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Abstract. Biological and social networks have recently attracted great
attention from physicists. Among several aspects, two main ones may be stressed:
a non-trivial topology of the graph describing the mutual interactions between
agents and, typically, imitative, weighted, interactions. Despite such aspects
being widely accepted and empirically confirmed, the schemes currently exploited
in order to generate the expected topology are based on a priori assumptions and,
in most cases, implement constant intensities for links.

Here we propose a simple shift [—1, +1] — [0, +1] in the definition of patterns
in a Hopfield model: a straightforward effect is the conversion of frustration into
dilution. In fact, we show that by varying the bias of pattern distribution, the
network topology (generated by the reciprocal affinities among agents, i.e. the
Hebbian rule) crosses various well-known regimes, ranging from fully connected,
to an extreme dilution scenario, then to completely disconnected. These features,
as well as small-world properties, are, in this context, emergent and no longer
imposed a priori.

The model is throughout investigated also from a thermodynamics
perspective: the Ising model defined on the resulting graph is analytically
solved (at a replica symmetric level) by extending the double stochastic stability
technique, and presented together with its fluctuation theory for a picture of
criticality. Overall, our findings show that, at least at equilibrium, dilution (of
whatever kind) simply decreases the strength of the coupling felt by the spins, but
leaves the paramagnetic/ferromagnetic flavors unchanged. The main difference
with respect to previous investigations is that, within our approach, replicas
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do not appear: instead of (multi)-overlaps as order parameters, we introduce a
class of magnetizations on all the possible subgraphs belonging to the main one
investigated: as a consequence, for these objects a closure for a self-consistent
relation is achieved.

Keywords: phase diagrams (theory), disordered systems (theory), random
graphs, networks
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1. Introduction to social and biological networks

Since the early investigations by Milgram [51], several efforts have been made in the
context of social sciences in order to understand the structure of interactions within a social
system. Granovetter defined this kind of investigation as an attempt to link ‘micro- and
macrolevels of sociological theories’ and gave fundamental prescriptions [42]; in particular,
he noticed that the stronger the link between two agents, the larger (on average) the
overlap among the relevant neighborhoods, i.e. the higher the degree of cliquishness.
Furthermore, he noticed that weak ties play a fundamental role, acting as bridges among
sub-clusters of highly connected interacting agents [42]-[44]. As properly pointed out by
Watts and Strogatz [59], such features render the Erdos—Rényi (ER) graphs [26] unable
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to describe social systems, due to the lack of correlation between links, which constraints
the resulting degree of cliquishness to be relatively small [12]. Through a mathematical
technique (rewiring), they obtained a first attempt at defining the so-called ‘small-world’
graph [59]. This structure was also used as a substrate for statistical mechanics models
and, in particular, for the Ising model: by treating the network as a clustered chain
(solvable via e.g. the transfer matrix) overlapped on a sparse ER graph (solvable via
e.g. the replica trick) some rigorous results could be obtained [53,21].

Indeed, beyond topological investigations, which provide a description of mutual
interactions among the components of a system, in the past decades the collective behavior
of the system itself has also started to be analyzed in econometrics, by exploiting tools
based on statistical mechanics. For instance, McFadden described the discrete choice as
a one-body theory with external fields [49], Brock and Durlauf went over and considered
also the effects of interactions among agents, all couplings meant to be positive, that
is imitative [28,33]. Of course, the role of anti-imitative ties might be fundamental
for collective decision capabilities (see e.g. [18]), however, the greatest proportion of
interactions is imitative and this prescription will be followed throughout this paper.

Somewhat close to social breakthrough, after the revolution of Watson and Crick,
biological studies in the past fifty years have given rise to completely new fields of science
such as genomics [35] and proteomics [38], which are ultimately strongly based on graph
theories® [13]. Furthermore, in biology, networks appear at various levels: for instance,
in immunology the complementary matching between the epitopes of immunoglobulins
generates the so-called ‘Jerne network’ [47,54,15,1]; at larger scales, we can cite food
web [52], metabolic networks [48,29] and virus spreading worldwide [22].

In general, one notices that the magnitude of links is not constant and, as a
consequence, one postulates that it follows from a proper probability distribution. The
independence of couplings seems to be a simplifying starting point. For example, Blake
pointed out [25] that exons in hemoglobin correspond both to structural and functional
units of protein, implicitly suggesting a non-null level of correlation among couplings;
not that different is the viewpoint of Coolen and coworkers [31,58]. Indeed, a correlated
degree of disorder can dramatically influence the overall behavior of the system and should
therefore be explicitly taken into account when trying a statistical mechanics approach.

We finally present the Hopfield model [46], which provides the paradigmatic model
for neural networks. Interestingly, in this model there is a scalar product among the bit
strings (the so-called Hebbian rule [45]) which can be seen as a measure of the strength
of the ties. In the neural context the coupling can be either positive or negative as, in
order to share statically memories over all neurons [9], it must use properties of spin
glasses [14,19,50] as the key for having several minima in the fitness landscape. By
varying tunable parameters (level of noise and amount of storage memories) the Hopfield
model displays a region where it is paramagnetic, a region where it is a spin glass, and a
region where it is a ‘working memory’ [10, 11].

Now, our aim in this work is to introduce and develop an approach to model discrete
systems made up of many interacting components with inner degrees of freedom and able
to capture the intrinsic connection between the kind of interactions among components

6 It is in fact well established that complex organisms share roughly the same number of genes with simpler ones.
As a result, a pure reductionism approach (according to which more complexity requires more genes) seems to
fail and the interest in how the interactions among genes are arranged is increasing rapidly.
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and the emergent topology describing the system itself. As we will see, this is realized
through a redefinition of patterns in a Hopfield-like model: instead of using positive and
negative values for the coupling in the Hebbian rule of the Hopfield model, we use positive
and null values.

We show that, even in this context, by varying the tunable parameters, we recover
several topologies, ranging from fully connected (i.e. every node is connected with any
other node), to linearly diverging connectivity (i.e. the average number of neighbors
per node Z scales linearly with the system size V), to extreme dilution (i.e. Z grows
with V' but sublinearly), to fully disconnected (i.e. no edges at all), possibly featuring
non-trivial coupling distributions. Despite a wide range of topologies being recoverable,
from the equilibrium statistical mechanics perspective we find that all these networks
behave qualitatively the same, with strong differences restricted to dynamical features (in
agreement with intuition), which we plan to investigate soon.

We stress that such properties are not due to a priori assumptions, but simply result
from the kind of interactions (imitative and based on similarity) assumed. Hence, the
relationship between such ‘inner’ details and the ‘macroscopic’ layout of the system can
be highlighted.

The paper is organized as follows: in section 2, we present the model and provide the
reader with all the related definitions. Section 3 addresses the topological analysis, while
section 4 deals with the thermodynamical analysis based on techniques from statistical
mechanics. In section 5 we present our discussion and outlook for the future.

2. The model: definitions

Let us consider V' agents, each associated with a ‘spin’ variable +1 3 ;,7 € (1,...,V).
In a social framework (e.g. discrete choice in econometrics) o; = +1 (0; = —1) may mean
that the ith agent agrees (disagrees) with a particular choice. In biological networks, i
can label Kauffman genes (assuming undirected links) or Jerne lymphocytes in such a way
that o; = 41 represents expression or firing state respectively, while quiescence is denoted
by o, = —1.

