty are important
elements of human behavior, in particular when dealing
with interactions of international teams and global coun-
terparts. Here, by risk we just mean the intrinsic un-
certainty in a multi-strategy individual interaction/game
characterized by a pay-off depending nontrivially on the
mutual strategic choices. The level of risk or, generally
speaking, uncertainty that may be tolerable is not con-
stant over different cultures, see for instance [1,2]. It ap-
pears that the risk aversion attitude is correlated with
a low amount of tolerance for vague or ambiguous be-
haviours. In such a case, structured sets of rules are pre-
ferred over more undetermined situations. This implies a
sort of cultural payoff component associated with playing
risk-averse strategies. Besides, cultural conformity is a key
factor in the evolution of complex culture in humans [3–5]
as well as in animals [6]. On the other hand, there is ten-
sion with the drive to innovate. Innovation is an important
ingredient to promote longstanding high levels of welfare,
as it happens in real markets [7–9]. Deviation from confor-
mity is an important evolutive mechanism, the so-called
behavioral gambit, see for instance [10]. In this paper
we propose a simple model describing how innovation is

triggered when a population component is risk-averse in
the presence of many individuals accepting playing some
risky competition requiring cooperation. We shall assume
a tendency to play risk-averse strategy with enhanced pay-
off for the above-mentioned cultural reasons. On the other
hand, we shall also assume that an increased sense of safety
due to a large number of risk-averse players will feedback
the strategy choice and reduce the extra payoff allowing
for more risk-loving attitudes. In the context of epidemics
disease critical spreading [11], it is also natural to assume
that the effective infection probability is affected by the
perception of the risk of being infected. This has been
assumed to be related to the fraction of infected neigh-
bors in the recent models discussed in [12–14]. The pre-
cise mechanisms for this to happen are an important issue,
like aggregation effects [15] or the role of the endorsers [16].
Here, we shall explore the dynamical balance between risk-
aversion and the opposite behaviour induced by global
awareness of the fact that such attitude is the majority op-
tion: a natural application of the present model deals with
the phenomenon of nonconformism, a tendency ranging
from social and political settings to economic or financial
contexts. Nonconformist individuals refuse to take part in
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the game, and their behavior does not depend on the inter-
actions with other competitors. They also tend to arrange
in closed subcommunities sharing the same behavior (or
opinion). A distinctive feature of the phenomenon is that
the nonconformist option is discouraged if this behavior
becomes a mainstream mindset.

We shall describe this competition in the context of
evolutionary game theory [17–20]. This is a theoretical
framework where emergence of collective behaviour may
be observed, especially when played on structured popu-
lations [21,22]. We shall adopt the Snowdrift Game (SG)
as our background model of competition [23]. In this
model [24], cooperating players can coexist with defec-
tor ones even in well-mixed systems. The spatial struc-
ture is important and may even hinder the cooperative
attitude [25]. In addition, Santos and Pacheco [26] dis-
covered that cooperation generically emerges on scale-free
networks, while Szabó et al. [27–29] presented a model ac-
counting for a limited rationality of players in the game
with the attempt to frame real system dynamics.

We consider the memory-based Snowdrift Game pro-
posed in [30], in which the finite individual rationality af-
fects the system dynamics since the adoption of a given
strategy depends on the information already stored in
the players’ memory. This approach is based on [31],
where a so-called minority game [32] is considered, where
the individual experience crucially affects the system
dynamics [33,34].

To take into account the risk-averse strategy option we
included solitary players [35,36]. In the standard snow-
drift game with these loners, one has a solitary-strategy
describing people choosing not to participate in the com-
petition and would prefer to take a fixed albeit small pay-
off. Hauert et al. studied the effects of their presence in
a generalization of the prisoner dilemma game called the
public goods game [28,37]. This basic model will be mod-
ified in order to take into account two novel mechanisms
according to the previous discussion. The first is a cul-
tural payoff enhancements for those players choosing to
avoid the SG strategies. The second is a damping effect
of the risk-aversion tendency. It depends on the global
awareness of the system, i.e. on the fraction of players
preferring the risk-averse strategy, in the spirit of [12].

