
Università del Salento

DIPARTIMENTO DI MATEMATICA E FISICA
‘ENNIO DE GIORGI’

PhD Thesis in Theoretical Physics

Statistical mechanics for Artificial Intelligence:
Learning, Retrieving, Unlearning and Sleeping.

Alberto Fachechi

Advisors:
Prof. Adriano Barra
Prof. Elena Agliari

Referees:
Prof. Francesco Guerra

Prof. Ido Kanter

XXXI CICLO



List of publications

Publications included in the thesis

1. A. Barra, M. Beccaria, A. Fachechi, A new mechanical approach to han-
dle generalized Hopfield neural networks, published in Neural Networks
(2018).

2. A. Fachechi, E. Agliari, A. Barra, Dreaming neural networks: forgetting
spurious memories and reinforcing pure ones, Neural Networks, in press
(2018).

3. E. Agliari, F. Alemanno, A. Barra, A. Fachechi, Dreaming neural net-
works: rigorous results, J. Stat. Phys., in press (2019).

Publications not included in the thesis

1. M. Beccaria, A. Fachechi, G. Macorini, Virasoro vacuum block at next-
to-leading order in the heavy-light limit, published in JHEP (2016).

2. M. Beccaria, A. Fachechi, G. Macorini, On the cusp anomalous dimen-
sion in the ladder limit of N = 4 SYM, published in JHEP (2016).

3. M. Beccaria, A. Fachechi, G. Macorini, L. Martina, Exact partition
functions for deformed N = 2 theories with Nf = 4 flavours, published
in JHEP (2016).

4. E. Alfinito, M. Beccaria, A. Fachechi, G. Macorini, Reactive immuniza-
tion on complex networks, published in EPL (2017).

5. M. Beccaria, A. Fachechi, G. Macorini, Chiral trace relations in Ω-
deformed N = 2 theories, published in JHEP (2017).

6. E. Alfinito, M. Beccaria, A. Fachechi, G. Macorini, Probing complex-
ity with epidemics: a new reactive immunization strategy, Proceedings
of COMPLEXIS 2017, 2nd International Conference on Complexity,
Future Information Systems and Risk (2017).

i



ii

7. A. Fachechi, M. Beccaria, G. Macorini, Chiral trace relations in Ω-
deformed N = 2 theories, Proceedings of International Conference on
Integrable Systems and Quantum symmetries (ISQS25, 2017), pub-
lished in Journal of Physics: Conference Series 965 (2018).

8. E. Alfinito, A. Barra , M. Beccaria, A. Fachechi, G. Macorini, An evolu-
tionary game model for behavioral gambit of loyalists: Global awareness
and risk-aversion, published in EPL (2018).

9. A. Fachechi, M. Beccaria, G. Macorini, Chiral trace relations in N = 2∗

supersymmetric gauge theories, Proceedings of the conference Physics
and Mathematics of Nonlinear Phenomena (PMNP2017), published in
Theoretical and Mathematical Physics 196 (2018).

10. E. Agliari, F. Alemanno, A. Barra, A. Fachechi, A novel derivation of
the Marchenko-Pastur law through analog bipartite spin-glasses, Pro-
ceedings of the conference Disordered serendipity: a glassy path to
discovery (2018), to be published in Journal of Physics A (2019).



Contents

Introduction 1

1 Statistical Mechanics and Statistical Inference 10
1.1 Statistical mechanics in a teaspoon . . . . . . . . . . . . . . . 12
1.2 Statistical inference in a nutshell . . . . . . . . . . . . . . . . 17

2 Simple systems: the Curie-Weiss paradigm 21
2.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 The mean field ferromagnetic model . . . . . . . . . . . . . . . 22
2.3 The thermodynamic limit . . . . . . . . . . . . . . . . . . . . 24
2.4 Guerra’s Interpolating scheme . . . . . . . . . . . . . . . . . . 27
2.5 The Hamilton-Jacobi formalism . . . . . . . . . . . . . . . . . 29

3 Complex systems: the Sherrington-Kirkpatrick paradigm 34
3.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 The mean-field spin glass model . . . . . . . . . . . . . . . . . 37

3.2.1 Quenched and annealed free energies . . . . . . . . . . 39
3.2.2 Replicas and overlap . . . . . . . . . . . . . . . . . . . 41

3.3 The thermodynamic limit . . . . . . . . . . . . . . . . . . . . 43
3.4 The replica trick and Parisi theory . . . . . . . . . . . . . . . 46

3.4.1 The Replica Trick . . . . . . . . . . . . . . . . . . . . . 46
3.4.2 Replica Symmetric Ansatz . . . . . . . . . . . . . . . . 50
3.4.3 Broken Replica Symmetry Ansatz . . . . . . . . . . . . 52

3.5 Guerra’s interpolating scheme . . . . . . . . . . . . . . . . . . 58
3.6 The Hamilton-Jabobi formalism . . . . . . . . . . . . . . . . . 61

4 Retrival phase of AI: the Hopfield network 67
4.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 The CW and the SK limits . . . . . . . . . . . . . . . . . . . . 71
4.3 A heuristic digression about the phase space structure . . . . . 77
4.4 The Hopfield model from statistical inference . . . . . . . . . . 86

iii



CONTENTS iv

4.5 Low storage of Boolean and Gaussian patterns . . . . . . . . . 88
4.6 High storage of Boolean patterns: replica trick. . . . . . . . . 93
4.7 High storage of Gaussian patterns: interpolation method . . . 97

4.7.1 The hybrid case: a Boolean pattern in a real sea . . . . 104
4.7.2 The hybrid case: many Boolean patterns in a real sea . 113

5 Learning phase of AI: the Boltzmann machine 123
5.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.1.1 The performance measure, P . . . . . . . . . . . . . . . 126
5.1.2 The experience, E . . . . . . . . . . . . . . . . . . . . . 127
5.1.3 An example of learning algorithm: linear regression . . 129
5.1.4 Capicity, overfitting and underfitting . . . . . . . . . . 132

5.2 The Perceptron learning rule . . . . . . . . . . . . . . . . . . . 136
5.3 Restricted Boltzmann Machines and contrastive divergence . . 139
5.4 Retrieving what has been learnt: associative neural nets . . . 143
5.5 Statistical equivalence of RBM and Hopfield networks . . . . . 145

6 Beyond the standard paradigm: Unlearning for low storage149
6.1 The Hamilton-Jacobi formalism (classical) . . . . . . . . . . . 153
6.2 The Hamilton-Jacobi formalism (relativistic) . . . . . . . . . . 156
6.3 The thermodynamic limit . . . . . . . . . . . . . . . . . . . . 160
6.4 Guerra’s interpolating scheme . . . . . . . . . . . . . . . . . . 163
6.5 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . 166

6.5.1 Stochastic neural dynamics . . . . . . . . . . . . . . . 167
6.5.2 Comparison between theory and MC runs . . . . . . . 168
6.5.3 Depth of the attractors and energy gaps . . . . . . . . 170

7 Beyond the standard paradigm: Sleeping for high storage 174
7.1 The replica trick . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.1.1 Remotion or Reinforcement: a separate analysis . . . . 182
7.2 Guerra’s interpolating scheme . . . . . . . . . . . . . . . . . . 183

7.2.1 Analysis of the overlap fluctuations and ergodicity break-
ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.3 Analysis of the replica symmetric solution . . . . . . . . . . . 193
7.3.1 Zero-temperature (noise-less) critical capacity . . . . . 193
7.3.2 Replica symmetric phase diagram . . . . . . . . . . . . 195

7.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 198
7.4.1 Checking the Replica Symmetric assumption . . . . . . 199
7.4.2 Fields distributions in retrieved states . . . . . . . . . . 199
7.4.3 Retrieval frequency for noisy inputs . . . . . . . . . . . 202



CONTENTS v

Conclusions 203



Introduction

The spontaneous mechanisms behind the sophisticated information pro-
cessing tasks taking place in the brain has always been a fascinating subject
of study, and many of their characteristics are yet to be understood. Starting
from the 1940s, this field has developed with the contributions and efforts of
an incredibly large variety of scientists [91], ranging from engineers (mainly
involved in electronics and robotics), physicists (mainly involved in statistical
mechanics and stochastic processes), and mathematicians (mainly working
in logics and graph theory), to neurobiologists and cognitive psychologists.
Thanks to their work, we now know that the cerebral cortex can be described
as a neural network, namely an interconnected web of nerve cells (neurons)
transmitting electrical signals.1 Indeed, the interest in studying brain func-
tionalities and neural networks is mainly three-fold, depending on the rele-
vant aspects one would like to consider. From the biological side, one aims
to understand information processing in real biological nervous tissue. From
the technological point of view (mainly conducted by engineers and com-
puter scientists), one would apply the principles of neural functionalities to
design “intelligent” systems [132] exhibiting learning capabilities and taking
benefits of massive parallel calculus characterizing the brain. Finally, from
the perspective of mathematicians and theoretical physicists (which is the
one we shall adopt throughout the entire thesis), the challenge is to under-
stand how neural networks (real systems but also artificial models) develop
highly non-trivial emergent behaviours (which is the natural object of study
of statistical mechanics).

A remarkable feature of neural networks is certainly its adaptibility. From

1In a nutshell, neurons, which are excitable and rather noisy elements, can produce
electrical pulses (spikes) which are used to communicate among themselves [11]. This
mutual interconnection of the neurons leads to a brain network structure with a highly
non-trivial topology which can vary consistently depending on the regions (e.g. those in
the cortical modules are rather uniform and we will use them as candidate to be modeled)
and their associated cerebral functionalities. For instance, regions devoted to data pre-
processing are quite regular, while those associated to cognitive functions are indeed almost
amorphous.

1
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one side, we can for example recognize objects even if they are partially vis-
ible, deformed or in low visibility conditions. On the other side, our brain
system is also able to “re-wire” the nerve fibers in order to bypass dam-
ages in specific areas. With these facts in mind and once building blocks
(e.g. neurons) of neural systems are understood, the central question in the
field is to understand how neural networks self-organize to implement their
capabilities. The key point is that these tasks are not operated by the neu-
rons themselves. Indeed they are very simple systems as they can either be
active (i.e. produce an electrical signal) or quiescent (i.e. not producing
electric signals), hence their state can be mimicked by Boolean variables 0/1
or - in physical jargon - Ising spins ±1). The complexity of tasks which
a neural network can accomplish is therefore a result of brain cells interac-
tions. A fundamental step was done by J. Von Neumann [133] in 1957, who
proposed that, in view of the large number of interacting neurons (∼ 1010,
each of which communicating with roughly 104 colleagues) and the intrin-
sic stochasticity of neural processes, neural network models and operations
has to be described in statistical language. In particular, the theoretical ap-
proach that has since then been used, and that we will follow in this thesis,
is statistical mechanics. In fact, the general strategy of statistical mechanics
is to abandon any (reductionist) ambition to solve models of such systems
at the microscopic level of individual elements, and to use the macroscopic
vision to derive laws describing the behaviour of a suitably chosen set of
global observables. When applied to neural network models, such an ap-
proach, which turned out to be very successful to describe the dynamics of
particle and matter systems (see e.g. [28, 43, 78]), reveals the possibility
to well-describe collective phenomena (e.g. ordered behaviours and phase
transitioning), serving as a guide in choosing the macroscopic observables
to consider and in establishing the difference between relevant mathematical
subtleties and irrelevant ones. However, as in any statistical theory, clean
and transparent mathematical laws are expected to emerge only for large
(preferably infinitely large) systems.

Once neurophysiologists were able to give a complete description of the
neuron’s microscopic behaviour (thanks to work of A. Hodgkin and A.F.
Huxley [37]), the fact that the macroscopic behaviour of a system may spon-
taneously show cooperative, emergent properties, actually hidden in its mi-
croscopic description (and not directly deducible when looking at its compo-
nents alone) was definitely appealing in neuroscience. Remarkably, although
rather trivial with respect to the overall cerebral functionalities like learning
or computation, the neural dynamics (describing the state of a neuron in
terms of the state of the neighbouring ones through the so-called activation
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function) was found to be particularly apt to a thermodynamic formulation
and ultimately to reveal possible emergent capabilities.

It should be stressed that building up such a theory required many con-
cepts and tools originally developed in the field of condensed matter. In fact,
theoretical physicists quickly realized that the purely kinetic Hamiltonian,
introduced for perfect gases (or Hamiltonian with mild potentials allowing
for real gases), is no longer suitable for solids, where atoms do not move
freely and the main energy contributions come from potentials. However,
as experimentally revealed by crystallography, nuclei are arranged accord-
ing to regular lattices, hence motivating mathematicians to study periodical
structures and help physicists in this modeling, but merging statistical me-
chanics with lattice theories resulted soon in practically intractable models.1

It is just due to an effective shortcut to bypass this problem, namely the so
called mean field approximation, that statistical mechanics approached com-
plex systems and, in particular, artificial intelligence, as we will thoroughly
see during this thesis.

Let us now address the subject of the thesis more specifically. Artificial
Intelligence is trivially intelligence exhibited by machines. It is built along
humans’ congnition mechanisms, which are basically the mental actions or
processes of acquiring knowledge and understanding experience and sensa-
tions. Despite we dare to enlarge the following minimal paradigm with the
research summarized in the last Chapters of this thesis, at present, the two
pillars of the cognitive process are the abilities to learn and retrieve infor-
mation: one is useless without the other, because there is no reason why
we should gather information if there is no way to recall it, and we cannot
recover notions if we have not previously learnt them. These two aspects
of human cognition have been naturally and successfully implemented into
machines.

Some of the disciplines that have been attracted towards the study of
Artificial Intelligence, actually specialized in either learning or retrieval: en-
gineering worked mainly on the former and mathematics and theoretical
physics most studied the latter. In the last few decades, machine learning
has strongly developed and engineers have reached remarkable results (from
speech and object recognition, to robot locomotion and computer vision)
and it still is a prolific field of research and applications. The most recent
advancements have been reached through the evolution of machine learning,
commonly called deep learning [83, 115].