The influence of external stimuli, e.g. the media in social networks, environmental
variations imposing phenotypic changes via gene expression in proteomics, or viruses
in immune networks, can be encoded by means of a one-body Hamiltonian term
H = ZZV hio;, with h; suitable for the particular phenomenon (as brilliantly done by
McFadden [49,37], Eigen [56] and Burnet [30,16], for social, gene and immunological
systems respectively). When interactions among agents are also allowed, modeling is far
harder; in the following we show how our model accounts for this issue.

First of all, each agent i € (1,...,V) is endowed with a set of L characters denoted
by a binary string & of length L. For example, in the social context this string may
represent a set of attributes characterizing the ith agent (e.g. £!' =! may take into account
attitudes toward the opposite sex, such that if £!* =1 — 1, o, likes the opposite sex, otherwise
gt =1 = 0; similarly &t =2 may take into account attitudes toward smoking and so on up
to p = L). In gene networks the overlap between bit strings may yield a measure of
phylogenetic distance, while in immunological context it may generate the affinity matrix
specifying the interaction strength between different lymphocytes.

doi:10.1088/1742-5468/2011/02/P02027 4
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Now we want to associate a weighted link between two agents by comparing how
many (positive) similarities they share, namely

L

Jig =) &l (2.1)

p=1

This description naturally leads to the emergence of a hierarchical partition of the whole
population into a series of layers, each layer being characterized by the sharing of an
increasing number of characters. Of course, group membership, beyond defining individual
identity, is a primary basis both for social and biological interactions. As a result, the
interaction strength between individual ¢ and j increases with increasing similarity.

Hence, including both one-body and two-body terms, the model we are describing
reads as

%4 %4
Hy(0:6) = 7 3 Jy(€)owoy + Y oy, 2.2

i<j i

formally identical to the Hopfield model.
It is worth stressing that the way strings £ are generated is crucial for the overall
performance of the system; here we adopt the following distribution:

1+a 1—a
Pl =+1)=—=  PlE=0=-—"

(2.3)

in such a way that, by tuning the parameter a € [—1,+1], the concentration of non-null
entries for the ith string p; = > B ¢! can be varied. When a — —1 there is no network,
namely spins are non-interacting, while when a — +1 we have that J;; = L for any
couple and (renormalization through L~! apart) we recover the standard Curie-Weiss
(CW) model. On the other hand, when a # 0 the pattern distribution is biased, somehow
similarly to the correlations investigated by Amit and coworkers in neural scenarios [11].
Moreover, from equations (2.3) we get (££'¢/) = (1 +a)/2)[0, + (1 +a)/2)(1 — 6]

As we will see, small values of a give rise to highly correlated, diluted networks, while,
as a gets larger the network gets more and more connected and correlation among links
vanishes. We also anticipate that in the thermodynamic limit and under the hypothesis of
L linearly dependent on V, if we fix a € [—1, 1], we end up with trivial topologies (either
fully connected or completely disconnected), while a significant way to take a is by the
scaling a = —1 +v/V?, where v > 0 and @ > 0 are finite, tunable parameters controlling
(finely and coarsely, respectively) the degree of dilution (see section 3.3 for full coverage
of this point).

In fact, although the theory is defined for any finite V' and L, as standard in
statistical mechanics, we are interested in the large V' behavior (such that, under central
limit theorem permissions, deviations from averaged values become negligible and the
theory predictive). For this task we find it meaningful to let even L diverge linearly
with the system size (to bridge conceptually to high storage neural networks), such that
limy ., L/V = « defines « as another control parameter. Finally, since we are interested
in the regime of large V' and large L we will often use V as V —1 and L as L — 1.

doi:10.1088/1742-5468 /2011 /02 /P02027 5
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3. The emergent network

The set of strings {&/'}iz1 viu=1,.. together with the rule in equation (2.1) generates a
weighted graph G(V, L, a) describing the mutual interactions among nodes. The following
investigation is aimed at the study of its topological features, which, as well known,
are intimately connected with the dynamical properties of phenomena occurring on
the network itself (e.g. diffusion, transport, critical properties, coherent propagation,
relaxation, only to cite a few [23,27,5,7,4,6]). We first focus on the topology, neglecting
the role of weights, and we say that two nodes ¢ and j are connected whenever J;; is
strictly positive; disorder on couplings will be addressed in section 3.2.

It is immediate to see that the number p of non-null (i.e. equal to one) entries occurring
in a string £ is Bernoulli-distributed, namely

Aen = (5 (%) (4559 B.)

with average and variance, respectively,

L
_ I1+a
Pa,L = pEO pPl(pa a, L) = ( 9 ) L, (32)

— ~ 1—a?
UZ,L = p’ar — PZ,L = ( 1 ) L. (3.3)

Moreover, the probability that a string is made up of null entries only is Hﬁ:1 P& =
0) = [(1 — a)/2]F, thus, since we are allowing repetitions among strings, the lower bound
for the number of isolated nodes is V[(1 — a)/2].

Let us consider two strings & and §; of length L, with p; and p; non-null entries,
respectively. Then, the probability Puyaten(K; pi, pj, L) that such strings display & matching

entries is
L\ (L-k\(L-p
(’f) ((IOZL)k<)L<>pJ _2), (3.4)
Pi Pj

which is the number of arrangements displaying & matchings over the number of all
possible arrangements. As anticipated, for two agents to be connected it is sufficient
that their coupling (see equation (2.1)) is larger than zero, i.e. that they share at least
one trait. Therefore, we have the following link probability

Pmatch(k; Pis Pjs L) -

(L = p)!(L = pj)!
LNL = pi — pj)t
(3.5)

L
Pink(pispj, L) = meatch(k§piapj>L) =1— Puaten(0;p5,p;, L) =1 —
=1

The previous expression shows that, in general, the link probability between two nodes
does depend on the nodes considered through the related parameters p;, and p;: when
pi; and p; are both large, the nodes are likely to be connected and vice versa. Another

doi:10.1088/1742-5468 /2011 /02 /P02027 6
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kind of correlation, intrinsic to the model, emerges due to the fact that, given ' = 1,
the node 1 will be connected with all strings with non-null uth entry; this gives rise to a
large (local) clustering coefficient ¢; (see section 3.4). Such a correlation vanishes when a
is sufficiently larger than —1, so that any generic couple has a relatively large probability
to be connected; in this case the resulting topology is well approximated by a highly
connected random graph. Moreover, when a — +1 we recover the fully connected graph.

Finally, it is important to stress that, according to our assumptions, repetitions among
strings are allowed and this, especially for finite L and V', can have dramatic consequences
on the topology of the structure. In fact, the suppression of repetitions would spread
out the distribution P;(p;a, L), allowing the emergence of strings with a large p (with
respect to the expected mean value L(1+ a)/2); such nodes, displaying a large number of
connections, would work as hubs. On the other hand, recalling that the number of couples
displaying perfect overlapping strings is ~V?2 /2% we have that in the thermodynamic limit
and L growing faster than log V', repetitions among strings have null measure.