The modified snowdrift game. – In [35] the authors
resumed the SG model with the loners in the evolutionary
setting, while memory in the system has been considered
for the pure SG in [38]. The main results of these two
papers will be summarized in the Supplementary Material
Supplementarymaterial.pdf (SM).

Our modification of the Snowdrift Game with S-players
is based on the payoff matrix

P =

C D S

C

D

S







1 1 − r q

1 + r 0 q

(1 + ξ) q (1 + ξ) q (1 + ξ) q






,

(1)

where r is the cost-to-reward ratio, q a fixed constant and
at each round

ξ = 1 − fS , (2)

fS being the fraction of players in the S-strategy. The
payoff for pair of strategies involving solitaries is standard
for ξ = 0. Adopting the solitary strategy has an addi-
tional payoff ξ q decreasing when the number of S-players
increases. The rules of this memory-based evolutionary
game are the following: let us consider a generic graph;
each player lies on a node of this graph such that pairwise
connected players challenge reciprocally match by match
and this happens for all the (connected) couples. The total
payoff of any player is simply the linear sum of the payoff
collected in each single duel. Once a round is terminated,
all the players evaluate their performances by playing a
virtual match where they use the anti-strategy with re-
spect to the one they’ve just adopted in order to calcu-
late their potential reward with this revised settings: if
the latter is actually better than the employed one (i.e., if
the player obtained higher score with the anti-strategy), it
keeps the latter as the best strategy to be used and it stores
this information in its memory (whose length is fixed to
M bits1). In the successive step all players update their
memory at once by adding a new strategy extracted with
probability given by the frequency of the already stored
C, D and S choices and the dynamics then takes place by
iterating this procedure.

Note that the parameter ξ introduces a global feedback
in the score of the S-players, which now depends not only
on the local interaction but also on the global state of the
community.

We introduce, as order parameters, the three fractions
of players

fC ≡
C

N
, fD ≡

D

N
, fS ≡

S

N
,

(where N = C + D + S), and we will study them as
functions of r for fixed values of q = {0.1, . . . , 0.4} and
viceversa2.

Note further that a pure SG with memory-driven evo-
lution has been considered in [38], both in regular lattices
and complex networks, where it has been shown that tak-
ing the memory Markovian and with finite length, the
systems evolves towards a (almost) stable state with a
roughly constant density of cooperators fC . In the partic-
ular case of regular lattices, cooperators and defectors tend
to group forming well-defined spatial clusters. Moreover,
the density of cooperators shows a step-shape for varying r,
with the number of steps determined by the cardinality of
the neighborhoods. A variation of the SG theme with the
S-players has been instead analyzed in [35], where the au-
thors focused on completely connected graphs and regular
(with four neighbors) lattices. Their main results are that,

1We analyze in depth this point in the SM.
2Numerically, the curves are obtained averaging over 100 Monte

Carlo simulations for any value of r and q.
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Fig. 1: (Color online) Phase diagram of the model. The black
lines mark the transitions from the first phase without solitaries
to the second with the three strategies coexisting and from the
second to the (unstable) third one.

in a completely connected graph, the coexistence of the
three characters is impossible: C- and D-players can exist
only in the absence of solitary category, or the latter take
over the entire population. For the regular graph, instead,
the presence of the S-players leads to an improvement of
the collaborative attitude, coexistence is possible, and in
general the C-players can survive in the full parameter
space of the model.

Regular lattice R8. – In this section we discuss the
results for our extension in a regular lattice with 8 neigh-
bors. The phase diagram of the model can be divided into
three main regions in the (r, q) = [0, 1] × [0, 1] square, as
shown in the phase diagram presented in fig. 1. In the
first and second phases the system evolves to a steady
state with coexisting C-D and C-D-S players respectively.
In the third phase, the players never reach a stable strat-
egy choice. In the first phase (highlighted in blue), for
r and q small enough, the system evolves toward a stable
final state without S-players. The final state is the same
as it would be for a community without the S-players at
all, and the step-like shapes of the fC,D fractions are ev-
ident from the plots of the densities vs. r as reported
in fig. 2. In the second phase (highlighted in green), the
system evolves almost everywhere (see below) to a stable
final configuration characterized by the coexistence of the
three kinds of players. However the total fraction of S in-
dividuals, as the size of their clusters, increase both with
q and r, as a glance at both figs. 2, 3 may confirm.