1For example, the magnetic Ising model has been resolved in dimensions 1 and 2 but
we’re still waiting for a solution for the 3-dimensional case.
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Meanwhile, mathematicians and theoretical physicists worked to reach
rigorous results concerning the retrieval of a machine’s stored data, and to
create a theory that illustrates neural networks behaviour under different
conditions [11, 37]. In these theoretical developments, neural models are built
over the human brain modules activity scheme and preserve the associative
memory property, namely the ability to reconstruct a piece of information,
once supplied with solely partial data (much as we do when we recognize a
friend by a glance at just a part of its face). In the network model, data
is stored in the form of patterns of information, i.e. vectors codifying a
particular feature of the memory. For example, a black and white image can
be stored as a pattern where each component, that is associated to a pixel in
the picture, takes on the value 1 if the pixel white or −1 if the pixel is black.

The prototype example for a vast class of associative memory models is
the Hopfield neural network, introduced by J. Hopfield in 1982 [65], see also
[67]. It is a network of binary neural units σi ∈ {−1,+1} fully connected by
couplings which encode the stored patterns.1 When looking at this neural
network model from a statistical mechanics point of view, an interesting fea-
ture emerges, namely its relationship with two different mean-field Ising-spin
models, namely the Curie-Weiss (CW) and the Sherrington-Kirkpatrick (SK)
models. The former is a mean-field ferromagnetic model and it represents
the archetype of a simple system (i.e. the number of free-energy minima of
the system does not scale with the volume N), while the latter is a mean-
field spin-glass [93] and it representes the archetype of a complex system (i.e.
the number of free-energy minima does scale with the volume according to
a proper function of N). The Hopfield model merges certain characteristics
of these limits in such a way that we can read the CW and the SK as its
two extremal cases.2 As we will see, the mean-field ferromagnetic model can
be interpreted as a very basic neural network that can only store one pat-
tern, while the mean-field spin glass represents a system where the stored
information is by far too much for the network to be able to recall anything.
For these reasons, in neural network literature the Hopfield model is often
introduced after the study of these models [11, 37, 102].

What do we know about the standard models of memory behaviour?
Mathematicians and theoretical physicists have studied under which condi-
tions this property would emerge, finding that there are two determining
factors for the presence of a retrieval phase:

1For the scope of this introduction, we shall not go into details. For a comprehensive
description of the Hopfield network, see chapter 4.

2A thorough analysis of this property is given in section 4.2
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• The complexity of the patterns: the vector components are taken as
either boolean (for example a black and white picture) or real (for
example a coloured picture);

• The patterns amount: we quantify this variable in terms of a network
capacity λ, defined as the number of stored patterns P over the num-
ber of the available neurons for their handling N , i.e. λ ∼ P/N . Net-
work operational modes are historically split into two main categories:
the low storage case, when the number of stored patterns grows sub-
linearly (e.g. logarithmically) with system’s size, hence limN→∞ λ = 0,
and the high storage case, if the law describing the growth of the num-
ber of patterns is linear with respect to the system volume such that
limN→∞ λ > 0.1

We will show that, in a low load (this, of course, includes also the case
where P is finite), we can always have a retrieval phase, no matter whether
patterns are dichotomic or analogical. On the other hand, in the high load
regime, if the patterns are Boolean there is a memory loss over a critical
λc [13]. Finally, if the representing patterns have real components, there
is no hope for recovering information [37]. So, from a theoretical point of
view (machine retrieval), working with dichotomic memories is more produc-
tive because they are easier to retrieve, but the application results (machine
learning) underline the importance of having these patterns to be real-valued
variables (for instance, solely the latter allow useful trick as variational princi-
ples and calculus in general - helping machine learning; however, it is intuitive
that dealing with real number is by far more expensive then with rational -
forcing machine retrieval). To overcome this flaw, beyond a standard study of
the Hopfield model in one of these two extrema (i.e. equipped with Boolean
or Gaussian patterns), we will study also an hybrid network, equipped with
both the types of storable information (digital and analogical). In this case,
we will be able to prove that this (more useful and realistic) network actually
shares the same retrieval region of the standard Hopfield model with binary
patterns: the critical capacity is smaller, but it does exist. This results
confers overall strength to the unifying picture that learning and retrieval
are two inseparable aspects of cognition, a - fundamental - picture emerged
mathematically clearly just in recent times [21].

In this thesis, we will sensibly enrich the outlined scenario by deepening
the potential beneficial role of another state of the network beyond learning

1By Gardner’s Theory [53, 52] we know that super-linear growth as, e.g. P ∝ Nx

with x > 1 are impossible with just pairwise interactions -as in the Hopfield scenario- thus
there is no need to investigate such a regime.
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and retrieving, namely sleeping, in particular:

• Regarding the physical side, the most important result will be by far
the discovery that, allowing the network to “sleep”, its critical capac-
ity can reach the maximal one, i.e. λc = 1, as prescribed by Gardner’s
theory (and we stress that - without sleeping - the network is really far
away from this bounds as the standard critical capacity is λc ∼ 0.14)!
In a nutshell, we will give the associative neural network a daily pre-
scription (that we have called the reiforcement&removal extension).
During its awake state, the network is fed by inputs (i.e. patterns
of information) that are stored in an Hebbian fashion,1 then, during
its sleep, it gets rid off the (combinatorial2) proliferation of spurious
mixtures (unavoidably created as metastable states in the free-energy
landscape of the network during the learning stage), and it reinforces
the pure ones (makings their free energy minima deeper in this land-
scape picture). This procedure, remarkably, keeps the learning phase
Hebbian in its nature but allows the network to saturate the storage
capacity λ to its upper bound3 for symmetric networks (i.e., λc = 1)
[53]. Further, in the retrieval phase of its phase diagram, pure states
are global minima up to λ ∼ 0.85: a much broader range w.r.t. the
classical Hopfield counterpart, where they remain global minima solely
for λ < 0.05).

• Regarding the mathematical side, we sensibly extended Guerra’s inter-
polation techniques by adapting them to work with the more challeng-
ing models we introduced to account for sleeping in neural networks,.
These techniques are basically based on complex statistical mechanical
and PDE tools. In particular, statistical mechanics of spin glasses [93]
has been playing a primary role in the investigation of neural networks,
as for the description of both their learning phase [49, 117] and their
retrieval properties [11, 37]. Along the past decades, beyond the bulk
of results achieved via the so-called replica-trick [93] (the first cele-
brated method exploited to tackle these systems as pioneered by Gior-
gio Parisi), a considerable amount of rigorous results exploiting alterna-

1We stress that, given the equivalence between restricted Boltzmann machines and
Hopfield neural networks [21], also learning via e.g. contrastive divergence [113] ultimately
falls in the Hebbian category [9, 8].

2This means that the number of spurious states roughly grows exponentially in the
number of stored patterns, that is, in the high storage regime, in the number of neurons.

3Actually the network seems to perform even better, returning its maximal capacity to
be λc ∼ 1.07 > 1: this is obviously not possible and, as explained by Dotsenko and Tirozzi
[47, 46], it is a chimera of the replica-symmetric regime at which the theory is developed.
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tive routes (possibly mathematically more transparent) were also devel-
oped mainly due to the interpolation techniques by Francesco Guerra
(see e.g. [3, 4, 10, 29, 30, 32, 18, 25, 24, 47, 46, 126, 125, 101, 102, 59, 55]
and references therein). Typically, in our approach, we first obtain new
results heuristically with the replica trick, and we then confirm - in any
detail - these findings by adapting the interpolation scheme to the case,
step by step.

As this is a Ph.D. thesis in (theoretical) physics, beyond the two main
routes paved respectively by Parisi and Guerra, particular efforts and
care will be spent also to adapt an entirely mechanistic approach to
complex systems, and neural networks in particular, the Hamilton-
Jacobi technique (and, more in general, the non-linear PDE theory as a
concrete alternative to the standard statistical mechanical approaches).
We will show, at first on simple and complex paradigm - as the mean
field ferromagnet (i.e. the Curie-Weiss model) and the mean field spin
glass (i.e. the Sherrington-Kirkpatrick model), then on harmonic os-
cillators for learning and retrieval in Artificial Intellicenge (namely the
Boltzmann machine for the former and the Hopfield network for the
latter), how this technique allows to get an exhaustive picture of the
spontaneous information processing skills these network display. Be-
yond the new results that we will present in this thesis, this observation
by itself gives an entire new argument favoring the extensive usage of
Theoretical Physics as a methodological guide to understand Artificial
Intelligence, a must that our society will have to face in the incoming
decade.

The thesis is is split into three main parts:

• Part One (Fundamentals of the required knowledge in Theoretical Phy-
ics), where - once introduced a mandatory know-how (mainly about
Statistical Mechanics and Statistical Inference) - we analyze the emerg-
ing properties of two archetypes of simple and complex systems (respec-
tively the Curie-Weiss and the Sherrington-Kirkpatrick models);

• Part Two (Fundamental of Artificial Intelligence), where we show, ex-
tensively relying upon the concepts exposed in the first part, the state
of the art in Neural Networks and Machine Learning (from a statistical
mechanical perspective);

• Part Three (Novel results in Artificial Intellicence), where, once high-
lighted a relation between a larger critical storage capacity for pattern
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retrieval with an enhanced skill in avoiding over-fitting during machine
learning, we will extensively model sleeping phenomena in these net-
work. In light of the results we will achieve (the saturation of the critical
capacity), we will speculate that Cognition could be a composed and
dynamical phenomenon shown by neural networks among whose salient
ingredients, sleeping must have a weight, as learning and retrieval.

As a final remark, as this is a doctoral thesis in Theoretical Physics, we
would like to emphasize that, when trying to enlarge the actual state of the
art, we have been entirely driven by the underling Physics. In a nutshell,
we proved that, in order to approach the statistical mechanical picture of
these models, it can be possible to relate it to a mechanical system obeying
an Hamilton-Jacobi evolution. Remarkably, it is just by pursuing this route
- an effective Lagrangian mechanics description of these networks - that we
naturally discover limitations of the previous framework (i.e. cognition split
between just learning and retrieval) and we naturally enlarge such a scheme
by introducing also sleeping. This fact highlights once more the importance
for such a young discipline as Artificial Intelligence of being built on solid
pillars; in these regards, those Theoretical Physics offer have always played
a primary role, so we do hope the latter to become the main route in this (or
the few) decisive decade(s) of investigation.
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Part One: Tools from Theoretical Physics



Chapter 1

Statistical Mechanics and
Statistical Inference

Statistical mechanics aroused in the last decades of the XIX century
thanks to its founding fathers L. Boltzmann, J.C. Maxwell and J.W. Gibbs.
Its scope (at that time) was to provide a consistent theoretical background
formalizing the already existing empirical thermodynamics, in order to recon-
cile its noisy and irreversible behaviour with a deterministic and time reversal
microscopic dynamics. While trying to get rid of statistical mechanics in just
a few words is almost meaningless, its functioning may be summarized via
toy-examples. Let us start with a very simple system, e.g. a perfect gas, in
which molecules obey a Newton-like microscopic dynamics (without friction
- as we are at the molecular level - thus time-reversal). Instead of focusing on
each particular particle trajectory to characterize the state of the system, we
define order parameters (variables describing the system’s behaviour from
a macroscopic perspective, e.g. the density) in terms of microscopic vari-
ables (the particles belonging to the gas). By averaging their evolution over
suitable probability measures and simultaneously imposing minimum energy
and maximum entropy principles, it is possible to infer the macroscopic be-
haviour in agreement with thermodynamics, hence linking the microscopic
deterministic and time reversal mechanics with the macroscopic strong dic-
tates stemmed by the second principle (i.e. arrow of time coded in the entropy
growth). Despite famous attacks to Boltzmann theorem (e.g. by Zermelo or
Poincaré), statistical mechanics was immediately recognized as a deep and
powerful bridge between microscopic dynamics of system’s constituents and
(emergent) macroscopic properties shown by the system itself, as exempli-
fied by the equation of state for perfect gases obtained by considering the
Hamiltonian for a single particle accounting for the kinetic contribution only
[28, 78].

10
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One step forward beyond the perfect gas, J.D. Van der Waals and J.C.
Maxwell in their pioneering works focused on real gases, in which particle
interactions were finally considered by introducing a non-zero potential in
the microscopic Hamiltonian describing the system. This extension required
fifty-years of deep changes in the theoretical physics perspective in order to
be able to face new classes of questions. The remarkable reward lies in a the-
ory of phase transitions where the focus is no longer on details regarding the
system constituents, but rather on the characteristics of their interactions.
Indeed, phase transitions, namely abrupt changes in the macroscopic state
of the whole system, are not due to the particular system considered, but
are primarily due to the ability of its constituents to perceive interactions
over the thermal noise. For instance, when considering a system made of
a large number of water molecules, whatever the level of resolution to de-
scribe the single molecule (ranging from classical to quantum), by properly
varying the external tunable parameters (e.g. the temperature), the system
eventually changes its state with a phase transition from liquid to vapor (or
solid, depending on parameter values): of course, the same applies generally
to liquids.

The fact that the macroscopic behaviour of a system may spontaneously
show cooperative, emergent properties (actually hidden in its microscopic de-
scription and not directly deducible when looking at its single components)
was definitely appealing in neuroscience. In fact, in the 70s, neuronal dy-
namics along axons, from dendrites to synapses, was already rather clear
(see e.g. the celebrated book by Tuckwell [131]) and not much more intricate
than circuits that may arise from basic human creativity. In this context,
the aptness of a thermodynamic formulation of neural interactions - reveal-
ing possible emergent capabilities - was immediately pointed out, despite the
route was not clear yet. Indeed, we will try to show in this thesis that one of
the main rewards in using statistical mechanics to inspect the spontaneous
information processing skills neural networks show is the concept of phase
diagram: we will be able to identify, in the space of the tunable parameters
of the network (e.g. the level of noise the network is embedded in or the in-
formation load of the network, etc.), regions where some emerging skills are
available, regions where other behaviours appear and regions where the net-
work no longer works as an information processing system. This is exactly
the opposite perspective w.r.t. the extensive empirical trials that consti-
tute nowadays the main route to Machine Learning, as seen from a merely
engineering-prone perspective.