3.1. Degree distribution

We focus our attention on an arbitrary string { with p non-null entries and we calculate
the average probability Pi.k(p;a) that £ is connected to another generic string, which
reads as

L
Plink(p; a/) = Z Pl (pzv a, L)Plink(pa Pis L)

pi=0

:1—(1;G>L(1+iz>w:1—(1;a)p. (3.6)

This result is actually rather intuitive, as it states that, in order to be linked to &, a generic
node has to display at least a non-null entry corresponding to the p non-null entries of &.
Notice that the link probability of equation (3.6) corresponds to a mean-field approach
where we treat all the remaining nodes on average; accordingly, the degree distribution
Phegree(2; p,a, V') for £ becomes

Paegree(23 10, V) = (Z) {1 — (1 5 a)T (1 5 a)p(VZ). (3.7)

Therefore, the number of null entries controls the degree distribution of the related node:
a large p gives rise to narrow (i.e. small variance) distributions peaked at large values of
z. Notice that B (p; a) and, accordingly, Piegree(2; p, @, V) are independent of L.

More precisely, from equation (3.7), the average degree for a string displaying p non-
null entries is

zpzv{1—<1;a)p}, (3.8)

while the related variance is

(505

doi:10.1088/1742-5468 /2011 /02 /P02027 7
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Figure 3.1. Degree distribution Pdegree(k:) for systems displaying small values
of L and a multi-modal distribution (upper panel) and large values of L and a
distribution collapsing into a unimodal one (lower panel). In the former case we
compare systems of different sizes but with fixed o = 0.01, where continuous lines
represent the analytic estimate of equation (3.10) while symbols (® ) represent
data from simulation and for clarity are reported only for the case V' = 8000. In
the lower panel we compare systems with same L but different volumes; thicker
curves represent Pdegree(z; a, L, V), while each mode Pyegrec(2; p,a, V') is depicted
in different colors.

Now, the overall distribution can be written as a combination of binomial distributions

L
Pdegree(z; a, L, V) - Z Pdegree(z; P, a, V)Pl (pa a, L), (310)

p=0

where the overlap among two ‘modes’, say p and p + 1, can be estimated through
0,/(Zp11 — Z,): exploiting equations (3.8) and (3.9) we get

I LCU NG| AR

where the generic mode p is replaced with p and the approximate result \/L/V was
derived by using the scaling a = —1++/V?, with 1/2 < 6 < 1 (both these points are fully
discussed in section 3.2); also, the last passage holds rigorously in the thermodynamic limit
of the high storage regime (L linearly diverging with V'). Interestingly, for systems with
different scaling regimes among L and V| for instance L o log V" [15,1], the distribution
remains multi-modal because a vanishing overlap occurs among the single distributions
Pacgree(2 0,0, V)i Paegree(2;a, L, V) turns out to be an (L + 1)-modal distribution (see
figure 3.1, upper panel); vice versa, for L o V, the overall distribution becomes mono-
modal (see figure 3.1, lower panel). Briefly, we mention that for § = 1/2 the ratio on the

doi:10.1088/1742-5468 /2011 /02 /P02027 8
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lhs of equation (3.11) still converges to a finite value approaching /a for v? < «, while
for # < 1/2 it diverges.
From equation (3.10), the average degree for a generic node is

14 L 2
~ _ B 1+a
2= 2 Pagee(z0,L,V) =Y Pi(pia; L)z, =V {1~ [1 - ( 5 > : (3.12)
z=0 p:O
where
1 2
pzl—ll—( ;a) (3.13)

is the average link probability for two arbitrary strings & and &;, which can be obtained by
averaging over all possible string arrangements, namely, recalling equations (3.1) and (3.6),

L L

p= Z Z Pl(pi; a, L)Pl(pj; a, L)Plink(pia Pj; a, L)

pi=0 p;j=0

)BT (5)
[

Of course, equation (3.14) could be obtained directly by noticing that the probability for

the pth entries of two strings not to yield any contribution is 1 — [(1+ a)/2]?, so that two
strings are connected if there is at least one matching.

(3.14)

3.2. Coupling distribution

As explained in section 2, the coupling J;; between nodes ¢ and j is given by the relative
number of matching entries between the corresponding strings §; and ;. Equation (3.4)
provides the probability for & and &; to share a link of magnitude J = k, namely
Proupting (5 pi, P, L) = Puaten(K; pi, pj, L). Following the same arguments as in section 3.1
we get the probability that a link stemming from &; has magnitude J, that is

L—pi+J
Pcoupling(J; Pis a) = Z Pcoupling(J; Pis Pjs L>P1 (p]; a, L)

pi=J

:(6) (1?)%’(1;@)"’ (3.15)

which is the probability that J out of p; non-null entries are properly matched with the
generic second node.

Similarly to Pdegree(z; a, L, V'), the overall coupling distribution can be written as the
superposition > Pi(p;a, L) Peoupiing (J; p, a). Each mode has variance o> = p(1 — a?)/4

doi:10.1088/1742-5468 /2011 /02 /P02027 9


http://dx.doi.org/10.1088/1742-5468/2011/02/P02027

Equilibrium statistical mechanics on correlated random graphs

and is peaked at
= 1+a

h=p— (3.16)

which represents the average coupling expected for links stemming from a node with p
non-null entries. Nevertheless, by comparing J,11 — J, = (1 + a)/2 and the standard
deviation \/p(1 — a?)/2, we find that in the limit, L = oV and V — oo the distribution
is mono-modal.

Anyhow, we can still define the average weighted degree w, expected for a node
displaying p non-null entries. Given that for the generic node i, w =) ; Jij, we get

§ 1
w,=VJ,=Vp ;a. (3.17)

Of course, one expects that the larger the coordination number of a node and the larger
its weighted degree; such a correlation is linear only in the regime of low connectivity. In
fact, by merging equations (3.8) and (3.17), one gets

) L+a\log(1—(2/V)),, .
wp:< 5 ) log (1 — a/2) V= Zz, (3.18)

where the last expression holds for z, < V and a < 1.

It is important to stress that (pathological cases apart, which will be taken into
account in the L — oo scaling later on) the variance of p scales as 0(a; L) = (1 —a*)L/4
such that, despite the average of p is (1 + a)L/2, substituting p/L with (1 4+ a)/2 into
equation (3.18) becomes meaningless in the thermodynamic limit as the variance of .J,

diverges as v/L oc v/V: this will affect drastically the thermodynamics whenever far from
the CW limit.

It should be noted that J, represents the average coupling for a link stemming from
a node characterized by a string with p non-null entries, where the average includes also
non-existing links corresponding to zero coupling. On the other hand, the ratio w,/z,
directly provides the average magnitude for existing couplings. Moreover, the average
magnitude for a generic link is

L 2

- - I+a

J = E Pl(p;a,L)Jp:( 5 ) . (3.19)
p=0

By comparing equations (3.16) and (3.19) we notice that the local energetic
environment seen by a single node, i.e. J_p, and the overall energetic environment, i.e. J,
scale, respectively, linearly and quadratically with (1 + a)/2: as we will see in the
thermodynamic-dedicated section, despite the self-consistence relation (which is more

sensible by local condition) is influenced by Vi , the critical behavior is found at 3, = J
consistently with a manifestation of a collective, global effect; of course, for the CW case
(a = 1), this effect vanishes as global and local effects merge.