This phase is characterized by typical spatial con-
figurations, where S-players arrange forming clustered
sub-communities. We stress that this stable spatial
arrangement of the strategies is strikingly different from
the results of [35]. Both the stability of the final state
and the regularity of the patterns are consequences of the
memory-based update for the strategies of the players. De-
spite the phase diagram of the model of [35] is qualitatively

Fig. 2: (Color online) Fractions of cooperators fC , defectors
fD and solitary players fS as functions of the parameter r for
q = 0.1, . . . 0.4. Green dots denotes fC , red fD and gray fS.
The shaded regions in the plots correspond to the third phase
of the system where no stable spatial arrangement is reached.
Gray vertical lines correspond to the phase transitions in the
SG without S-players. Further analysis is presented in the SM.

Fig. 3: (Color online) Fractions of cooperators fC , defectors fD

and solitary players fS as functions of the parameter q for r =
0.1, . . . 0.4. Green dots denotes fC , red fD and gray dots fS.
The shaded regions in the plots correspond to the third phase
of the system where no stable spatial arrangement is reached.

similar to the present one, the probabilistic update of
their players forbids the stability of the choices and conse-
quently the formation of the patterns. The rearrangement
in sub-communities by the S-players is instead dictated by
the nonlinear feedback of ξ in the payoff matrix, favouring
the grouping of players that prefer not to participate.

Looking at the various q = 0.1, 0.2, . . . in fig. 2, one can
clearly see that once the solitaries appear, their fraction
becomes quickly dominant increasing r: a higher payoff
for the defectors means a higher risk to be cheated for
the C-players, and progressively more and more individu-
als find advantageous to avoid this risk, choosing for the
solitary behavior.

38001-p3
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Fig. 4: (Color online) Probability distributions (and relative
snapshots) for the size S of S-clusters (in gray), in a 100 × 100
lattice for fixed q = 0.3 and varying r around the percolation
threshold for a giant S-component.

The fraction fS is an increasing function of both r and q

but in rather different ways: while the transitions of fS in
r are first-order (i.e., there is a genuine jump by the order
parameter at the critical values rc, see fig. 2)3, the transi-
tion from zero to nonzero values for fS vs. q resembles a
critical (second-order) scenario: the order parameter con-
tinuously raises from zero at qC , see fig. 3 (further there is
a genuine divergence in the susceptibility —the variance
of the order parameters, suitably amplified by a volume
factor— for q → qC , as closely examined in the SM).

We aim to better characterize phase II (since under-
standing network’s dynamics in that phase is crucial to
see why there is a third, unstable, phase in the phase dia-
gram) by looking at the evolution of the size distribution
of the S-clusters: in fig. 4 we show the probability distri-
butions for the size of S-clusters, in a 100 × 100 lattice
at fixed q = 0.3 and varying r around the percolation
threshold for a S-players’ giant component. These lon-
ers appears in a relatively large number of small islands
progressively increasing their size and eroding the regular
pattern of C- and D-players, eventually merging. As an-
ticipated above, in this phase the system does not always
reach a perfectly stable final configuration: this is because
a (relatively small) fraction of players (typically located
at the borders of the S-clusters) can exhibit an oscillatory
behavior. These local instabilities are closely related to an
oscillating balance in the payoff matrix among the possible
gains, due to the nonlinear feedback of ξ: this results in
a perpetual indecisiveness for some players as a structural
property for models with global awareness.

The growth of the S-density leads eventually to another
transition4 toward the third phase, where the system is
intrinsically unstable: all the players are never able to
make a definitive choice for a strategy. Indeed, for large

3We discuss in the SM how to locate these critical rC values by

a standard stability analysis.
4The nature of the transition is deepened in the SM.