Along the same lines, while we will largely rely upon statistical mechanics
to paint these phase diagrams, we can also adopt a pure statistical inference
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perspective - in order to match our results with those existing in the Engi-
neering Literature where much of the results have been framed in statistical
terms: the bridge will be the Maximum Entropy Principle acting as the Ro-
man Giano Bifronte as it can be used to literally ground both statistical
mechanics as well as statistical inference, as we will quickly revise in this
introductory section.1

1.1 Statistical mechanics in a teaspoon

This framework requires a probability measure on a given space, that is
invariant with respect to the Hamiltonian flow. For a system of N particles
this measure can be easily deduced, and it is related to the Hamiltonian
function, that we choose to be

HN(p, q) =
1

2m

N∑

i=1

p2
i +

∑

i 6=j

V (qi − qj),

where in this generic construction p = (p1, . . . , pN) and q = (q1, . . . , qN) are
the coordinates in the phase space of the system, with pi and qi respectively
being the momentum and the position of particle i, and V is a potential.
Setting these quantities to be in the three-dimensional euclidean space, the
state space is Ω = R6N . When working on spin or neural networks, the state
variable are idealized with Boolean vectors σ = (σ1, . . . , σN), where each
σi ∈ {−1,+1} represents the spins orientation (up or down) or the neuron’s
activity (spiking or not spiking). Here the state space is Ω = {−1,+1}N .
From now on we will only consider systems with a noisy microscopic be-
haviour. In this context, we define the entropy functional for the system as
the following:

S[P] = −
∫

Ω

dx P(x) lnP(x),

with x = (p, q), P being the probability distribution over the state space
Ω. Entropy is by definition the measure of the system disorder. In fact,
the smaller is the subset of Ω on which the density P is concentrated and
the smaller is the measured entropy. However, if the system is described
by a probability distribution that is highly concentrated in a small area of
the state space it means that the system is actually not that random but is

1Of course we are tacitely assuming the reader to be by far familiar with these fields
of Science as, obviously, nor there is hope to be exhaustive on such broad themes in just
a few pages, neither this is the scope of the present manuscript.
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rather ordered. For example, if we consider the discrete case with N possible
states, the entropy function is described by

SN [P] = −
N∑

i=1

Pi lnPi, (1.1)

with the closure condition
N∑

i=1

Pi = 1.

Let’s consider the simple case of

Pi =

{
1
N

i ≤ N,

0 i > N,

where Pi is the probability that state i is occupied. Then, S = lnN , meaning
that the number of configurations in which the system can be found with a
considerable probability is eS and thus confirming the meaning of S as a
measure of the system disorder.

We now illustrate how expression (1.1) can also be interpreted as the
number of system configurations. Let us consider a set of systems (ensemble)
made of N identical systems and suppose that each one of them can take on
K different possible states. A configuration of this system is given by the
numbers N1, . . . , NK , where Ni is the number of the systems in the ensemble
occupying the i-th state. The number of states that satisfy this configuration
is given by the multinomial coefficient

N !∏N
i=1Ni!

= N,

with the condition that
∑

iNi = N . Applying Stirling’s formula, the entropy
SN is SN = 1/N lnN following this computation:

1

N
lnN =

1

N

(
N lnN −

K∑

i=1

Ni lnNi

)
=

K∑

i=1

Ni

N

(
lnN − lnNi

)
=

= −
K∑

i=1

Ni

N
ln
Ni

N
= −

K∑

i=1

Pi lnPi = SN [P],

in which the probability Pi has been identified with the frequency Ni/N
thanks to the law of large numbers. Therefore we obtained an interpretation
of an ensemble entropy, and it is the one that we will use throughout this
thesis: S is proportional to the logarithm of the number of ways that a given
configuration can appear.
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Remark 1.1. Thanks to the previous definitions and examples, we can con-
clude that for a smaller entropy we have a system that is concentrated on a
small number of states and thus we have more information about it.

Now, we will show how Gibbs measure has the ability of maximizing en-
tropy function. To do this, we consider the evolution of a set of N (a large
and fixed number) interacting Hamiltonian systems in thermal equilibrium,
meaning that the energy of a generic subsystem j presents small fluctuations
on the average value fixed at Ej. We can say that the ensemble is in thermal
equilibrium if every subsystem gives out and receives an equal quantity of en-
ergy from the other subsystems. Assuming that we know EN , the ensemble’s
average value of the total energy is given by

EN =
N∑

i=1

PiEi,

where the sum is carried on all the possible values that can be observed
in the ensemble. For simplicity, we shall consider a discrete case in which
Ej stands in a discrete set EN and every subsystem of the ensemble takes
average energy levels in EN . From the second principle of thermodynamics,
we know that the entropy of an isolated system grows as the information
decreases while system evolves. Hence, it comes naturally to look for the
probability distribution Pj of all the available energy levels that maximize
the entropy SN [P]. This distribution exists and it is called the Gibbs measure.
The problem can be translated in a mathematical form as





maxPj SN [P],∑N
i=1 PiEi = EN ,∑N
i=1 Pi = 1.

(1.2)

This is a constrained maximization problem, whose solution is obtained by
means of Lagrange multipliers, i.e. finding the maximum of the following
function

SN,β,γ[P] = −
∑

i

Pi lnPi + β
(∑

i

PiEi − EN
)

+ γ
(∑

i

Pi − 1
)
.

The solution is quite nice and simple, and reads

Pi =
e−βEi

ZN
,
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where ZN = e1−γ =
∑

i e
−βEi is known as the partition function. The com-

puted values of Pi are in fact maximum points for the entropy. The parameter
β can be calculated with the following condition:

1

ZN

N∑

i=1

Eie
−βEi = EN ,

from which we can also show why β can be interpreted as the inverse of the
temperature. To clarify this point, we introduce the function

FN(β,EN) = lnZN ,

whose associated differential is

dFN =
∂FN
∂β

dβ +
N∑

i=1

∂FN
∂Ei

dEi = −ENdβ − β
N∑

i=1

Ni

N
dEi, (1.3)

where we have replaced Pi with the frequency Ni/N of the event of having
the energy level Ei in the ensemble. We can rewrite equation (1.3) as

d
(
FN + ENβ

)
= β

(
dEN −

N∑

i=1

Ni

N
dEi

)
, (1.4)

and give a nice physical interpretation. In fact, if we suppose to work on dif-
ferent ensemble subsystems (e.g. varying their dimension, parameters, etc.),
the quantity

∑
iNi/NdEi represents the work on the ensemble needed to

change the energy levels of the systems and dEN its internal energy varia-
tion. Thus, for the first principle of thermodynamics, dEN −

∑
iNi/N dEi is

nothing but the amount of exchanged heat dQN between the ensemble and
the external environment. Hence, the identification of β = 1/T , where T it
the ensemble temperature, is straightforward since it is the only way to make
βdQN exact.

From the second principle of thermodynamics, we know that d(FN +
EN/T ) must be the system entropy differential, being dQN/T = dSN . Hence,
taking β = 1/T , we have the free energy of the system:

FN(β) ≡ − 1

β
lnZN = EN − TSN . (1.5)

The importance of free energy FN is that it is a state function that can be
expressed through the system order parameters.
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Remark 1.2. The order parameter values that minimize FN describe the
equilibrium states of the system. In fact, minimizing the free energy, they
also maximize the system entropy and are fulfilled by the most number of
(allowed) microscopic states. Thus, they are the most probable values.

An equivalent way to find the values of Pi that maximize the entropy is
based on the search of the free energy FN minima satisfying the conditions
in (1.2). Plugging the definitions of entropy (1.1) and average energy into
(1.5) and imposing the minimum conditions, we have

FN,µ(β) =
∑

i

PiEi + T
∑

i

Pi lnPi + µ
(∑

i

Pi − 1
)

= 0,

∂FN
∂Pi

(β) = Ei + T lnPi + T + µ = 0 ⇒ Pi = e−Ei/T · e−µ/T−1.

Forcing the normalization on Pi, we get µ such that e−µ/T−1 = 1/{
∑

i e
−Ei/T} ≡

1/ZN , so that Pi = e−Ei/T/ZN .

From the definitions given above, we can learn the following relations:

FN = EN − TSN =

=
∑

i

PiEi + T
∑

i

Pi lnPi|Pi=ZN−1e−Ei/T =

=
1

ZN

∑

i

Eie
−βEi +

T

ZN

∑

i

e−βEi ln

(
1

ZN
e−βEi

)
= −T lnZN ,

SN = β2∂FN
∂β

, EN = FN + β
∂FN
∂β

.

Ultimately, we will be interested in the thermodynamic limit for the intensive
(i.e. normalized to the system size) free energy, referred to as f(β) (i.e. we
drop the index N) and to find its minima. Thus

f(β)
.

= lim
N→∞

1

N
FN(β) = lim

N→∞
− 1

βN
lnZN . (1.6)

Equivalently, we can study the statistical pressure, referred to as αN(β) when
dealing with a finite system of size N , and as α(β) when dealing with the
thermodynamical limit, that is

α(β) = lim
N→∞

αN(β) = −β lim
N→∞

1

N
FN(β) = lim

N→∞

1

N
lnZN(β). (1.7)

Once we are able to write explicitly the free energy or the statistical pressure
in terms of the system order parameters, we proceed with the calculation of
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the state equations for these quantities. This procedure consists in deriving
the pressure function with respect to each order parameter in order to find
its critical points where we have a minimum (or a maximum in the case we
are dealing with the free energy). We obtain a state equation for the order
parameters whose solution can be determined either analytically or numeri-
cally. Thanks to this procedure, we will be able to trace a phase diagram and
analyze potential phase transitions in the so-called thermodynamic limit.

It is time to clarify some points. Firstly, a licit question could be the
following: why are we considering the thermodynamic limit when neural
networks cannot physically contain infinitely many neurons? Other than ob-
taining the associative memory characteristic (technically speaking, solely in
the thermodynamic limit, neural networks are a form of non-ergodic systems
[102], as, along the same reasoning, just in that limit phase transitions do
exist [112]), we can also give a merely practical justification: in this limit,
most of the probability distributions describing crucial observables (e.g. those
pertaining to thermodynamic functions as free energy, energy and entropy)
become delta-peaked, thus ultimately allowing an elementary description of
the system under study. Finally, we would like to spend some words about
phase transitions. We shall refer to this concept whenever we have an or-
der parameter describing the state of the system that, depending on some
tunable parameters characterizing the model, changes its value from zero
to not-null values (or vice versa). In that value of the tunable parameters,
whenever the free energy is continuous and its first derivative with respect
to the order parameter investigated is not continuous, we say that we deal
with a first order phase transition. On the other side, if the free energy and
its first derivative are continuous, but the second derivative is not, we speak
of second order phase transition, or criticality, and so on. Once that all the
phase transitions have been identified in the space of the tunable parameters,
it is possible to trace the phase diagram of the model and start working on
another model.

1.2 Statistical inference in a nutshell

Following the same attitude of the previous Section, where we forced a
deep and complicated discipline in just a few pages, here we address Statisti-
cal Inference. In fact, this is another giant field, but we will cover solely one
of its many ramification. Namely, this Section deals with a particular appli-
cation of information theoretic concepts to problems of statistical inference
(typically addressed in Machine Learning), that is density estimation for a
random variable X (with values x ∈ Ω) which is not completely specified,
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in the sense that the full set of probabilities {Pi, i = 1, . . . , N} or, in the
case of a continuous random variable, the probability density function P(x)
are unknown. We assume that information about probabilities is available
in terms of averages 〈fα(x)〉 for a family {fα} of functions of X (e.g. the
moments µn = 〈xn〉 of X). The task is once more to estimate P solely on
the basis of available information. Remarkably, the method of choice here is
again the Maximum Entropy Principle, for density estimation this time, as
we briefly revise.

The solution to the problem formulated above, as proposed by Jaynes [72]
in the 1950s, is based on the observation that the (Shannon [118]) entropy
associated to a random variable X, that is

S(X) = −k
∑

x∈A

P(x) lnP(x), (1.8)

describes the average uncertainty about actual outcomes of observations of
X (with some normalizing factor k whose knowledge is now inessential),
therefore measuring our ignorance about X (see also [37, 85, 136]). According
to Jaynes, a consequence of that observation is that the best estimate of a set
of probabilities {P(x), x ∈ A}, compatible with the available information, is
given by an assignment of probabilities maximizing the entropy - that is, our
ignorance about X - subject only to constraints coming from the available
information.

One thereby expects to prevent inappropriate implicit assumptions about
X, involving properties that we have in fact no knowledge of, from sneaking
into the probability assignment that is being made. Jaynes prescription thus
provides a systematic method of being maximally unbiased in a probability
estimate and only using known averages. In order to formulate the solu-
tion in detail, we return to the previous convention of making explicit the
dependence of the entropy on the distribution P by using the notation S[P].

The problem to be solved can now formally be stated as follows. Let X be
a random variable, with the set A of possible realizations given. It is assumed
that the only information available about the probabilities {P(x), x ∈ A} is
given in terms of a set of averages

〈fα(x)〉 =
∑

x∈A

P(x)fα(x) = f̄α, fα ∈M,

with M = {fα(x)} denoting a given family of functions. We stress that this
family must always contain the function f0(x) ≡ 1, whose trivial average

〈f0(x)〉 =
∑

x∈A

P(x) = 1,
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ensures that P(x) is a probability and thus S[P] a real entropy. Denoting
P∗ as the best estimate of the probability distribution compatible with the
above constraints, then it is found according to the following prescription

S[P∗] = max
P
{S[P]} such that 〈fα(x)〉 = f̄α. (1.9)

We will now briefly discuss some prototypical examples to get acquainted
with entropy maximization by an inferential perspective.