Anyhow, when V' is large and the coupling distribution is narrowly peaked at the mode
corresponding to p, 1, the couplings can be rather well approximated by the average value
Jrta2 = [(1+a)/2]* = J, so that the disorder due to the weight distribution may
be lost; as we will show this can occur in the regime of high dilution (f > 1/2). As for
the other source of disorder (i.e. topological inhomogeneity), this can also be lost if a is
sufficiently larger than —1, as we are going to show.

doi:10.1088/1742-5468/2011/02/P02027 10
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3.3. Scalings in the thermodynamic limit

In the thermodynamic limit and high storage regime, L is linearly divergent with V' and
the average probability p for two nodes to be connected (see equation (3.13)) approaches
a discontinuous function, assuming value 1 when a > —1, and value 0 when a = —1. More
precisely, as V' — oo there exists a vanishingly small range of values for a giving rise to a
non-trivial graph; such a range is here recognized by the following scaling
g
where v, 6 > 0 are finite parameters.
First of all, we notice that, following equations (3.2) and (3.3),

_ ay

P—14~/VOaV = o)/0-1 (3.21)
oy v _
031+w/v9,av = o101 <1 - 2—‘/9> ~ P14~V ,aV> (3.22)

where the last approximation holds in the thermodynamic limit and it is consistent with
the convergence of the binomial distribution in equation (3.1) to a Poissonian distribution.
For § <1, p 2 0? > 1, so that when referring to a generic mode p, we can take without
loss of generality p; the case 8§ > 1 will be neglected as it corresponds to a disconnected
graph.

Indeed, the probability for two arbitrary nodes to be connected becomes

L
_ 1 1 1+a 2
P= 2

so that we can distinguish the following regimes:

2 aV
- {1 - 417/29} Vot T eV, (3.23)

e ) <1/2,p~1, z~V = fully connected (FC) graph.

e 0=1/2 p~1—e* 20/4, 7= O(V) = linearly diverging connectivity.
Within a mean-field description the Erdés—Rényi (ER) random graph with finite
probability G(V, p) is recovered.

e 1/2<0<1,p~?aVi=¥/4 z = O(V*?) = extreme dilution regime (ED).

In agreement with [61,62], limy . 27! = limy_, 2/V = 0.

e l=1,p~ f—vo‘, z = O(V?) = finite connectivity regime.

Within a mean-field description y?a/4 = 1 corresponds to a percolation threshold.

Therefore, while 6 controls the connectivity regime of the network, v allows a fine
tuning.
As for the average coupling (see equation (3.19)) and the average weighted degree:

2

0
J= (3.24)
_ '}/2
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Now, the average ‘effective coupling’ J, obtained by averaging only on existing links, can
be estimated as

72/ (4V#) ifg <1/2
J=J/p=3 ?/[AV¥(1 —e Y] ifh=1/2 (3.26)
1/(aV) =1/L if1/2<0<1.

Interestingly, this result suggests that in the thermodynamic limit, for values of a
determined by equation (3.20) with 1/2 < 6 < 1, nodes are pairwise either non-
connected or connected due to one single matching among the relevant strings. This
can be shown more rigorously by recalling the coupling distributions Pcoupling(J i piy L)
of equation (3.15): in particular, for # > 1/2, neglecting higher-order corrections, for
J = 0 the probability is py ~ exp(ay?V1=2/4) ~ 1 — 4%« /(4V*~1), for J = 1/L the
probability is p; ~ poy2a/(4V?~1) ~ 1 — py. For § = 1/2 this still holds for ay?/4 < 1,
which corresponds to a relatively high dilution regime, otherwise some degree of disorder
is maintained, being that p, ~ (ay?/4)%/k!l. On the other hand, for # < 1/2, while
topological disorder is lost (FC), the disorder due to the coupling distribution is still
present. However, notice that for @ = 0 and v = 2, Proupling(/; pi, L) gets peaked at J = L
and, again, disorder on couplings is lost so that a pure CW model is recovered.

This means that, for L = aV and V — oo, we can distinguish three main regions in
the parameter space (6, «, ) where the graph presents only topological disorder (6 > 1/2),
or only coupling disorder (§ < 1/2), or both (0 = 1/2 A v*a = O(1)).

In general, we expect that the critical temperature scales as the connectivity times
the average coupling and the system can be looked at as fully connected with average
coupling equal to J or as a diluted network with effective coupling J and connectivity
given by Z; in any case we get 37! ~ J (see equation (4.36)).

3.4. Small-world properties

Small-world networks are endowed, by definition, with a high clustering coefficient,
i.e. they display sub-networks that are characterized by the presence of connections
between almost any two nodes within them, and with small diameter, i.e. the mean-
shortest path length among two nodes grows logarithmically (or even slower) with V.
While the latter requirement is a common property of random graphs [60,12], the
clustering coefficient deserves much more attention because of the basic role it covers
in biological [63,64] and social networks [42, 43].

The clustering coefficient measures the likelihood that two neighbors of a node are
themselves linked; a higher clustering coefficient indicates a greater ‘cliquishness’ or
transitivity. Two versions of this measure exist [60, 12]: global and local; as for the latter,
the coefficient ¢; associated with a node 7 describes how well connected the neighborhood
of 7 is. If the neighborhood is fully connected ¢; is one, while a value close to zero means
that there are hardly any connections in the neighborhood.

The clustering coefficient of a node is defined as the ratio between the number of
connections in the neighborhood of that node and the number of connections if the
neighborhood was fully connected. Here neighborhood of node ¢ means the nodes that
are connected to ¢ but does not include ¢ itself. Therefore we have

2F;
Zi(zz' — 1)’
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where F; is the number of actual links present, while z;(z; — 1)/2 is the number of
connections for a fully connected group of z; nodes. Of course, for the Erdos—Renyi
graph where each link is independently drawn with a probability p, one has ¢} = p,
regardless of the node considered.

We now estimate the clustering coefficient for the graph G(a, L, V), focusing our
attention on a range of a such that the average number of non-null entries per string is
small enough for the link probability to be strictly lower than one, so that the topology
is non-trivial; to fix our ideas and recalling the last section, 1/2 < 6 < 1. Let us consider
a string displaying p non-null entries, corresponding to the positions py, pto, . . ., tt,, and 2z
nearest neighbors; the latter can be divided into p groups: strings belonging to the jth
group have " = 1. Neglecting the possibility that a nearest neighbor can belong to more
than one group contemporaneously (in the thermodynamic limit this is consistent with
equation (3.26)), we denote by n; the number of nodes belonging to the jth group, being
> ;1 = z, whose average value is 2 /p (which, due to the above assumptions is larger than
one). Now, nodes belonging to the same group are all connected to each other as they
share at least one common trait, i.e. they form a clique; the contribution of intra-group
links is

1$ 1 (< 1[/2\?
_ E _ E 2 ~ _ - —
Eintra = 5 — nz(nz - 1) = 5 ( n, — Z) ~ 5 [(p) P Z] s (328)

i=1

while the contribution of inter-group links can be estimated as

p 2
- z -
Einter ~ Z ninjp ~ (;) (g) b, (329)

i.j=1,ij

where p is the probability for two nodes linked to ¢ and belonging to different groups to

p
2

total number of links between neighbors is £ = Eiygra + Einter = {) oy T Z§:1 nilp+(1—
D)0i;] — z}/2, where 6;; is the Kronecker delta, returning 1 if i = j and zero otherwise; of
course, for p = 1 we have £ = (2 — 2)/2 and ¢; = 1.

Now, on average, the probability p is smaller than p as it represents the probability for
two strings of length L — 1 and displaying an average number of non-null entries equal to
p— 1 to be connected. However, for p and L not too small, the two probabilities converge
so that by summing the two contributions in equations (3.28) and (3.29) we get

1] /2)° 2\ [ p 11
E~—||- — - D= C~ - > 3.30
2[(/}) res +(p> (2>p CRPTLTICP (3:30)

where in the last inequality we used p < z — 1. Therefore, it follows straightforwardly
that ¢; is larger than the clustering coefficient expected for an ER graph displaying the
same connectivity, that is ¢®® = p.