Fig. 5: (Color online) Fractions of cooperators fC , defectors
fD and solitary players fS as functions of the parameter r,
for a WS network with θ = 0.1 (darker colors) and θ = 0.5
(lighter colors). Green dots denote fC , red fD and gray fS.
The shaded regions in the plots correspond to the third phase
of the system, where no stable spatial arrangement is reached.

enough q, the incentive not to participate to the SG would
make the S-strategy the preferred choice for all the individ-
uals and the system would evolve toward a state where the
S-players completely dominate the system. Nevertheless,
a configuration with only S-players is not stable. With
fS = 1 and ξ = 0 in the payoff matrix, all the players
would get exactly the same payoff for any strategy they
choose (resulting in a random update rule), leading to a
destabilization of the system configuration. Finally, we
note that, despite a spatial arrangement is impossible, yet
the model is still characterized by some constant (aver-
aged in time) fractions for the strategies of the players in
this third phase, as can be clearly seen in the gray regions
of the plots in figs. 2, 3, but the collaborative attitude is
highly inhibited.

Complex networks. – The SG with S-players can be
extended as well on complex networks. In this section, we
consider the model on two typical examples of complex
networks, namely Watts-Strogatz (WS) [39] and Barabàsi-
Albert (BA) [40] graphs.

Watts-Strogatz networks. In the Watts-Strogatz case,
we consider two realizations of the networks for different
rewiring probabilities (θ = 0.1 and θ = 0.5) in the algo-
rithmic construction of the topology. The global picture
for the relationships among the characters resembles the
results obtained in the regular graph and the phase space
is qualitatively very similar. Figure 5 collects the results
for the evolution of the fractions of C-, D- and S-players
(suitably averaged in time, see the SM) for varying r and
fixed q.

As in the regular case, low values of r lead to the ex-
tinction of solitary players. Increasing r, the S-density
in the final configuration is nonvanishing and takes over
quickly the majority of the nodes (again, when the fraction

38001-p4
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Fig. 6: (Color online) Fractions of cooperators fC , defectors fD

and solitary players fS as functions of the parameter r for dif-
ferent choices of q. Green dots denote fC , red fD and gray fS .
The shaded regions in the plots correspond to the third phase
of the system where no stable spatial arrangement is reached.

of the these players approaches 1 the final configuration
becomes unstable). Looking at the fractions for θ = 0.1
and θ = 0.5, one can immediately see that the results
look extremely similar and qualitatively independent on
the rewiring probability.

One may note that, at least in the first phase (without
S-players in the final state), one can spot a reminiscence
of a steps-like pattern for the C- and D-densities: the WS
model is in fact realized starting from a regular graph with
a rewiring prescription governed by θ. This procedure
preserves the mean degree, and the final degree distribu-
tion falls exponentially (in the volume) for large devia-
tions from the mean value. At least for small θ values,
this makes the system’s dynamics in the WS setting rather
close to that on a regular network with the same mean de-
gree for the nodes (essentially assuming P (k) → δ(k− k̄)).
Then, by noticing that the evolution of the system re-
mains qualitatively the same even for larger θ values, one
could say that the SG game (with or without S-players) is
rather insensitive to the small-world property of a network
(since the strategy choices are almost completely dictated
by local interactions among individuals). Increasing the
rewiring probability, i.e. the randomization of the final
graph, has the only effect to slightly and uniformly reduce
the convenience of a collaborative behavior.