• Worst Example: Uniform Distribution

Let us suppose we know nothing about the system under consideration.
Then, the only constraint is that P∗ is a probability distribution, so that
Jaynes criterion turns into the maximization of the functional

S0[P] = S[P] + kλ0

(∑

x∈A

P(x)− 1
)
.

Then, P∗ is obtained with the conditions

∂S0[P]

∂P(x)
= −k lnP(x)− k + kλ0 = 0, (1.10)

∂S0[P]

∂λ0

= k
(∑

x∈A

P(x)− 1
)

= 0, (1.11)

and it is trivial to check that the solution is the uniform distribution
(as expected since we have no a priori information on the system).

• Crucial Example: Gaussian Distribution

Let us suppose now that - as in the standard experimental settings - we
can measure the first empirical momenta regarding the system under
study, i.e. the mean and the variance. Again, the function to maximize
can immediately be written in Lagrangian form as

S2[P] = S[P] + kλ0

(∑

x∈A

P(x)− 1
)

+ kλ1

(∑

x∈A

xP(x)− µ1

)

+ kλ2

(∑

x∈A

P(x)(x− µ1)2 − µ2

)
.

(1.12)

In a similar fashion as before, P∗ is found by solving

∂S0[P]

∂P(x)
= 0, (1.13)

∂S0[P]

∂λs
= 0, (1.14)
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for s = 0, 1, 2. It is again trivial - but also crucial - to check that
the solution is the Gaussian distribution (as expected since we have
information on the mean and the variance of the system under consid-
eration), namely

P∗(x) =
1

Z
eλ1x+λ2x2

=
1

Z
e−(x−λ̂1)2/2λ̂2

2 ,

with λ̂1 = µ1 and λ̂2 ≡ σ2 = µ2 − µ2
1.

Thus, the Gaussian probability density - apart from its key role in the Cen-
tral Limit Theorem - enjoys a privileged role also as a maximally unbiased
estimator of a probability density function with the only constraints of given
first and second moments (or equivalently of given mean and variance).

A final note stressing the overall harmony among the two approaches
hereafter summarized, is a tribute to reductionism (leaving criticism to the
Conclusions): in Physics, as long as forces are linear,1 the Hamiltonian (or
energies) are quadratic forms in the microscopic variable (for instance, for
a spring whose law is F = −kx, as F = −∂xE(x) the associated energy is
E(x) = kx2/2) and, as a sharp consequence of this, the Boltzmann-Gibbs
distribution ∝ exp(−βE) is a Gaussian (in the microscopic variables x)!

1The assumption of linearity in the forces is a natural definition of a ”reductionistic
description” as, thanks to linearity, a sum of two forces translates in the linear sum of
the consequences they imply: it is trivial to visualize this by taking for example a vertical
spring in a gravitational field and adding to its lower extremum one or two masses and
than checking the relative equilibrium elongation of the spring itself.



Chapter 2

Simple systems: the
Curie-Weiss paradigm

2.1 Generalities

The Curie-Weiss (CW) model is often introduced during the study of
standard statistical mechanics, in particular in relation with the Ising model
(1920), originally developed to investigate magnetic properties of matter
[28, 78]. Briefly, in the one-dimensional Ising model, each of the N nu-
clei (labelled with i) is schematically represented by a spin σi assuming only
two values (σi = −1, spin down and σi = +1, spin up). Only nearest
neighbour spins interact reciprocally with positive (i.e. ferromagnetic) inter-
actions Ji,i+1 > 0, hence the Hamiltonian of this system can be written as

HN(σ) ∝ −
∑N

i Ji,i+1σiσi+1− h
∑N

i σi, where h tunes the external magnetic
field and the minus signs ensure that spins try to align with the external field
and to get parallel each other in order to fulfil the minimum energy principle.
Clearly, this model can trivially be extended to higher dimensions. However,
due to prohibitive difficulties in facing the metric (rather than topological)
constraints of considering nearest neighbour interactions only, soon shortcuts
were properly implemented to turn around this path. A (actually crucial for
Artificial Intelligence) effective simplification in the treatment of the Ising
model is the so called “mean field approximation”, whose simplified model
is termed the Curie-Weiss (CW) model.1

1We would like to stress also that another reason to introduce the mean-field approx-
imation of the Ising model is that, in one dimension, the latter is unable to explain phase
transitions in ferromagnetic materials, since the free energy is an analytic function of the
order parameters of the theory for T 6= 0. This is due to the fact that spin-spin correla-
tions vanish very fast (i.e. exponentially) for T > 0, so they are not sufficient to provide
an ordered phase of the system.

21
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The CW model occupies an important place in statistical mechanics liter-
ature and its application to information theory. Indeed, it is a paradigm for
simple systems, whose definition (one out of many) is the requirement that
its related amount of free energy minima does not scale with the system size
N : in particular, the CW free energy presents only two minima, whatever
volume of spins N (even if N →∞).1

2.2 The mean field ferromagnetic model

Let us start the analysis of the CW model: in this mean field approxima-
tion, where each spin interacts with all the other spins in the network (re-
gardless any definition of distance), the finite volume case is defined on a fully
connected graph whose nodes host N Ising spins σi ∈ {−1, 1} ∀i = 1, . . . , N .
The interactions are specified with a coupling matrix {Jij} (i.e. the weighted
adjacency matrix in a graph theoretical jargon) such that Jij = J > 0
∀i, j = 1, . . . , N and i 6= j, while the diagonal terms are null. Without
loss of generality, we shall assume J = 1. For simplicity, we will also re-
quire that there is no external field acting on the system (as one body terms
∝
∑

i hiσi are always mathematically trivial to handle with since their joint
probability distribution factorizes over the sites [37]). Therefore, we can give
the following

Definition 2.1. The Hamiltonian function HN(σ) of the mean field ferro-
magnetic model (CW) is:

HN(σ) = − 1

N

∑

1≤i<j≤N

σiσj = − 1

2N

N∑

i,j=1

σiσj +
1

2
. (2.1)

Remark 2.1. In the last definition, the last term 1/2 can be ignored since
it is irrelevant in the thermodynamic limit.

Remark 2.2. From now on, through the whole thesis, we write
∑
σ intending

that the sum is carried over all the possible values that σ can take in the
configuration space Ω = {−1,+1}N .

Definition 2.2. The order parameter for the CW model is the (global)
magnetization m defined as

m(σ) ≡ m =
1

N

N∑

i=1

σi ∈ [−1, 1]. (2.2)

1Moreover, the model can also be interpreted as a neural network in which now neu-
rons replace what were originally called spins, and the values that they acquire are now
indicating whether the cell is spiking (+1) or quiescent (−1) [11].
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Using this definition, we can also rewrite the Hamiltonian (2.1) as

HN(m) = −N
2
m2,

that is clearly minimized for m2 = 1, or equally for m = ±1. Note further
that, as it should, the intensive energy HN/N does not scale with N , since
HN(m) ∝ N · const(N), where const(N) means that the quantity is N -
independent.

Definition 2.3. For a given inverse temperature β = 1/T , the partition
function ZN(β) is defined as

ZN(β) =
∑

σ

BN(β) =
∑

σ

e−βHN (σ) =
∑

σ

e
β

2N

∑
ij σiσj , (2.3)

where BN = e−βHN is the Boltzmann factor.

Definition 2.4. The Gibbs measure ωN(·) for a generic function F depending
on σ is

ωN(F )
.

=

∑
σ F (σ)BN(β)∑

σ BN(β)
. (2.4)

Definition 2.5. The thermodynamic statistical pressure α(β) = −βf(β) is
defined as

α(β) = lim
N→∞

αN(β) = lim
N→∞

1

N
lnZN(β),

where, as standard, f(β) = N−1(E − TS) is the (intensive) free energy,
namely the difference - at given noise level T - between the energy and the
entropy related to the system (normalized to the volume).

Following the statistical mechanics approach, we are interested in obtain-
ing an explicit expression for the thermodynamic limit of the (intensive) free
energy (or, equivalently, of the pressure function) in terms of the order pa-
rameter: by extremizing such an expression w.r.t. the latter, we will access
the equation of state of CW model. This equation allows to inspect phase
transitions and painting a phase diagram for the model.

We will solve the problem of writing explicitly the thermodynamic pres-
sure function in three ways: the first is the standard determination of an
upper and lower bound for the finite volume pressure; the second follows a
Guerra’s (one-parameter) interpolating procedure (which we will use later on
for several times); finally, the third method that is achieved through another
Guerra’s (two parameters) interpolating scheme, i.e. the Hamilton-Jacobi
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formalism. Although the latter method is way more elaborated than nec-
essary for the CW, we give also this method of resolution as a preparatory
step to its application to the mean field spin-glass and to mean field neural
network. Furthermore, the latter will act as a guide - once facing an AI
rationale in the final chapters of this thesis - to suggest us how to overcome
the actual state of the art in this formalization of AI.

Overall this chapter is dedicated more to the techniques (at work on the
elementary CW model where every stage of calculation is trivial) than to the
Physics (that is rather poor and well-known), so to get the reader acquainted
with the underlying mathematical methodologies the thesis has been built
on.

In general, as a first step (when possible), it is always mandatory to check
the existence of the thermodynamic limit for the free energy. Although it
is obvious that it would be rather embarrassing speaking about not-existing
quantities, we will see that - in general - for neural networks this knowledge is
not yet available: let us start addressing this calculation for the CW model.

2.3 The thermodynamic limit

As stated above, the first problem one should face is to prove the existence
(and possibly the uniqueness) of the limit of the free energy per site when the
size of the system goes to infinity. Indeed, in principle this limit could depend
on the particular sequence of system sizes chosen to reach the thermodynamic
limit, or, even worst, it could oscillate or simply diverge.

As it is well-known, for translational invariant systems with short range
interactions the uniqueness is proven by dividing the system into large sub-
systems: the interaction energy among them is a surface effect, negligible
with respect to the bulk energy, so that the free energy per site does not
change essentially when the system size is increased [112]. When the model
is disordered and finite-dimensional with short range interactions, if the dis-
order distribution is translational invariant, this approach still works: the
subsystems interact weakly, due to the short range character of the poten-
tial, and the free energy of the blocks can be approximated as independent
identically distributed random variables. Then, the existence of the large N
limit of the free energy per site follows from the strong law of large numbers.

When dealing with mean field models, surface terms are actually of the
same order as the bulk terms, and the approach outlined above does not
work. In this case, the proof of the existence of the thermodynamic limit
is based on a smooth interpolation between a large system, made of N spin
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sites, and two similar but independent subsystems, made of N1 and N2 sites
respectively, with N1 +N2 = N .

We start by considering the trivial inequality

2mM −M2 ≤ m2,

holding for any M ∈ R, which shall be meant as a trial magnetization.
Plugging it into the partition function (2.3), we get

ZN(β) =
∑

σ

e
βN
2
m2 ≥

∑

σ

eβmMNe−
1
2
βM2N .

The sum is easy to compute, since the magnetization appears linearly and
therefore the sum factorizes over each spin. Physically speaking, we replaced
the two-body interaction, which is generally difficult to deal with, with a one-
body coupling. Then, we try to compensate this replacement by modulating
the field acting on each spin with the help of a trial fixed magnetization M
and a correction term quadratic in the latter. The result is the following
bound:

1

N
lnZN(β) ≥ 1

N
ln
∑

σ

eβM
∑
i σi +

1

N
ln e−

1
2
βM2N ≥

≥ 1

N
ln
( N∏

i=1

∑

σ

eβMσi
)
− 1

2
βM2 ≥

≥ sup
M∈[−1,1]

{
ln 2 + ln cosh(βM)− 1

2
βM2

}
,

(2.5)

holding for any size of the system N .

The opposite bound needs a few more steps. Firstly, let us notice that
the magnetization m can take only N + 1 distinct values. Using the trivial
identity

∑
M δmM = 1, we can therefore split the partition function into sums

over configurations with constant magnetization in the following way:

ZN(β) =
∑

σ

∑

M

δmMe
1
2
βNm2

, (2.6)

where the sum over M is performed over the values −1,−N−1
N
, . . . , N−1

N
, 1.

Now, inside the sum the relation m = M holds, also implying that m2 =
2mM −M2. Plugging the last equality into equation (2.6) and using the
trivial inequality δmM ≤ 1, we get

ZN(β) ≤
∑

M

∑

σ

eβNmMe−
1
2
βNM2

.
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With the same calculations performed in (2.5), we have the resulting upper
bound:

1

N
lnZN(β) ≤ ln

N + 1

N
+ sup

M∈[−1,1]

{
ln 2 + ln cosh(βM)− 1

2
βM2

}
. (2.7)

The upper (2.7) and lower (2.5) bounds converge to the same value of the
pressure per site in the thermodynamic limit.

Let us now move to illustrate the idea behind the (much more general)
Guerra and Toninelli interpolative approach to prove the existence of this
limit [60]. To do this, we start by dividing the N spin system into two
subsystems of N1 and N2 spins each, with N = N1 +N2. Denoting by m1(σ)
and m2(σ) the corresponding magnetizations in the two subsytems, trivially
defined as

m1(σ) =
1

N1

N1∑

i=1

σi, (2.8)

m2(σ) =
1

N2

N∑

i=N1+1

σi, (2.9)

we can easily the global magnetization m(σ) as a convex linear combination
of the two:

m(σ) =
N1

N
m1(σ) +

N2

N
m2(σ). (2.10)

Since the function x→ x2 is convex, we have

ZN(β) ≤
∑

σ

exp β
(
N1m

2
1(σ) +N2m

2
2(σ)

)
= ZN1(β)ZN2(β), (2.11)

hence

NfN(β) = − 1

β
logZN(β) ≥ N1fN1(β) +N2fN2(β). (2.12)

This is the well known property of superadditivity of the free energy in the
system size. The existence of the limit then follows from standard methods:
the only other ingredient for the proof, in a nutshell, is that the free energy is
bounded from above uniformly in N , which can be easily seen by setting M =
0 in Eq. (2.7), to get fN(β) ≤ −β−1 log 2. The property of superadditivity
is not only fundamental in proving that the limit exists, but it also implies
that the limit equals the supN fN(β).