From previous arguments it is clear that the small-world effect becomes more evident,
with respect to the ER case taken as reference, when the network is highly diluted. This is
confirmed by numerical data: figure 3.2 shows in the upper panel the clustering coefficient
expected for the analogous ER graph, namely ¢} = z/V, while in the lower panel it shows

be connected, and the sum runs over all possible couples of groups. Hence, the
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Figure 3.2. Upper panel: average link probability p = z/N; lower panel:
difference between the average clustering coefficient for G(V,L,a) and for an
analogous ER graph just corresponding to p. Both plots are presented as function
of a and L and refer to a system of V' = 2000 nodes.

the difference between the average local clustering coefficient ¢ = ZYZI c;/V and PR itself.
Of course, when a approaches one, the graph becomes fully connected and ¢ — &

Actually, a large cliquishness for G(V, L,a) could be simply derived by the kind of
interaction underlying its construction: being the couplings .J;; based on string similarity,
which is a transitive property”, the whole graph is expected to exhibit a transitive structure
as well, namely, if node 7 is connected (i.e. displays similar attributes) to both k and 7, then
k and j are also likely to be connected (i.e. to display similar attributes). Conversely, if
we defined the couplings J;; according to intransitive properties, such as complementarity
or dissimilarity between strings, the resulting graph would display a small degree of
cliquishness [15].

Finally, we mention that when focusing on the low storage regime, a non-trivial
distribution for couplings can give rise to interesting effects. Indeed, weak ties can be
shown [17,8] to work as ‘bridges’, being crucial for maintaining the graph connectivity,
as typical of real networks [42,65]. Also, as often found in technological and biological
networks, the graph under study displays a ‘disassortative mixing’, that is to say, high-
degree vertices prefer to attach to low-degree nodes [60, 12] (see [17] for more details).

— 1.

4. Thermodynamics

So far the emergent network has been exhaustively described by a random, correlated
graph whose links are endowed with weights; we now build up a quantitative
thermodynamics on such a structure.

7 Notice that, actually, string similarity is not rigorously transitive, hence in the chain of neighbors i ~ j ~ - -+ ~ k,
nodes ¢ and k£ may turn out to display not so close attributes. However, for short series, such as triplets, the
argument still works.
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Once the Hamiltonian Hy (0;€) is given (equation (2.2)), we can introduce the
partition function Zy (f3;¢) as

Zy(8;€) = ) e PV, (4.1)

the Boltzmann state w as
Z .efﬁHV(U;g)
g

Wil = s 42
(TS 2
and the related free energy as
1
A(ﬁaaaa) = th VE IOg ZV(ﬁ)£)7 (43)

where [E averages over the quenched distributions of the affinities &.
Once the free energy (or equivalently the pressure) is obtained, remembering that
(calling S the entropy and U the internal energy)

A(ﬁaaaa’) = _ﬁf(ﬁ7aaa') = S(ﬁ,a,a} - ﬁU(ﬁaaaa)u
the full macroscopic properties, thermodynamics, can be derived due the Legendre
structure of thermodynamic potentials [55].

4.1. Free energy through extended double stochastic stability

For clarity we now describe in complete generality and detail the whole plan dealing with
a generic expectation on ¢ (i.e. E€ = (1 4+ a)/2). Then, we will study more carefully the
L — oo scaling, in which @ must tend to —1.

First of all, let us normalize the Hamiltonian (2.2) more conveniently for this section,
that is, by dividing the J;; by L, such that the effective coupling is bounded in [0, 1], and
let us neglect the external field h (Which can later be implemented straightforwardly).

(0;€) = VI Z Zf“f“oza] (4.4)

As a next step, through the Hubbard-Stratonovich transformation [55,34], we map the
partition function of our Hamiltonian into a bipartite Erdos—Rényi ferromagnetic random
graph [2,39], whose parts are the ‘old” V' dichotomic variables and the ‘new’ L Gaussian
variables z,, p € (1,...,L):

+oo L
Z(5;€) = Zm>wwf Z/ HW@“%MWZZ%W»’

(4.5)

where with Hﬁzl dsu (z,) we mean the Gaussian measure on the product space of the
Gaussian part. Note that, even when L goes to infinity linearly with V' (as in the high
storage Hopfield model [10]), due to the normalization encoded into the affinity product of
the ¢’s, neither does the z-diagonal term contribute to the free energy (as happens in the
neural network counterpart [20]), nor (this will be made clear at the end of the section)
is there a true dependence on « in the thermodynamics.
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Furthermore, notice that the graph we are currently dealing with is bipartite, where
links are randomly and uncorrelatedly drawn, and display no weight [12]: hence, the
original complex structure for a single party has been transformed into a simpler structure
but paying the price of accounting for another party in the interaction. The lack of weight
on links will have fundamental importance when defining the order parameters.

Another way to see this is by noticing that if we dilute randomly the original Hopfield
model (e.g. to check its robustness as already tested by Amit [9]) we obtain an ER topology,
while if we introduce zero in pattern definitions we have to deal with correlated dilution.

Now, assuming the existence of the V' limit, we want to solve the following free energy:

too L
A(B,a,a) = hm —ElogZ/ H dp (2,) exp (\/ v ZZ@’MUZ%) . (4.6)

For this task we extend the method of the double stochastic stability, recently developed
in [20] in the context of neural networks. Namely, we introduce independent random fields
ni,t € (1,...,V) and x,,p € (1,...,L), (whose probability distribution is the same as
the £ variables as in every cavity approach), which account for one-body interactions for
the agents of the two parties. So our task is to interpolate between the original system
and the one left with only these random perturbations: let us use ¢ € [0,1] for such an
interpolation; the trial free energy A(t) is then introduced as follows

+oo L

At) = hm —ElogZ/ H du(2,)
) — TV Z Einoizy + (1 —1) (Z by, Z ni0; + Z c, Z Xu%)] ;

le=1 i =1

X exp

(4.7)

where now E = E(E,E, and b, (with [, € (1,...,L)) and ¢, (with [, € (1,...,V)) are
real numbers (possibly functions of 3, ) to be set a posteriori.

As the theory is no longer Gaussian, we need infinite sets of random fields, mapping
the presence of multi-overlaps in standard dilution [2,36] and no longer just the first two
momenta of the distributions.

Of course, we recover the proper free energy by evaluating the trial A(t) at ¢t = 1,
(A(B,a,a) = A(t = 1)), which we want to obtain by using the fundamental theorem of
calculus:

mn:A@+/%wwwm%tm. (4.8)

To this task we need two objects: the trial free energy A(t) evaluated at ¢ = 0 and its
t-streaming 0, A(t).

Before outlining the calculations, some definitions are in order here to lighten the
notation: taking ¢ as a generic function of the quenched variables we have

m= lzvjopwg(mb) - i (D) (%) (59) st (19)
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ZZZ:)P(ZC)Q(MC ZL:( ) (Ha) (1;(1)1690@), (4.10)

lc=0

wo-£E O () e o

Ip=0lc

where P(l) is the probability that I, (out of V random fields) are active, i.e. n = 1, so that
the number of spins effectively contributing to the function ¢ is [,; analogously, mutatis
mutandis, for P(l.). Moreover, in the last equation we summed over the probability P(l)
that in the bipartite graph a number [ of links out of the possible V' x L display a non-null
coupling, i.e. £ # 0; interestingly, equation (4.10) can be rewritten in terms of the above
mentioned P(l,) and P(l.). In fact, &, can be looked at as a V' x L matrix generated by
the product of two given vectors like  and x, namely &; , = 1;x,, in such a way that the
number of non-null entries in the overall matrix ¢ is just given by the number of non-null
entries displayed by 7 times the number of non-null entries displayed by x. Hence, P(l)
is the product of P(l,) and P(l.) conditional to l,l. = I.