Barabàsi-Albert networks. The preferential attach-
ment algorithm for the construction of the BA graphs re-
sults in a (approximatively for finite size graphs) power
law distribution of the nodes. In this case, the local struc-
ture of the network is extremely heterogeneous. From the
results of the previous sections, one can thus expect that
the SG with S-players is characterized by a totally different
evolution in the BA setting. This expectation is confirmed
by [38], where the authors considered the pure SG with
memory in scale-free networks. Without the S-players,
the authors [38] found that the cooperative density has a

Fig. 7: (Color online) Mean degree of the C, D and S nodes,
respectively. Green dots denote the mean degree of the nodes
occupied by C-players, red dots are used for D-players and
finally gray dots denote S-players. The plots show the mean
degree as function of the parameter r for different choices of q.
The shaded regions in the plots correspond to the third phase
of the system where no stable spatial arrangement is observed.

strong, nonmonotonous dependence on the parameter r.
In particular, fC presents peaks at specific values of r,
resulting in the nonintuitive picture that a larger payoff
for a selfish behavior may lead to an enhancement of the
collaboration. As the S-players are included in the game,
the above results change drastically: fig. 6 reports the
fractions of cooperators fC , defectors fD and solitaries
fS as functions of the parameter r, for different choices
of q in BA2 graphs (we denote with BA2 the Barabàsi-
Albert networks constructed adding a node with 2 new
links at any step of the growing algorithm). Increasing r

for fixed q, most of the nodes opt for the solitary strategy
and this in turn strongly inhibits the convenience of the
collaborative behavior. Indeed, the fraction of collabora-
tors never grows with r in the presence of the solitary play-
ers. This is even more evident by looking at the relative
fractions of the C and D behaviors only (excluding the soli-
tary individuals in the normalizations), i.e f̄C,D =

nC,D

nC+nD

(reported in lighter colors in fig. 6). The presence of the
S-players strongly inhibits the collaboration, the relative
fraction f̄C being constantly lower than f̄D as the great
majority of the players that do not opt for the S-strategy
are forced to be defectors. We can better understand the
evolution of the dynamics on these networks looking at the
mean degree of the nodes occupied by the various players,
as shown in fig. 7. For all the values of q, the mean degree
of the collaborating nodes has a sharp peak when r grows
enough such that the S-players are close to take over the
network (i.e., at the onset of the transition to the unsta-
ble phase). These plots suggest that, while the solitaries
become progressively the largest fraction increasing the
payoff for the defection, the collaborative behavior resists
only in few nodes with a relatively large degree, where the
minority of C-players is segregated and surrounded. The
role of high-degree nodes as bastions of least resistance

38001-p5



E. Alfinito et al.

for the cooperative choice is rather unusual. On the other
hand, the mean degree of the S-players stays almost con-
stant after their appearance, suggesting that this strategy
spreads among the various players as r increases in a rather
uniform way.

Conclusions. – By including also solitary players, in
this paper, we extended the Snowdrift Game with memory
to account for a third behavior, whose decisional pro-
cess relies on global awareness (and not just local knowl-
edge) in a minority-game attitude: we studied numerically
the phase diagram of this model, namely the evolution of
the relative fractions of the three types of players vs. the
tunable parameters r (the standard cost-to-reward ratio)
and q (the solitary payoff). We found robust numerical
evidences that, starting by r = 0 and q = 0, along the
r-axes, the evolution of these fractions happens trough
discontinuous (first-order–like) phase transitions, while its
growth along the q-axes is smooth and coupled to a peak of
their fluctuations, as typical in critical (second-order–like)
phase transitions. Nevertheless, the model has a third,
intrinsically unstable, phase —driven by the global aware-
ness introduced in the payoff matrix— that is reached for
high values of (r, q) in a way quite similar to percolation
in random graphs.

Concerning the role of the solitary strategy, we found
that individuals choosing this behavior show a strong
predisposition to group together in clusters for relatively
high q, therefore mimicing the tendency of nonconformist
people to join together in subcommunities with the same
mindset (e.g., Facebook pages, blogs, organizations etc.).
However, increasing further the loners’ payoff q leads to
the unstable phase, in which the gain in the nonconformist
behavior is so high that it quickly becomes the majority
option, thus turning into a conventional attitude. Then,
all of the three strategies becomes equally profitable, re-
sulting in a downsizing of the nonconformist front and
making the evolution cyclic. As future outlooks we aim
to bypass the pairwise decision rule enlarging the outlined
scheme to include also mixed populations [41].
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