Operationally, the strategy is to interpolate between the original system
of N spins and the two non-interacting subsystems with respectively N1
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and N2 units, comparing their free energies. To this task we introduce an
interpolating parameter t ∈ [0, 1] and an auxiliary partition function

ZN(β, t) =
∑

σ

exp β
(
NtJm2(σ) +N1(1− t)Jm2

1(σ) +N2(1− t)Jm2
2(σ)

)
.

(2.13)
For the boundary values t = 0, 1, we have

− 1

Nβ
logZN(1) = fN(β), (2.14)

− 1

Nβ
logZN(0) =

N1

N
fN1(β) +

N2

N
fN2(β). (2.15)

Taking the derivative respect to t, we obtain

− d

dt

1

Nβ
logZN(β, t) = −ωt

(
m2(σ)− N1

N
m2

1(σ)− N2

N
m2

2(σ)
)
≥ 0, (2.16)

where ωt(·) denotes the Boltzmann-Gibbs thermal average corresponding to
the t-dependent partition function (2.13). Then, integrating over t between
0 and 1 and recalling the boundary conditions (2.14, 2.15), one finds again
the superadditivity property (2.12).

2.4 Guerra’s Interpolating scheme

Now that we know we are speaking about well defined quantities, in this
Section we obtain the pressure density function through a celebrated Guerra’s
interpolation technique: this exploits the real essence of the mean-field nature
of these models as we are interpolating between the original system under
consideration (i.e. the CW in the present case) and a one-body model. The
terms appearing in the latter will be suggested by the model itself and by
the mathematical experience collected in making the calculations tractable.

Given the CW Hamiltonian (2.1) and the related partition function (2.3)
we introduce the following generalized partition function

ZN(β, t)
.

=
∑

σ

exp
{ βt

2N

N∑

i,j=1

σiσj + (1− t)ψ
N∑

i=1

σi

}
=

=
∑

σ

exp
{βt

2
Nm2 + (1− t)ψNm

}
,

(2.17)

with m defined in (2.2), t ∈ [0, 1] and ψ ∈ R is a tunable parameter that
we will determine later on. This new generalized partition function is an



CHAPTER 2. SIMPLE SYSTEMS 28

interpolation between the two-body interaction, once evaluated at t = 1, and
the much simpler one-body problem, described by t = 01. We can then define
a generalized pressure αN(β, t) as

αN(β, t)
.

=
1

N
lnZN(β, t),

the Boltzmann factor BN(t) such that ZN(β, t) =
∑
σ BN(t), and the related

generalized Gibbs measure ωt(·) following the analogous definition (2.4). The
key observation is enclosed in the next

Proposition 2.1. The statistical pressure for a finite volume N can be writ-
ten in the following way thanks to the fundamental theorem of calculus:

αN(β) ≡ αN(β, t = 1) = αN(β, t = 0) +

∫ 1

0

ds
[
∂tαN(β, t)

]
t=s
. (2.18)

The computation of each term is quite simple. For the one-body (i.e.
t = 0) term we have

αN(β, t = 0) =
1

N
lnZN(β, t = 0) =

1

N
ln
(∑

σ

eψ
∑
i σi
)

=

=
1

N
ln
( N∏

i=1

∑

σ

eψσi
)

= ln 2 + ln cosh(ψ),

(2.19)

while the derivative in (2.18) is

∂

∂t
αN(t) =

1

N

∂tZN(β, t)

ZN(β, t)
=

1

NZN(β, t)

[∑

σ

(βN
2
m2 − ψNm

)
BN(t)

]
=

=
β

2
ωt(m

2)− ψωt(m).

(2.20)

Now, let us go through the following considerations. We know that the
average value of the magnetization exists in the thermodynamic limit. Let
us call this value M ∈ [−1,+1]. Then, trivially we have

ωt
(
(m−M)2

)
= ωt

(
m2
)

+M2 − 2Mωt(m). (2.21)

1The presence of the parameter ψ -rather than ψi- is due to the fact that we are
working in a mean field approximation, meaning that each spin is equally influenced by a
uniform presence of the others.
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Looking back at the final result of equation (2.20), we notice that we can
manipulate the expression as follows:

β

2
ωt
(
m2
)
− ψωt(m) =

β

2

(
ωt
(
m2
)
− 2ψ

β
ωt(m)

)
.

Therefore, setting ψ = βM and using equation (2.21), we can write a conve-
nient expression for the pressure derivative as

∂

∂t
αN(β, t) =

β

2

(
ωt
(
m2
)
− 2ψ

β
ωt(m)

)
=
β

2
ωt

(
(m−M)2

)
− 1

2
βM2. (2.22)

Finally, plugging the results of equations (2.19) and (2.22) into (2.18), we
can state that the pressure function is defined by the next

Theorem 2.1. The infinite volume limit of the the Curie-Weiss statistical
pressure α(β) can be written in terms of the magnetization as

αN(β) = sup
M∈[−1,1]

{
ln 2 + ln cosh(βM)− 1

2
βM2 +

β

2
ω
(

(m−M)2
)}
, (2.23)

where the last term at the r.h.s. of the above expression converges to 0 in
the thermodynamic limit (since the order parameter is a self-averaging quan-
tity). The free energy extremization w.r.t. M ensures the requirement of
maximum entropy and minimum energy principles, and returns the celebrated
self-consistency relation

M = tanh(βM), (2.24)

by which the phase diagram of the CW model becomes accessible.

2.5 The Hamilton-Jacobi formalism

This next method is not as immediate as the previous one, but it has
a much wider range of usage and it is by far conceptually deeper. The
approach we want to use is to “extend” the parameter space and investigate
which PDEs are obeyed by the model in such a space, in order to inherit the
technology for their resolution from classical mechanics. In particular, we
want to relate the two-body and one-body interactions with respectively a
fictitious time and space coordinates and check if the free energy derivatives
w.r.t. spacetime combine as it happens in classical mechanics for the action).

In order to exploit this idea, we give the following
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Definition 2.6. The generalized partition function in the Hamilton-Jacobi
framework is defined as

ZN(t, x) =
∑

σ

BN(t, x) =
∑

σ

exp
{ t

2N

N∑

i,j=1

σiσj + x

N∑

i=1

σi

}
,

in which the exponential is the generalized Boltzmann factor BN(t, x).

With this generalization, the definitions of αN(t, x) and of the Gibbs
average ωt,x(·) naturally follow. Classical statistical mechanics is of course
recovered in the free field case by setting t = β (or t = βJ if we work with
not-unitary couplings) and x = βh (or x = 0 in case of zero external field). In
the same way, the averages ωt,x(·) will be denoted by ω(·) whenever evaluated
in the sense of statistical mechanics. Let us introduce the following

Definition 2.7. The action SN(t, x) of this mechanical analogy mathemati-
cally shares the same structure of the pressure, as it reads

SN(t, x) = − 1

N
ln
∑

σ

exp
{ t

2N

N∑

i,j=1

σiσj + x
N∑

i=1

σi

}
. (2.25)

As anticipated, the variables t, x can be thought of as fictitious time and
space coordinates. Moreover, calling S(t, x) = limN→∞ SN(t, x), we have of
course S(t = β, x = 0) = βf(β) = −α(β).

In order to highlight this approach, we now need to work out the spatial
and temporal derivatives of SN(t, x), which read

∂SN(t, x)

∂t
= −1

2
ωN(m2)t,x,

∂SN(t, x)

∂x
= −ωN(m)t,x,

∂2SN(t, x)

∂x2
= N

(
ωN(m2)t,x − ωN(m)2

t,x

)
.

Following Guerra’s prescription [17] and noticing the form of the previous
derivatives, it is possible to build a Hamilton-Jacobi equation for SN(t, x) as
stated in the next

Proposition 2.2. The pressure of the CW model in statistical mechanics
plays the role of the Guerra’s action in Lagrangian mechanics. Indeed, it
obeys the following Hamilton-Jacobi PDE

∂tSN(t, x) +
1

2
(∂xSN(t, x))2 + VN(t, x) = 0, (2.26)

with potential VN(t, x) = −(1/2N)∂2
xxSN(t, x) = (1/2)

(
ωN(m2)− ωN(m)2

)
.
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It is important to stress that, by virtue of the self-average of the order pa-
rameter m (i.e. |ωN(m2)−ωN(m)2| → 0 for N →∞), the potential vanishes
in the infinite size limit. Therefore, in this Lagrangian mechanistic equiv-
alence, the thermodynamics of the CW model is painted as a free Galilean
trajectory.

Moreover, deriving equation (2.26) with respect to the x variable and
calling uN(t, x) = ∂xSN(t, x) = −ωN(m), we get the Burgers equation for
the velocity (i.e. the magnetization in the statistical mechanics framework
apart the minus sign):

∂tuN(t, x) + uN(t, x)∂xuN(t, x)− 1

2N
∂2
xxuN(t, x) = 0, (2.27)

where the viscous term is controlled by the system size. In particular,
this equation becomes naturally inviscid in the thermodynamic limit, since
SN(t, x) admits the thermodynamic limit thanks to boundaries we have given
in Section (2.3). Performing the Cole-Hopf transformation

ΦN(t, x) = exp
{
−N

∫
dx uN(t, x)

}
= e−NSN (t,x), (2.28)

we derive this last expression with respect to the t variable, we use expression
(2.26) and we obtain

∂tΦN(t, x) =−N∂tSN(t, x)·ΦN(t, x) =

=
N

2

(
∂xSN(t, x)

)
ΦN −

1

2
∂2
xxSN(t, x)ΦN(t, x) =

=
1

2N
∂2
xxΦN(t, x).

Therefore, ΦN satisfies the heat equation:

∂ΦN(t, x)

∂t
− 1

2N

∂ΦN(t, x)

∂2x
= 0, (2.29)

with the initial condition

ΦN(0, x) =e−NSN (0,x) = exp
{

ln
∑

σ

ex
∑
i σi
}

=

= exp
{
N ln(2 cosh(x))

}
,

(2.30)

The heat equation can be easily solved in the Fourier space, through the
Green propagator and the convolution theorem. The Fourier transform
Φ̂N(t, k) of ΦN(t, x)

Φ̂N(t, k) =
1√
2π

∫
dx e−ikxΦN(t, x), (2.31)
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satisfies the algebraic equation

∂tΦ̂N(t, k) +
k2

2N
Φ̂N(t, k) = 0,

whose solution is

Φ̂N(t, k) = Φ̂N(0, k)e−
k2

2N
t. (2.32)

For the sake of completeness, we shall remind the statement of the convolu-
tion theorem:

Theorem 2.2. For two functions f, g ∈ L1(Rd) the following expression
subsists:

F
(
f ∗ g

)
= (2π)d/2f̂ · ĝ,

where F denotes the Fourier transform.

Thus, in order to write down the solution of the heat equation, it is
sufficient to find the function whose Fourier transform is the exponential term
in (2.32). It is easy to check that such a function is equal to

√
(N/t)e−Nx

2/(2t)

and, in the convolution, it gives us the Green propagator. Therefore, in the
original space, the solution of equation (2.29) is simply

ΦN(t, x) =

∫
dy Gt(x− y)ΦN(0, y),

where the Green propagator is given by

Gt(x) =

√
N

2πt
e−N

x2

2t . (2.33)

Recalling the relation between ΦN and SN given in (2.28), and the initial
condition (2.30), overall we get

SN(t, x) = − 1

N
ln

(√
N

2πt

∫
dy e

−N
(

(x−y)2

2t
−ln 2−ln cosh(y)

))
. (2.34)

Since the exponent in equation (2.34) is proportional to the volume, for large
N , we can apply now the saddle point method to get

α(t, x) =− lim
N→∞

SN(t, x) = sup
y

{
−(x− y)2

2t
+ ln 2 + ln cosh(y)

}
=

=− (x− ŷ)2

2t
+ ln 2 + ln cosh(ŷ),
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where ŷ is the maximizer satisfying the condition

x = ŷ − t tanh(ŷ) = ŷ + u(t, x)t = ŷ − ω(m)t.

The second equality holds because the Burgers equation becomes inviscid
in the thermodynamic limit and, for x = 0 (where statistical mechanics is
recovered) the above conidition implies ŷ0 = ω(m)t, leading to the well-
known Curie-Weiss self-consistency (properly evaluated at t = β)

ω(m) = tanh (βω(m)) , (2.35)

when imposing the extremality condition for the statistical pressure. There-
fore, we can state the following

Theorem 2.3. The infinite volume limit of the the Curie-Weiss statistical
pressure α(β) can be written in terms of the magnetization as the maximal
value of

α(β) = sup
ω(m)

{
ln 2 + ln cosh (βω(m))− β

2
ω(m)2

}
.

The Curie-Weiss model undergoes a phase transition of the second order
from an ergodic (paramagnetic) phase to a ferromagnetic one at β = 1 (β =
1/J in case of non-unitary coupling) and an external field h = 0, with the
critical exponent equal to 1/2. Let us show this from equation (2.35): if we
expand the hyperbolic tangent close to ω(m) = 0, assuming continuity for m
(this is justified since the transition is of the second order), we have

ω(m) = tanh
(
βω(m)

)
∼ βω(m)−

(
βω(m)

)3

3
,

from which one gets

ω(m)(1− β) +
1

3

(
βω(m)

)3 ∼ 0.

The first solution is trivially ω(m) = 0 (which is also the only solution in the
ergodic phase) while the other two solutions can be obtained by solving

ω(m)2 ∼ (β − 1)3

β3
∼ 3
(

1− 1

β

)
,

close to the critical point β = 1, obtaining

ω(m) ∼ (β − 1)1/2,

from which we get the critical exponent γ = 1/2.