4.2. The ‘topologically microcanonical’ order parameters

Starting with the streaming of equation (4.7), this operation gives rise to the sum of three
terms A + B + C. The former when deriving the first contributions into the exponential,
the last two terms when deriving the two contributions by all the n and x.

1+a
A=+= \/ AT Zngw 0i2,) = ( ) ZP (I,)P(I) My, N, (4.12)

lbylc

L
Z a2 ZE% w(o;) = Zblc (1 +a) ZP ly) M, (4.13)

lfl le=1

Z i) ZEXW %) \qub (1 +a> ZP )Ni., (4.14)

ly=1 =1 le=0

where we 1ntroduced the following order parameters

1%
1
- V Z Wi,+1 (Ui)a (4'15)

L
1
=7 Z Wig+1(2p), (4.16)
I

and the Boltzmann states wy are defined by taking into account only k terms among the
elements of the party involved.

Of course the Boltzmann states are no longer the ones introduced into the
definition (4.2) but the extended ones, taking into account the interpolating structure
of the cavity fields (which however will recover the originals of statistical mechanics when
evaluated at t = 1).
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Namely, wj,4+1 has only [, + 1 terms of the type bo in the Maxwell-Boltzmann
exponential, ultimately accounting for the (all equivalent in distribution) [, + 1 values
of n =1, all the others being zero.

In the same way wj_y1 has only [. + 1 terms of the type cz in the Maxwell-Boltzmann
exponential, ultimately accounting for the (all equivalent in distribution) /. + 1 values of
x = 1, all the others being zero.

When dealing with ;, we can decompose the latter according to what was discussed
before. By these ‘partial Boltzmann states’ we can define the averages of the order
parameters as

(M) = ‘fp(lb)Mlba (4.17)

) =3 PN (4.18)

These objects deserve more explanation because, as a main difference from classical
approaches [2,32,36], here replicas and their overlaps are not involved (somehow
suggesting the implicit correctness of a replica symmetric scenario). Conversely, we do
conceptually two (standard) operations when introducing our order parameters: at first
we average over the (t-extended) Boltzmann measure, then we average over the quenched
distributions. Let us consider only one party for simplicity: during the first operation we
do not take the whole party size but only a subsystem, say k spins (whose distribution is
symmetric with respect to zero for both the parties, —1,+1 for the dichotomic, Gaussians
for the continuous one). Then, in the second average, for any k& from one to the volume
of the party, we consider all the possible links among these k£ nodes in this subgraph. As
the links connecting the nodes are always constant (i.e. equal to one due to the Hubbard—
Stratonovich transformation (4.4)) in the intensity, the resulting associated energies are,
in distribution and in the thermodynamic limit, all equivalent: we are introducing a family
of microcanonical observables which sum up to a canonical one, in some sense close to the
decomposition introduced in [19].

4.3. The sum rule

Let us now move on and consider the following source S of the fluctuations of the order
parameters, where M, , N;. stand for the replica symmetric values® of the previously
introduced order parameters:

S = (1 -; a> Vap i i P(ly) P(l)((M;, — My,) (N, = ) (4.19)

b le

- (457 vaBias - anw - w, (1.20)

8 Strictly speaking there are no replicas here but configurations over different graphs. However, the expression
RS-approximation, meaning that we assume the probability distribution of the order parameters delta-like over
their average (denoted with a bar), is a sort of self-averaging and is a hinge in disordered statistical mechanics
such that we allow ourselves to retain the same expression with a little abuse of language.
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We see that with the choice of the parameters b;, = \/aﬁNlc and ¢, = \/ﬁ/aMlb, we can

write the t-streaming as

V—-1L-1

A—g- 2 ’g 4 VaB S S PPN, N,

b le

The replica symmetric solution (which is claimed to be the correct expression in diluted
ferromagnets) is simply achieved by setting S = 0 and omitting it from future calculations.

We must now evaluate A(0). This term is given by two separate contributions, one
for each party. Namely we have

1 SSE b S mioy 1 too Sl Xk Xz
A(O):VElogZe le=1le 2ui +VElog H dp (z,)e=w=1 " =n
o —° u=0
1o V2 L-1
= log2 + ( 5 ) ZP(lb)ZP(lC) log cosh(y/aSN,,)
leO lc:O
V-1

Summing A(0) plus the integral of 9,[A(S = 0)], we finally get

L-1V-1

At =1) =log2 + (1 ; “) > ) P(l.)P(1y) log cosh(y/a BN, )

As found in [20, 40], for bipartite ferromagnetic models the free energy obeys a min—max
principle by which, extremizing the free energy with respect to the order parameters, we

can express (V) through (M): the trial replica symmetric solution, expressed through

(M), (N) is (at fixed (N)) convex in (M). This defines uniquely a value (M(N)) where

we get the maximum. Furthermore, (M(N)) is increasing and convex in (N?) such that
the following extremization is a well defined procedure.

3 P(k)a%;k —0— 3 PN, = P(k): ; a\/gm, (4.22)

3 P24 o N P(,)M, = 3" P(k) tanh (@Nk) (4.23)

Iy

Due to the mean-field nature of the model, as we can express N}, through the average of
the M, we can write the free energy of our network through the series of M, alone, as
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expected since we started from a one-party system (see equation (2.2))

A(B,a) =log2+ (HTG) log cosh (tanh_1 ZP(lb)Mlb]>
ly

- (1 ‘g “) > P(ly) My, tanh ™ [ > P(ly) My | - (4.24)

Ly I

As anticipated there is no true dependence on a. Note that without normalizing the scalar
product among the bit strings we should rescale g accordingly with «, as in the L — oo
limit we would get an infinite coupling (which is physically meaningless).

Before exploring further properties of these networks, we should recover the well-
known limit of Curie-Weiss (@ = +1) and of the isolated spin system (a = —1).

For clarity let us work out the self-consistency in a purely CW style by extremizing
equation (4.24), with respect to (M):

001 (1) [+ (552) ]
_ (1—2m) (1 _<]‘<4A24>2 +tanh_1<]\7[)) =0
= (M) = tanh [5 (1 ”) (M)] = tanh~' (M) = g( > (M), (4.25)

such that to get the classical magnetization in our model we have to sum over all the
contributing graphs, namely (Mow) = (M) = >, P(ly)M,,, and we immediately recover

1+a

a— —1= A(f,a=—1)=log?2, (4.26)

a=+1= A(B,a=+1) = log2 + log cosh(B({M)) — §<M2>’ (4.27)

which are the correct limits (note that in equation (4.26) J = 0, while in equation (4.27)
J=1).

Furthermore, we stress that in our ‘topological microcanonical’ decomposition of
our order parameters, when summing over all the possible subgraphs to obtain the
CW magnetization, these are all null except the fully connected network, hence the
distribution of the order parameters becomes trivially ocd(M — Mcw), namely, only one
order parameter, corresponding to the classical CW magnetization, survives.