Chapter 3

Complex systems: the
Sherrington-Kirkpatrick
paradigm

Spin glasses, besides constituting “a challenge for mathematician” [127],
are among the paradigmatic models in complex systems theory, whose dis-
tinctive feature is that the number of free energy minima sensibly grows with
the system size N . Their fields of applications include optimization theory,
computer science, biology, economics etc. [6, 116, 130] and, last but not least,
Artificial Intelligence [49, 11].
The expression spin glass was originally coined to designate some magnetic
alloys with a very peculiar behavior, in particular characterized by lack of
long-range order and very slow relaxational dynamics at low temperatures.
Experimentally, in such alloys one can observe, for example, a non-periodic
arrangement of magnetic moments below a critical temperature, and mem-
ory effects in susceptibility and residual magnetization. To understand some
of these phenomena, Edwards and Anderson (EA) proposed in 1975 an ex-
tension of the Ising model in which the interactions between couple of spins
are random variables assuming both positive and negative values. The next
step was the introduction of a simpler model by Sherrington and Kirkpatrick
(SK), i.e. the mean field version [119] of the EA model. Curiously, the title
of the paper was “Solvable Model of a Spin-Glass” but, even if the authors -
using the famous replica trick in the replica symmetric approximation - found
an explicit form for the free energy, they realized that their solution was only
valid above a certain temperature. The correct answer to the problem was
found in the ’80s with the seminal works by Parisi [93]. There, the author
proposed a formula for the free energy per site in the thermodynamic limit
and a description of the pure states of the system. However, a rigorous proof

34
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of the validity of Parisi formula was carried out only some years ago, and
it is splitted across two works by Guerra [25, 27] and Talagrand [126, 125].
Apart from a few exceptions [29, 30, 102], most important rigorous results are
quite recent. The existence of the thermodynamic limit for the free energy,
for example, was proven by Guerra and Toninelli after more than 20 years,
in 2002 [60]. The techniques used for these recent breakthroughs, which are
mainly based on interpolation, found fruitful applications also in neighboring
fields, such as for example optimization problems and diluted spin glasses,
finite-range spin glasses, and neural networks [3, 5, 8, 24, 19], as we will
extensively deepen in this thesis.

3.1 Generalities

Spin glasses can be simply defined as magnetic systems with a non-
periodic freezing of the spins at low temperatures. The first experiments
which drew some attention to these characteristics were performed on di-
lute solutions of magnetic transition metal impurities in noble metal hosts.
In these systems, the impurity moments produce a magnetic polarization of
the host metal conduction electrons, which is positive at some distances and
negative at others. Beneath a characteristic temperature, a Mössbauer line-
splitting in zero applied field was observed, indicating a local hyperfine field
due to local freezing of the magnetic moments. Moreover, the absence of any
corresponding magnetic Bragg peak in neutron diffraction demonstrated that
the freezing was not periodic. Another sign of this non-ferromagnetic freez-
ing came from earlier measurements of the susceptibility, showing a peak at a
similar temperature and therefore highlighting the presence of a phase transi-
tion. Other remarkable features, such as preparation-dependence effects and
a considerable slowing-down of response to external perturbations, demon-
strated the presence of many metastable states in this new low-temperature
phase, with significant free energy barriers separating these states. The first
historical attempt to produce a theory of the described transition is due to
Edwards and Anderson (see e.g. [93, 62, 45]), who proposed a Ising-like
Hamiltonian, with the magnetic moments placed on the N sites of a hyper-
cubic lattice, and keeping only a single spin component σi = (~σi)z = ±1:

HN(σ|J) = −
∑

〈i,j〉

Jijσiσj, (3.1)

where the nearest neighbors interactions Jij are random independent and
identically distributed variables (Gaussians, for example), with random signs.
It is then clear that a key ingredient is disorder : the Hamiltonian depends
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not only on the configuration of the system, which we denote by σ, and
possibly on the strength of the external (magnetic) applied fields, but also
on some random parameters (usually, the couplings among the elementary
degrees of freedom), whose probability distribution is supposed to be known.
The random parameters are collectively denoted as “quenched” or “frozen”
disorder. From a physical point of view, the word “frozen” means that we are
dealing with a disordered system whose impurities have a dynamics which
is many orders of magnitude slower than the evolution of the spin degrees
of freedom. Therefore, the disorder does not reach thermal equilibrium on
the time scales of the spin relaxation and can be considered as fixed (this
is somewhat similar to the Born-Oppenheimer adiabatic approximation for
dealing with electron and nuclei dynamics in molecular systems). This fact
has deep consequences on the way we have to perform the averages over the
couplings, compared to the configurations σ. The second key ingredient,

Figure 3.1: A very simple example of a frustrated system. The spins
tend to be parallel when they interact with a positive coupling and anti-
parallel when the interaction is negative. Obviously, not all the conditions
can be met simultaneously, meaning that interaction is frustrated.

strongly related with the disordered nature of such systems, is frustration,
i.e., competition between different terms in the Hamiltonian, so that they
can not all be minimizied simultaneously. More precisely, a system is said to
be frustrated if there exist a loop on which the product of the couplings is
negative (see Fig. 3.1). We have seen before (see Sec. 2) how in the Curie-
Weiss model each spin-spin interaction is minimized when the two spin are
parallel, i.e., σiσj = +1 for all couples 〈i, j〉. In that case, there are only two
such configurations, one with all the spins equal to +1, the other with spins
−1, and they are connected by the global spin-flip symmetry σi → −σi ∀ i.
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If the couplings Jij have random sign (and possibly modulus), the ground
state has a high degeneracy and they are not connected to one another by
elementary symmetry transformations.1

3.2 The mean-field spin glass model

The Edwards-Anderson (EA) model is already somewhat simplified with
respect to the actual physical situation: a more realistic model could con-
sider, for instance, interactions J = {Jij} decaying with distance, instead
of nearest-neighbors couplings, or Heisenberg spins ~σi, with more than one
component attached on each site. However, despite its intrinsic limitation,
it was already too difficult to be attacked analytically, and suitable approxi-
mation schemes were developed. In particular, the most important one (and
also the richest in surprises) was the mean-field approximation. In this case,
while maintaining the fundamental features of disorder and frustration, the
geometrical structure of the lattice is disregarded (as we already discussed
for Ising and Curie-Weiss models), allowing for every magnetic moment to
interact with all the others, irrespective of the distance. The first model with
such requirements was introduced by Sherrington and Kirkpatrick (SK) (see
e.g. [93, 62]), whose Hamiltonian is given by the next

Definition 3.1. The mean field spin glass is introduced by the following
Sherrington-Kirkpatrick Hamiltonian

HN(σ|h;J) = − 1√
N

∑

1≤i<j≤N

Jijσiσj − h
∑

1≤i≤N

σi. (3.2)

where the first term at the r.h.s. is a long range random two-body inter-
action, while the second one represents the interaction of the spins with an
homogeneous magnetic field h. In the following, we will often consider the
zero external field case, denoting the Hamiltonian simply with HN(σ|J).
The N(N − 1)/2 couplings Jij are assumed to be centered unit Gaussians,
so that, denoting with E the average on disorder, we have

EJij = 0 and EJ2
ij = 1.

Note that this choice of the coupling is a matter of convenience: in fact
spin glasses share the universality property [33], that guarantees that any
other symmetric probability distribution with finite moments could be cho-
sen for Jij without modifying the free energy of the system, apart from error

1Notice that frustration disappears when considering the system on graphs without
loops, for example a tree.
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terms vanishing in the thermodynamic limit.
The case Jij = ±1 with equal probability 1/2, for instance, is often con-
sidered in the literature. The normalization factor 1/

√
N guarantees that

energy, entropy and free energy density do not scale with N in the thermo-
dynamic limit, as they should. One may point out that, in the Curie-Weiss
model, the normalizing factor is stronger (namely 1/N , to be compared with
1/N1/2), but - in the SK case - the random signs of the couplings Jij produce
cancellations among the many terms of the Hamiltonian HN . The correctness
of this choice can be easily understood by checking the linear extensivity of
the (extensive) expectation value for the internal energy of the model: this
can be done elementary by considering a duplicated system with configura-
tions σ1 and σ2, but with the same disorder (i.e. identical couplings), and
computing

E(HN(σ(1)|J)HN(σ(2)|J)) =
1

N

1,N∑

i<j

1,N∑

k<l

E(JijJkl)σ
(1)
i σ

(1)
j σ

(2)
k σ

(2)
l

=
1

N

∑

1≤i<j≤N

σ
(1)
i σ

(1)
j σ

(2)
i σ

(2)
j

=
N

2

( 1

N

N∑

i=1

σ
(1)
i σ

(2)
i

)2

− 1

2
. (3.3)

The quantity

q12 = q(σ(1),σ(2)) =
1

N

N∑

i=1

σ
(1)
i σ

(2)
i , (3.4)

occurring in the previous equation is fundamental, since it is the order pa-
rameter for the model (as we will see in the following), and it is called overlap.
It measures the resemblance between the configurations of the two copies (or
replicas, as we will soon better specify) σ(1) and σ(2), ranging from −1, when
each spin of a replica is opposed to the corresponding one of the other copy,
to +1, when they are perfectly aligned. The fact that the overlap is a re-
semblance measure is confirmed by its relation with the Hamming distance
d(σ(1),σ(2)), which counts the number of non-aligned spins:

d(σ(1),σ(2)) =
1

2
(1− q12).

Then, taking two identical copies σ(1) = σ(2), we note that

E (HN(σ|J))2 =
N

2
− 1

2
, (3.5)

showing that the normalization factor is correct.
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3.2.1 Quenched and annealed free energies

We now start with formalizing the thermodynamic observables for dis-
ordered systems. First of all, for a given inverse temperature β = 1/T , we
introduce the following

Definition 3.2. The disorder-dependent partition function ZN(β, h;J), the
quenched average of the free energy per site fN(β, h), and the disorder de-
pendent Boltzmann-Gibbs state ωJ read as

ZN(β|h;J) =
∑

σ

exp(−βHN(σ|h;J)), (3.6)

fN(β|h) = − 1

βN
E logZN(β|h;J), (3.7)

ωJ(A) = ZN(β, h;J)−1
∑

σ

A(σ) exp(−βHN(σ|h;J)), (3.8)

where A = A(σ) is a generic observable (for example the energy HN), de-
pending on the spin configuration σ.

In some cases it will be more practical to deal, rather than with fN(β|h),
with

αN(β|h) =
1

N
E logZN(β|h;J) = −βfN(β|h), (3.9)

namely the statistical pressure, as already seen for the CW model. As for
the Hamiltonian, in the following we will shorten the notation in ZN(β|J),
fN(β), αN(β) etc. when considering the case of zero external field (h = 0).
The quenched free energy is the correct average if one looks for the free energy
of a system where the disorder is frozen (i.e. its dynamics is many orders of
magnitude slower than the dynamics of the spin degrees of freedom), like in
real spin glasses.

Remark 3.1. A remark is in order here: it is mandatory to notice that - when
mimicking neural networks with statistical mechanical models - we will have
to take into account that, in the analogy, while the neurons will be modeled
by the spins, while couplings play the role of synapses. Since the latter
can be both excitatory as well as inhibitory and they must be accounted
by the couplings Jij (or synaptic matrix in neural network jargon), it is
then clear that the correct reference framework must be a spin-glass and not
the simplest ferromagnet. Furthermore, the frustration that these random
couplings introduce in the network is the responsible for the proliferation of
the free energy minima that is, in turn, something that we will need in order
to develop an extensive memory storage (we will come back to these features
in the following chapters).
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Moreover, the free energy per spin for a given realization of disorder

− 1

βN
logZN ,

is self-averaging [101], meaning that its deviations from the quenched value
vanish in the thermodynamic limit with probability one.

Definition 3.3. One can also consider the so-called annealed free energy

fA
N (β|h) = − 1

βN
logEZN(β|h;J), (3.10)

where the disorder averages is performed directly on the partition function.

From a physical point of view, this corresponds to the assumption that the
couplings relaxation characteristic timescales are on the same level of those
relative to spins thermalization (in the landscape produced by the synapses
- namely by the couplings - that are effectively considered as frozen on the
short timescale involved by neural dynamics), and let them participate in
the thermal equilibrium. This terminology comes from metallurgy and the
thermal processing of materials: a “quench” corresponds in this jargon to
preparing a sample by quickly bridging it from high to low temperatures, so
that atoms do not change their positions, apart from small vibrations. In the
“annealing” process, on the contrary, the cooling down is slower and gradual,
so that atoms can rearrange and find favorable positions.

The computation of the annealed free energy is trivial, since the Boltz-
mann factor in this case can be written as the product of N(N − 1)/2 sta-
tistically independent terms, one for each pair of sites, so that

ZN(β|h;J) =
∑

σ

∏

1≤i<j≤N

exp
( β√

N
Jijσiσj

)
× exp

(
βh

∑

1≤k≤N

σk

)
,

and the disorder average factorizes as

EZN(β|h;J) =
∑

σ

exp

(
β2

2N

N(N − 1)

2

)
exp

(
βh

∑

1≤k≤N

σk

)

= 2N coshN(βh) exp
(β2

4
(N − 1)

)
.

Finally, the annealed free energy per site is

fA
N (β|h) = − 1

β
log 2 cosh(βh)− β

4

N − 1

N
, (3.11)

and in the thermodynamic limit we have the next
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Proposition 3.1. The infinite volume limit of the annealed pressure of the
SK model reads as

fA(β|h) = lim
N→∞

fA
N (β|h) = − 1

β
log 2 cosh(βh)− β

4
. (3.12)

Remark 3.2. Since the function x→ log x is concave, by the Jensen inequal-
ity we can immediately say that the quenched free energy is always greater
or equal than the annealed one

− 1

βN
E logZN(β|h;J) ≥ − 1

βN
logEZN(β|h;J).

Remark 3.3. It is also immediate to see that the annealed free energy cannot
be the correct one, at least at low temperatures, if we look at the correspond-
ing annealed entropy. In the zero-field case, in fact, this is given by

sA(β) = β2∂βf
A(β) = log 2− β2

4
, (3.13)

and in particular it becomes negative for β < β∗ = 2
√

log 2. But entropy is
by definition the logarithm of the number of configurations, and it cannot be
negative for a discrete system.