4.4. Critical line through fluctuation theory

Developing a fluctuation theory of the order parameters allows one to determine where
critical behavior arises and, ultimately, the existence of a phase transition®.

9 Strictly speaking this approach holds only for a second-order phase transition, which indeed is the one expected
in imitative models, even in presence of dilution [2].
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For this task we have at first to work out the general streaming equation with respect
to the ¢-flux. Given a generic observable O defined on the space of the o, z variables, it
is immediate to check that the following relation holds; for the sake of simplicity we set
a = 1 as it never appears in the calculations (this can be easily checked by substituting
(N) with (M) through equation (4.22) which changes the prefactor (1+ a/2)v/af into
(1 + a/2)?8 and express the fluctuations only via the real variables'%c):

HOV _ 128 /B0 MN) — (0)(MA) ~ N((OM) — (0)(M)
~ NI((ON) — {O)(M))]. (4.28)

where we defined the centered and rescaled order parameters:

(M) =VV Y P(l)(M;, — M,) = VV(M — M), (4.29)
Uy

(V) = VLY P(l)(N - N) = VL(N - N). (4.30)

Now we focus on their squares: we want to obtain the behavior of (M?);—1, (MN )y,
(N2),_1, so as to see where their divergencies (onsetting the phase transition) are located.
By defining the dot operator as

0) = (*3%) VAao) (431)

we can write
(M?) = [(MPN) = (MEYMAN) = N(MP) + N(MPYM) = MMEN) + MMPN)),
(MN) = [(MPN?) = (MNYMN) = N(MPN) = (MN)(M))

| ~ FI((MA?) — (MAY A,
N2) = [N M) — (NZ)(MAN) = NN M) + NNZHM) = MINZ) + MNZ)N)].
Now, for the sake of simplicity, let us introduce alternative labels for the fundamental
observables. We define A(t) = (M?);, D(t) = (MN); and G(t) = (N?); and let us

work out their ¢ = 0 value, which is straightforward as at ¢t = 0 everything is factorized
(alternatively these can be seen as high noise expectations):

I+a 2ﬁ 2 2
) —<M>>—<N>=1

«v

At=0)=1,  D(t=0)=0, G(t=0)=<1+<

where we used the self-consistence relation (4.22) and assumed that, at least where
everything is completely factorized, the replica solution is the true solution!'!. Following

10" Another simple argument to understand the uselessness of « is a comparison with neural networks: in that
context, and assuming the thermodynamic limit, o controls the velocity by which we add stored memories into
the network with respect to the velocity by which we add neurons. If the former are faster than a critical value,
by a central limit theorem argument they sum up to a Gaussian before the infinite volume limit has been achieved
and the Hopfield model turns into a Sherrington—Kirkpatrick model [20]. Here there is no danger in this as we
have only positive, normalized interactions.

1 Any debate concerning RSB on diluted ferromagnets is however ruled out here as we are approaching the
critical line from above.
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the technique introduced in [41], starting from the high temperature and, under the
Gaussian ansatz for critical fluctuations, we want to take into account correlations between
the order parameters. Within this approach, using the Wick theorem to split the four
observable averages into a series of couples, the (formal) dynamical system reduces to

A(t) = 2A(t)D(t), (4.32)
D(t) = A(t)G(t) + D(t), (4.33)
G(t) = 2G(t)D(t). (4.34)

We must now solve for A(t), D(t), G(t) and evaluate these expressions at t = (1 + a/2)v/3
according to the definition of the dot operator in equation (4.31). Notice at first that

A G
atlogA: Z =2D = 5 zﬁtlogG

This means that 0,(A/G) = 0 and, since A(0)/G(0) = 1, we already know that
A(t) = G(t): the fluctuations of the two order parameters behave in the same way, not
surprisingly, as we have already pointed out their mutual interdependence several times.
Therefore, let us focus on the remaining

D(t) = G*(t) + D*(t), (4.35)

G(t) = 2G(t)D(1). (4.36)

By defining Y = D+G and summing the two equations above we immediately get Y = Y2,
by which we find Y(¢) = Y (0)/(1 —tY'(0)). As Y(0) =1 we can write

D(t = (1+a)/2(/F) + Glt = (1+a)/2y/F) = — (1+1a/2)ﬂ’

so there is a regular behavior up to 8. = 1/(1 + a/2)%.
We must now solve separately for D and G: this is straightforward by introducing
the function Z = G~! and checking that Z obeys

—Z—-2YZ+2=0,

which, once solved with standard techniques (as Y is known) gives G(t) = [2(1 — ¢)]™*
and ultimately, simply by noticing the divergencies of A(t = (1 + a)y/(3/2),D(t =
(1+a)v/B/2),G(t = (1 + a)y/B/2), we get the critical line for both the squared order
parameters and their relative correlation: all these functions do diverge on the line

1 1

S a2~ T

(4.37)
defining a phase transition according with intuition.

4.5. L — oo scaling in the thermodynamic limit

As we understood in section 3.3, in the V' — oo and L — oo limits we need to tune the
limit of @ — —1 carefully in order to recover the various interesting topologies and to
avoid the trivial limits of fully connected/disconnected graphs.
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In particular, @ must approach —1 as a = —1 + v/V?. To tackle this scaling it is
convenient to use directly v, 6 as tunable parameters and rewrite the Hamiltonian in the
following forms!?

Hy(o;€) = 2aV2(1 5 225“5%20] = Hy(0,2€) = Vv? / f‘ wa iz, (4.38)

where the difference between the expressions for H and H arises due to the Hubbard—
Stratonovich transformation applied to the related partition functions, as performed
earlier through equation (4.4).

Now, our free energy reads off as

o L - VBJa
Ala, B,7,0) —Vlgréo VElogZ H dp (2z,) exp 00 Zgwalzu, (4.39)
o 1

where « is the ratio between the size of the two parties, J is the noise felt by the system,
0 distinguishes the topological class (see section 3.3) and ~ allows a fine tuning over
connectivity.

The interpolating scheme remains the same as before: we introduce the random fields
and use t € (0,1) to define

A(t) = %Elog Z / dp (2z,) exp [t]:IVL(a, 2;6)+ (1 —1) <Z an;o; + Z lN)nMZM)] )

(4.40)
By performing the t-streaming we get
O, A(t) = f”((M M)(N — N)) + QMN (4.41)
such that the replica symmetric sum rule becomes
A() = A0) - YOV yrw, (4.42)

2
and the replica symmetric free energy reads as
2
V9 log cosh(~y/BNV?) + ﬁ; M? — @MN. (4.43)

Let us now investigate some limits of this expression and its self-consistency. Note
that by extremizing with respect to the order parameters we can express N from M as

A(B,7,0) =log2 4+ —

(M). (4.44)

12° As we are going to see soon there does not exist a unique normalization for the Hamiltonian, able to account
simultaneously for both the coupling strength and the volume extensiveness for all the possible graphs. We choose
to normalize Hy (0;&) in this way in order to tackle immediately the basic limits; apparent divergencies in the
couplings can develop and standardly canceled out by properly rescaling the temperature corresponding to the
number of nearest neighbors, as in more classical approaches.
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4.5.1. 0 = 0 case: fully connected, weighted and Curie—Weiss scenario. The case 6 = 0
corresponds to a fully connected graph, and in particular when v reaches its upper
bound two, disorder on couplings vanishes and we recover the unweighted CW model
(see section 3.3). Now, by setting 6 = 0, from equation (4.43) we have

3y’

A(B,7v,0 =0) =log2 + %logcosh (ﬁ%(]\_@) — ?(]\702, (4.45)

from which the self-consistency relation follows as
(M) = tanh (ﬁ%(M)) :

This holds generally for the weighted graph, while when v = 2 the (normalized) coupling
is constant and equal to one and we get straightforwardly the standard CW limit:

A(B,v=2,0=0) =log2 + log cosh(3(M)) — B2(M)?, (4.46)

(M) = tanh(B3(}1)). (4.47)

4.5.2. 0 = 1/2: standard dilution regime. With a scheme perfectly coherent with the
previous one we can write down the free energy and relevant self-consistency as
2

log cosh (%\/V(]\_@) — ﬁiu\w) : (4.48)

AB,7,0 = 1/2) = lim. (1og2 +

(M) = lim tanh (ﬁv\/— (N )) (4.49)

V—oo

Interestingly, we notice that, as vJ = = / 2v/V, the argument of the logarithm of
the hyperbolic cosine scales as \/jV(]V[ ): this is consistent with the lack of a proper
normalization into the Hamiltonian (4.38), because for § = 1/2 the latter is still divided
by V' which should not appear. To avoid the lack of a universal normalization, we need to
renormalize the local average coupling by a factor V' so that we get the correct behavior,
namely we write explicitly the free energy, putting in evidence that p ~ 1 —exp(—avy?/4):

A(3,7,0 = 1/2) = log 2 + V/J log cosh (ﬁ\p/_( )) — (M2, (4.50)

such that, having B = BpV [2], we can easily recover the trivial limits of the CW case
when p — 1 (and coherently J — 1, 8 — [3) and of the fully disconnected network
p— 0= A(G,7v— 0,0 =1/2) =log?2 as p is superlinear in ~.

4.5.3. 0 = 1: finite connectivity regime. Finally, when 6 = 1 the free energy and its coupled
self-consistency are

A(B,7,0=1) = Jim (1og2 + —V log cosh (ﬁ; (M>> - %QU\Z)?) , (4.51)
(M) = Jim_tanh (ﬁ; <M>> . (4.52)
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Figure 4.1. Probability distribution for the order parameter P(m). Main figure:
system of size N = 1000 at a temperature T' = 0.57¢; inset: comparison between
systems of size N = 120, N = 500 and N = 1000, as shown by the legend, set at
a temperature 7' = 0.97¢.

Of course here, with respect to the previous case, we get even stronger divergencies. Now
we need to renormalize the local average coupling by a factor V2.

4.6. Numerics: probability distribution

As the critical line is obtained, in the fluctuation theory, through the Gaussian ansatz,
we double check our finding via numerical simulations.

First of all, we notice that since the interaction matrix J;; is symmetric (J;; = J;;),
detailed balance holds and it is well known [57, 3] how to introduce a Markov process for
the dynamical evolution ruled by Hamiltonian (2.2) and obtain the transition rates for
stationarity: Monte Carlo sampling is then meaningful for equilibrium investigation.

The order parameter distribution function has been proved to be a powerful tool
for studying the critical line in different kinds of systems; in particular, for magnetic
systems, the order parameter can be chosen as the magnetization per spin which, in
finite-size systems, is a fluctuating quantity characterized by a probability distribution
P(m) [24]. In Ising-like models undergoing a second-order phase transition it is known
that at temperatures lower than the critical temperature 5, !, the distribution P(m) has
a double peak, centered at the spontaneous magnetization +m and —m. At temperatures
greater than 3;!, P(m) has a single peak at zero magnetization, and exactly at ;! a
double peak shape is observed.

In figure 4.1 we plot numerical data for the probability distribution, obtained by
means of Monte Carlo simulations, where P(m) corresponds to the fraction of the total
number of realizations in which the system magnetization is m. In the main figure we
show the distribution for a system with V' = 1000 set at a temperature 37! = 1.13!,
while in the inset we compare systems of different sizes set at a temperature ! = 231,
Notice that, for such small temperatures, as the size is increased the distribution is more
and more peaked, while the probability to have zero magnetization is vanishing; this
corroborates the replica symmetric ansatz.
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5. Conclusion

In this paper we introduced an alternative way to generate systems of mutually interacting
components; the approach is inspired by the Hopfield model, where we shift the support
of the patterns like [—1, 1] — [0, 1].

From a graph theory perspective we introduced a model which, given a set of V'
nodes, each corresponding to a set of L attributes encoded by a binary string &, defines
an interaction coupling J;; for any couple of nodes (¢, 7). The resulting system can be
envisaged by means of a weighted graph displaying non-trivial coupling distributions and
correlations between links. In particular, when attributes are extracted according to a
discrete uniform distribution, i.e. P(§) = (1 4+ a)/2 for any i € [1,V] and p € [1, L],
a being a tunable parameter, we get that when a is sufficiently small the resulting
network exhibits a small-world nature, namely a large clustering coefficient; as a is varied,
the network behaves as an isolated spin system, an extreme dilute network, a linearly
diverging connectivity network, a weighted fully connected network and an unweighted
fully connected network, respectively. Moreover, nodes are topologically distinguishable
according to the concentration p of non-null entries present in their corresponding binary
strings: interestingly, if the scaling between L and V' is sublinear (e.g. P o< InV or even
slower, as in low storage networks [1,15]) the degree distribution turns out to be multi-
modal, each mode corresponding to a different value of p. Conversely, whenever the scaling
is (at least) linear (i.e. L o< V'), the distribution becomes mono-modal.

Then, as diluted models are of primary interest in disordered statistical mechanics,
by assuming self-averaging of the order parameters, we solved the thermodynamics of the
model: this required a new technique (a generalization to infinitely random fields of the
double stochastic stability) which is of complete generality and paves another way for
approaching dilution in complex systems.

Furthermore, within this framework, replicas are not necessary, and instead of
averaging over these copies of the system (and dealing with the corresponding overlaps)
we can obtain observables as magnetization averages over local subgraphs, implicitly
accounting for a replica symmetric behavior (which is indeed assumed throughout the
study).

An interesting point on which graph and statistical mechanics investigations converge
concerns a peculiar non-mean-field effect in the overall fields felt by the spins: the field
insisting on a spin scales as v/J (see equation (3.17)), while the averaged field on the
network scales as J (see equation (3.20)), which corresponds to the canonical mean-field
expectation. Furthermore, looking at equation (4.24) we see that in the hyperbolic tangent
encoding the response of the spin to the fields, the contribution of the other spins is not
weighted by J but by v/J. As in the thermodynamics the coupling strength has been
normalized, J < 1 — +/J > J: in complex thermodynamics there is a superlinearity
between the interactions: however this does not affect the critical behavior, which is a
global feature of the system and is consequently found to scale with J (see equation (4.36)),
this may substantially change all the other speculations based on intuition.

Of course, in the Curie-Weiss limit this effect disappears as global and local
environments do coincide (i.e. J =1).

It is worth stressing that (microscopic) correlation among bit strings is directly related
to the macroscopic behavior (e.g. critical line), suggesting an alternative, intriguing
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approach of investigation in e.g. social networks, gene regulatory networks, or immune
networks: the inner degrees of freedom can be inferred from the overall properties.

The next steps, which could stem from our approach, could address the clear statistical
mechanics of scale-free networks and applications to real systems (first of all a clear
investigation on dynamical retrieval properties), both in biology and in sociology.
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