3.2.2 Replicas and overlap

Previously, we vaguely introduced the concept of overlap, as defined in
Eq. 3.4, by considering two copies (or more precisely replicas) of the system.
In general, we can consider a generic number n of independent copies of the
system, characterized by the spin configurations σ(1), ...,σ(n), distributed
according to the product state

ΩJ = ω
(1)
J × ω

(2)
J × ...× ω

(n)
J , (3.14)

where each ω
(a)
J acts on the corresponding σ

(a)
i variables. We stress again

that all the replicas are all subject to the same sample J = {Jij} of the
external disorder: These copies of the system are usually called replicas [93].
When considering such a replicated system, the Boltzmann factor is simply
given by the product of the corresponding Boltzmann factor for the single n
replicas

exp
(
−β
(
HN(σ(1)|h;J) +HN(σ(2)|h;J) + ...+HN(σ(n)|h;J)

))
. (3.15)
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Definition 3.4. Given a generic observable, represented by a smooth func-
tion A = A(σ) of the configuration of the n replicas, we define the 〈·〉 averages
as

〈A(σ(1),σ(2), ...,σ(n))〉 = EΩJ(A(σ(1),σ(2), ...,σ(n))). (3.16)

Replica overlaps are the quantities that one usually measures in numerical
experiments. It is important to note that if we consider Boltzmann averages
ΩJ over different groups of replicas they factorize:

ΩJ(q12q34) = ΩJ(q12)ΩJ(q34).

It is instead the average over disorder which introduces correlations between
them, since in general

〈q12q34〉 6= 〈q12〉〈q34〉.

On the other hand, these averages are invariant under permutation of replica
indices, for instance

〈q12q23〉 = 〈q24q45〉.

The whole physical content of the theory is encoded in the distribution of
overlap [93], and the averages of many physical quantities can be expressed
as 〈·〉 averages over overlap polynomials. For example, let us consider the
disorder average of the internal energy per spin N−1ωJ(HN) for h = 0. Using
the integration by parts formula

E(JA(J)) = E
( ∂

∂J
A(J)

)
, (3.17)

which is valid for a centered unit Gaussian variable J and any smooth func-
tion A(J), it is straightforward to check that the energy density does not
scale with the system size N :

E ≡ 〈HN〉
N

=
1

N
EωJ(HN) = −β

2
(1− 〈q2

12〉). (3.18)

Another example is given by its β derivative, which can be easily evaluated
as

N−1∂β〈HN〉 = −N−1
(
〈H2

N〉 − 〈HN〉2
)

= −1

2

(
1− 〈q2

12〉
)

+
Nβ2

2

(
〈q4

12〉 − 4〈q2
12q

2
23〉+ 3〈q2

12q
2
34〉
)
.
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3.3 The thermodynamic limit

The problem of proving the existence of the thermodynamic limit of the
SK free energy remained open for more than twenty years, until the work by
Guerra and Toninelli [60]. However, it was earlier noticed that the disorder
fluctuations of the free energy vanish when taking the infinite volume limit:
the free energy of the Sherrington-Kirkpatrick model was first proved to be
self-averaging by Pastur, Shcherbina and Tirozzi [101], by using martingale
techniques. They found that

E
( 1

N
logZN(β; J)

)2

−
(
E

1

N
logZN(β; J)

)2

≤ C

N
+O

(
1

N2

)
, (3.19)

for some constant C. This result was later improved by Guerra [59], who
gave a more precise estimate for the upper bound, showing that

C ≤ β2 q
2
12

2
. (3.20)

This does not necessarily implies convergence, since the mean value could
oscillate as the system size grows. The property of absence of fluctuations
for a physical quantity in the thermodynamic limit is called self-averaging.
This property is usually expected, in ordinary statistical mechanics, for in-
tensive quantities (such as magnetization or free energy per site) with respect
to thermal fluctuations and away from phase transition points. In spin-glass
systems, there is a somewhat different scenario [93], and one expects some
quantities (such as free and internal energy) to be self-averaging, and others,
in particular the overlap between the configurations of two replicas, to fluc-
tuate even in the thermodynamic limit at low temperature. As we have seen
in the previous chapter, this is an indication of the occurrence of Replica
Symmetry Breaking.

In order to prove the existence of the thermodynamic limit, as for the
Curie-Weiss model we divide the N sites in two blocks N1, N2, with N1+N2 =
N , and define the auxiliary partition function

ZN(β, t) =
∑

σ

exp β
(√ t

N

∑

1≤i<j≤N

Jijσiσj +

√
1− t
N1

∑

1≤i<j≤N1

J ′ijσiσj

+

√
1− t
N2

∑

N1≤i<j≤N

J ′′ijσiσj

)
, (3.21)

depending on the parameter t ∈ [0, 1]. The external disorder is represented
by the independent families of unit Gaussian random variables J , J ′ and
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J ′′. Let us stress that the two subsystem are subject to an external disorder
which is independent with respect to the original system, but the probability
distributions are the same. As in the previous case, the boundary values of
the auxiliary partition function correspond respectively to the original system
at t = 1, and to the two independent subsystems at t = 0:

ZN(β, 1) = ZN(β), (3.22)

ZN(β, 0) = ZN1(β)ZN2(β). (3.23)

Consequently, the free energies are realized as

E logZN(β, 1) = −NβfN(β), (3.24)

E logZN(β, 0) = −N1βfN1(β)−N2βfN2(β). (3.25)

Here, the disorder average is performed on all the variables J , J ′ and J ′′.
The derivative with respect to t of the auxiliary free energy is given by

− d

dt

1

Nβ
E logZN(β, t) = − 1

2N
E
( 1√

tN

∑

1≤i<j≤N

Jijωt(σiσj) (3.26)

− 1√
(1− t)N1

∑

1≤i<j≤N1

J ′ijωt(σiσj)−
1√

(1− t)N2

∑

N1≤i<j≤N

J ′′ijωt(σiσj)
)
,

where ωt(·) is the Gibbs average corresponding to the auxiliary partition
function (3.21). Using again the integration by parts formula on the previous
expression, we have

− d

dt

1

Nβ
E logZN(β, t) = − β

4N2

∑

1≤i<j≤N

E
(
1− ω2

t (σiσj)
)

(3.27)

+
β

4NN1

∑

1≤i<j≤N1

E
(
1− ω2

t (σiσj)
)

+
β

4NN2

∑

N1≤i<j≤N

E
(
1− ω2

t (σiσj)
)

=
β

4
〈q2

12 −
N1

N
(q

(1)
12 )2 − N2

N
(q

(2)
12 )2〉t,

where we wrote 〈·〉t = Eωt(·) and defined the partial two-replica overlaps

q
(1)
12 =

1

N1

∑

1≤i≤N1

σ1
i σ

2
i , (3.28)

q
(2)
12 =

1

N2

∑

N1≤i≤N

σ1
i σ

2
i , (3.29)
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corresponding to the two subsystems. The overlap plays here a role similar to
the magnetization in the non-disordered case. Indeed, q12 is a convex linear
combination of q

(1)
12 and q

(2)
12 of the form

q12 =
N1

N
q

(1)
12 +

N2

N
q

(2)
12 , (3.30)

and, because of the convexity of the function x→ x2, we have the inequality

〈q2
12 −

N1

N
(q

(1)
12 )2 − N2

N
(q

(2)
12 )2〉t ≤ 0. (3.31)

Therefore, we can state as a preliminary result:

Lemma 3.1. The quenched average of the logarithm of the interpolating
partition function, defined by (3.21), increases in t, i.e.

− d

dt

1

Nβ
E logZN(β, t) ≤ 0. (3.32)

Moreover, after integrating over t and recalling the boundary conditions
(3.24, 3.25), we get the first main result

Theorem 3.2. The free energy for the SK model is subadditive:

NfN(β) ≤ N1fN1(β) +N2fN2(β). (3.33)

It is interesting to compare this result with the corresponding (2.12) for
the Curie-Weiss model, whose free energy is superadditive. Of course, for
the SK model it is the pressure αN(β) = −βfN(β) which is superadditive
because of the minus sign. Together with an N -independent upper bound
on the pressure, which is easy to obtain, one deduces again the existence of
the thermodynamic limit (for both the pressure and the free energy density),
therefore proving the following

Theorem 3.3. The infinite volume limit for fN(β) exists and equals its
infimum:

f(β) ≡ lim
N→∞

fN(β) = inf
N
fN(β). (3.34)

Remark 3.4. Note that this result is easily extended to the p-spin models (in
which interactions are more than pairwise) since the overlaps to the square
in (3.27) and (3.31) are simply replaced by the overlap to the power p, and
the (3.32) still holds: this observation will be useful in the last Chapters of
this thesis, when we will face how to overcome the actual state of the art in
modeling AI via statistical mechanics.
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3.4 The replica trick and Parisi theory

Parisi Theory has been really a deep revolution in statistical mechanics,
de facto opening the study of complex systems with a totally new perspective.
Since Parisi developed his theory working on the SK model, it is impossible
not to pay a minimal tribute and summarize his main results. However, we
must also say that, as the theory itself is really tricky and its usage has not
yet percolated in AI, we will not deepen it but simply remind to excellent
textbooks [81, 62, 93].

3.4.1 The Replica Trick

The natural starting point to examine Parisi theory are the basic con-
cepts of spontaneous symmetry breaking and phase coexistence in statistical
mechanics [78, 112, 48]. We consider a system on a d-dimensional hypercubic
lattice, defined by a Hamiltonian H(σ), depending on the configurations of
all spins σi, with i ∈ Zd. The system is initially restricted to a finite subset
Λ of the lattice with partition function ZΛ(β), in order to deal with math-
ematically well-defined objects, and its finite volume free energy per site at
the temperature T = 1/β is

fΛ(β) = − 1

|Λ|β
logZΛ(β), (3.35)

where |Λ| is the cardinality of the subset Λ. Then, one lets Λ grow to the
whole infinite lattice Zd in a suitable way imposing boundary conditions, i.e.
the positions of the boundary spins or their interaction with the external
world (with a certain arbitrariness). It can be proven that these conditions,
if interactions have short range, do not affect the free energy per site in the
limit Λ→ Zd, but the equilibrium thermodynamic state of the system is also
determined by all the correlation functions

lim
Λ→Zd

〈σi1 ...σin〉Λ, (3.36)

for all finite sets indices i1, ..., in, where 〈·〉 is the Boltzmann-Gibbs thermal
average at the temperature 1/β. The correlation functions in general depend
on the choice of the boundary conditions, also in the infinite volume limit.
Another usual and strictly related way to select different equilibrium states
is to break a symmetry explicitly in the Hamiltonian, i.e. by introducing
proper auxiliary external fields λi which are removed only after the ther-
modynamic limit has been performed. More precisely, the thermodynamic
limit for the free energy and for the correlation functions are computed with
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the explicitly broken symmetry Hamiltonian, and the external fields are then
put to zero. In the Curie-Weiss model, for instance it is possible to select
one of the two equilibrium states with positive or negative magnetization by
introducing a term −h

∑
i σi in the Hamiltonian which explicitly breaks the

spin-flip symmetry, and taking the limit h → 0± after the thermodynamic
limit. The set of all equilibrium states forms a simplex, and every state can
be written in an unique way as a convex linear combination of certain ex-
tremal states, called pure states or pure phases. They are characterized by
the cluster property, or spatial decay of correlations, meaning that their con-
nected correlations functions vanish at large distance (or for different points
in mean field models):

〈σi1 ...σinσj1 ...σjm〉 → 〈σi1 ...σin〉〈σj1 ...σjm〉, (3.37)

for
min
a,b
|ia − jb| → ∞.

Pure states correspond to our intuitive idea of an equilibrium state. For
example, in the Boltzmann-Gibbs state for water at zero Celsius the sys-
tem has probability 1/2 of being all water and 1/2 of being all ice, while
in a pure state the whole sample is water or ice. First order phase transi-
tions are usually associated with the phenomenon of spontaneous symmetry
breaking: the Hamiltonian of the model (and the non-clustering Boltzmann-
Gibbs state) is invariant under the action of a symmetry group (for instance,
the Z2 spin-flip transformation in the Curie-Weiss model, or rotational sym-
metry in the Heisenberg model), but equilibrium states belong to smaller
symmetry groups. Therefore, it is the symmetry of the model suggesting
the choice of the auxiliary external fields (or boundary conditions) which se-
lect the pure states, and applying the symmetry group transformation to a
particular symmetry-breaking state one obtains another equilibrium state.

Spin-glasses are much more complicated from this point of view, since
at low temperature there is an infinite number of pure phases, and it is not
clear a priori which should be the right external fields (or boundary condi-
tions) to select them, since the broken symmetry in the phase transition is
not obvious. Moreover, due to this infinite number of states, the Gibbs phase
rule, which states that k − 1 thermodynamic parameters have to be fixed in
order to have k coexisting pure phases (e.g. temperature and pressure in the
triple point of a fluid), does not hold in this case. As Parisi showed, the spin
glass phase transition is associated to a very peculiar spontaneous symmetry
breaking, i.e. the group of permutations of a set of n identical replicas of the
system in the limit n→ 0.
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To explain this, we need to introduce the replica trick, which is the cele-
brated first method developed for the calculation of the free energy in com-
plex scenarios (mainly statistical mechanics of spin glasses and statistical field
theory). The whole method is based on the representation of the (quenched)
free energy as

fN(β) = − 1

βN
lim
n→0

EZn − 1

n
. (3.38)

The integer moments EZn
N of the partition function in the r.h.s. are simpler

to compute than the averaged logarithm E logZN , and the trick consists in
considering their analytic continuation to real n, and then taking the limit
n → 0. For integer n, the moments are nothing but the average of the
partition function of a system of n identical (i.e. with the same disorder)
replicas of the original system

EZn
N(β|h;J) = E

∑

σ(1)

...
∑

σ(n)

exp
(
− β

n∑

a=1

HN(σ(a)|h;J)
)
. (3.39)

The disorder average can be easily carried out since it involves only indepen-
dent Gaussian integrals, so we find

EZn
N(β|h;J) = exp

(β2n(N − n)

4

)

∑

σ(1)...σ(n)

exp
( β2

2N

∑

1≤a<b≤n

(∑

i

σ
(a)
i σ

(b)
i

)2

+ βh
n∑

a=1

∑

i

σ
(a)
i

)
,

(3.40)

which involves the square overlaps between replicas. The sum over config-
urations of replicated systems can be computed by linearizing each of these
terms by Gaussian integrals. To do this, we introduce a n × n symmetric
matrix Qab with zeros on the diagonal, and write the sum in (3.40) as

∑

σ(1)...σ(n)

∫ ∏

a<b

(√β2N

2π
dQab

)
exp

(
− β2N

2

∑

a<b

Q2
ab

+ β2
∑

a<b

(∑

i

σ
(a)
i σ

(b)
i

)
Qab + βh

∑

a

∑

i

σ
(a)
i

)
.

(3.41)

Since clearly there are no couplings between spins belonging to the same
replica, it is possible to define new spin variables sa = ±1, with a = 1, ...n,
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and observe that
∑

σ(1)...σ(n)

exp
(
β2
∑

a<b

(∑

i

σ
(a)
i σ

(b)
i

)
Qab + βh

∑

a

∑

i

σ
(a)
i

)

=
(∑

{s}

exp
(
β2
∑

a<b

Qabsasb + βh
∑

a

sa

))N
.

Then, equation (3.40) becomes

EZn
N(β|h;J) =

∫ ∏

a<b

(√β2N

2π
dQab

)
exp(−NA[Q]), (3.42)

A[Q] =
β2

2

∑

a<b

Q2
ab − log

∑

{s}

exp
(
β2
∑

a<b

Qabsasb + βh
∑

a

sa

)

−β
2n(N − n)

4N
, (3.43)

with the functional A[Q] depending on Q, n, β and h. Since the exponent
in the integrand of (3.42) is proportional to N , in the limit of N going to
infinity the n-th moment of ZN can be evaluated through the saddle point
method. The infinite volume free energy, once the saddle point has been
determined, is then obtained as

f(β, h) = lim
n→0

1

βn
A[Qsp]. (3.44)

Since Q is a symmetric matrix with zeros on the diagonal, the model n(n−
1)/2 independent order parameters, and for a given choice of Q there are
such many saddle-point equations ∂A/∂Qab = 0, which take the form

Qab =

∑
{s} sasb exp

(
β2
∑

a<bQabsasb + βh
∑

a sa
)

∑
{s} exp

(
β2
∑

a<bQabsasb + βh
∑

a sa
) (3.45)

In the limit n → 0, it can be shown [93] that the r.h.s. of this equation is
equivalent to

EΩJ(σ
(a)
i σ

(b)
i ) ≡ 〈σ(a)

i σ
(b)
i 〉,

whence, since all sites i are equivalent for large N , the saddle point equation
(3.45) can be written as

lim
n→0

Qab = 〈qab〉. (3.46)

This relation is valid for a replica symmetric solution (as we will shortly see).
When this symmetry is broken, if a particular choice of Q is a solution of the
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saddle point equation, then any matrix obtained with a permutation of rows
or columns of Q will also be a solution. Therefore, in general one should
divide the l.h.s. by n(n− 1)/2. In the spin glass phase, the average overlap
is expected to be different from zero, since it is the average of the positive
quantity ω2

J(σi) for different realizations of the disorder (while ωJ(σi) can
be positive or negative depending on the particular realization of J , and its
average vanishes). On the other hand, in the high temperature phase the
thermal average of magnetization in each site is zero for every sample, so
that 〈σ(a)

i σ
(b)
i 〉 = 0.

3.4.2 Replica Symmetric Ansatz

Before solving the saddle point equations, one has to choose a form for
Q which is symmetric with respect to permutation of row or columns (due
to equivalence among replicas). Then, the most natural idea seems to look
for a replica symmetric (RS) saddle point, corresponding to a matrix Q
whose non-diagonal elements are all equal to the same value q, while diagonal
elements vanish identically. The integral in Eq. (3.42) then reduces to an
ordinary integral over the real variable q, and the quenched free energy is
easily computed as

−βfRS(β, h) = log 2 +

∫ +∞

−∞
dµ(z) log cosh(β

√
qz+βh) +

β2

4
(1− q)2, (3.47)

where dµ(z) = (2π)−1/2e−z
2/2dz is the Gaussian measure and q satisfies the

saddle point equation

q =

∫ +∞

−∞
dµ(z) tanh(β

√
qz + βh). (3.48)

At zero external field, this equation correctly predicts a phase transition at
1/βc = Tc = 1, since it has solution q = 0 for β < βc and it admits a
solution with q 6= 0 for β > βc. However, it is possible to see [93] that the
replica symmetric free energy is not physically acceptable for a temperature
T < Tc(h), since it violates basic thermodynamic stability conditions (such
as, for example, the positivity of entropy [119]). The free energy (3.47) can be
expanded near the critical point, where the spin glass parameter q is expected
to be small. Then, the coefficient for the q2 term, which according to Landau
theory of phase transitions vanishes at the critical point [78], is found to be
proportional to β2 − 1, so that, consistently, βc = 1. It is interesting to
note that this coefficient is negative if β < βc, so that the paramagnetic
solution q = 0 maximizes (instead of minimizing) the free energy. The same
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also holds for a spin glass solution with q > 0 in the low-temperature phase
β > βc. This is a consequence of the fact that the number n(n − 1)/2 of
replica pairs becomes negative in the limit n → 0 [93, 62]. Since the RS
solution is not physically valid everywhere, one has to look for a form of the
Q which breaks symmetry between replicas. The correct solution was given
by Parisi by means of a powerful Ansatz, i.e. the broken replica symmetry
ansatz.
We will now present a brief description of the basic philosophy behind it.
In the Ising model at low temperature and zero magnetic field, there is a
symmetry breaking with two pure phases, one with magnetization +m(β) and
the other with −m(β). The overlap (3.4) between two typical configurations
belonging to the same phase equals

q++ = q−− = m2(β),

while, for two different phases,

q+− = −m2(β).

We stress that symmetry breaking (as well as phase transitions) can be
present, strictly speaking, only in the thermodynamic limit. In the limit
of infinite volume, the distribution function of the overlap q12 between the
configurations of two replicas , picked according to their Boltzmann weights,
is given by the sum of two delta functions:

P(q) =
δ(q −m2(β)) + δ(q +m2(β))

2
. (3.49)

Above the critical temperature, on the other hand, there is just one pure
phase with zero magnetization, and in this case we have

P(q) = δ(q). (3.50)

This means that, looking at P(q), one is able to detect the phenomenon
of non-uniqueness of the state without introducing an explicitly symmetry
breaking field or proper boundary conditions. Since for spin glasses there
is no obvious symmetry to be broken, with associated order parameter and
field, the natural way to proceed is to compute

P(q) = lim
N→∞

EP(N)
J (q),

where P
(N)
J (q) is the finite volume probability distribution of the overlap for

a given disorder realization J . When P(q) is a single delta distribution the
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system is said to be replica symmetric. The same holds when P(q), in absence
of magnetic field, is the sum of two deltas, with the two corresponding states
related by spin-flip symmetry. On the contrary, if P(q) has more than two
peaks, or it has a continuous part, replica symmetry is said to be broken.
Knowing the distribution P(q) is then equivalent to know the structure of
pure states. Given the average overlap

〈q12〉 =
1

N

∑

i

EΩJ(σ
(1)
i σ

(2)
i ),

we can think to express the Boltzmann weights ΩJ = ω(1) × ω(2) in terms of
pure states, and this decomposition is encoded in the P(q):

〈q12〉 =

∫
dqP(q)q. (3.51)

This equation, combined with 3.46, tells us that in the language of replicas
P(q) represents the fraction of elements of the matrix Q assuming the value
q [93].

3.4.3 Broken Replica Symmetry Ansatz

Before to proceed, we would like to make the following

Remark 3.5. We repeat that, while hereafter we quickly revise the Parisi
description of spontaneous replica symmetry breaking, times are not ripe for
such a level of resolution in AI and, as a matter of fact, the bulk of results in
research on neural networks and machine learning is pursued at the replica
symmetric level of description, as also all our ones will be. Hence, the reader
can skip this Section without eliminating any essential knowledge required
for the second part of this thesis, devoted to AI applications of statistical
mechanics of disordered systems.

We have just seen that the replica symmetric solution is not adequate
because it violates thermodynamic stability conditions. The correct way to
construct a matrix Q breaking replica symmetry has been discovered by
Parisi. Operatively, the procedure consists in dividing the n replicas in n/m
groups of m, where m is obviously a submultiple of n. Then, one takes
Qab = q2 if a and b belong to the same group (with a 6= b), and Qab = q1 if
they belong to different replicas. For example, if n = 4 we can have a matrix
with the form 



0 q2 q1 q1

q2 0 q1 q1

q1 q1 0 q2

q1 q1 q2 0


 .
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With such an Ansatz, the overlap distribution is given by [93]:

P(q) = (1−m)δ(q − q2) +mδ(q − q1), (3.52)

which is not negative only if 0 ≤ m ≤ 1. The free energy corresponding to
this first step of broken replica symmetry (1-RSB) is given by

−βf1RSB(β|h) = log 2 +
β2

4

[
(1−m)q2

2 +mq2
1 + 1− 2q2

]

+
1

m

∫
dµ(u) log

∫
dµ(v) coshm Θ, (3.53)

Θ = β
(√

q1u+
√
q2 − q1v + h

)
, (3.54)

where the parameters q1 and q2 are the solutions of the self-consistence (sad-
dle point) equations

q1 =

∫
dµ(u)

(∫
dµ(v) coshm Θ tanh Θ∫

dµ(v) coshm Θ

)2

, (3.55)

q2 =

∫
dµ(u)

∫
dµ(v) coshm Θ tanh2 Θ∫

dµ(v) coshm Θ
. (3.56)

We refer to [93] for a detailed treatment of the interpretation and for the
physical consequences of the RSB Ansatz. This solution turns out to be better
than the RS one below the critical temperature, but it is not yet the right
one. However, one can apply this procedure iteratively. Indeed, in a second
step the off-diagonal blocks are left untouched, while the diagonal blocks are
further divided into m1/m2 blocks, with the matrix elements assuming the
value Qab = q3 for a 6= b inside the same block and Qab = q2 otherwise.
In order to find the proper free energy, one has to apply this procedure an
infinite number of times (full-RSB or∞-RSB [93], [125, 126]). Since we have
seen how to compute the free energy and the distribution P (q) in the setting
of the replica method, in the following we try to continue presenting the
main results of the theory but using a slightly different language (referring
for instance to [58] for a presentation along these lines). Let us introduce
the convex space X of the functional order parameters x, as non-decreasing
functions of the auxiliary variable q, with both x and q taking values on the
real interval [0, 1], i.e.

X 3 x : [0, 1] 3 q → x(q) ∈ [0, 1]. (3.57)

Notice that we call x the non-decreasing function, and x(q) its values. A
metric on X is introduced through the L1([0, 1], dq) norm, where dq is the
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Figure 3.2: Schematical representation of replica symmetry break-
ing. The upper plot corresponds to the RS Ansatz (left) and 1RSB (right).
The plot on the bottom corresponds to a generic K-step RSB.

Lebesgue measure. We will consider piecewise constant functional order pa-
rameter, since every regular function in this interval can be approximated
with arbitrary precision in this way. Then, given an integer number K of
intervals, we have two sequences q0, q1, ..., qK and m1,m2, ...,mK satisfying

0 = q0 ≤ q1 ≤ ... ≤ qK−1 ≤ qK = 1, (3.58)

0 ≤ m1 ≤ m2 ≤ ...mK ≤ 1, (3.59)
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and such that

x(q) =





m1 for 0 = q0 ≤ q < q1,
m2 for 0 = q1 ≤ q < q2,
...
mK for 0 = qK−1 ≤ q < qK .

(3.60)

as it is shown in Figure 3.2. The choice of a piecewise constant functional
order parameter corresponds to consider replica symmetry breaking to a finite
number K of steps in the frame of Parisi theory. For instance, the replica
symmetric case is reconstructed by taking

K = 2, q1 = q, m1 = 0, m2 = 1, (3.61)

while for the 1-RSB distribution one has to take K = 3, and so on (see Figure
3.2). Let us now introduce the function f = f(q, y;x, β), depending on the
variables q ∈ [0, 1], y ∈ R, on the functional order parameter x and on the
inverse temperature β. This function should not be confused with the free
energy per site in the thermodynamic limit f(β|h). The formed is indeed
defined as the solution of the nonlinear antiparabolic equation

∂

∂q
f(q, y) +

1

2

∂2

∂y2
f(q, y) +

1

2
x(q)

(
∂

∂y
f(q, y)

)2

= 0, (3.62)

with final condition
f(1, y) = log cosh(βy). (3.63)

For the sake of clearness, here we only stressed the dependence of f on q and
y. This equation, if we consider q corresponding to the time and y to the
position in space, is formally equivalent to a diffusive heat equation when
x(q) ≡ 0, while it is equivalent to a Hamilton-Jacobi equation with varying
mass (x(q))−1 if the second-order derivative in y vanishes identically. Let us
consider the solution is some simple cases.

• x ≡ 0

The solution can be easily obtained starting from Eq. (3.63), adding to y
a gaussian variable z weighted with the root

√
1− q, which vanishes at the

end of the interval, and integrating over z:

f(q, y) =

∫
dµ(z) log cosh β

(
y + z

√
1− q

)
, (3.64)

dµ(z) ≡ e−
z2

2
dz√
2π
.
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• x ≡ 1

In this case, taking f(q, y) = log cosh βy + a(q), with a(1) = 0, and solving
Eq. (3.62) respect to a, we find the solution

f(q, y) = log cosh βy +
1

2
β2(1− q). (3.65)

• x ≡ xq̄ =

{
0 for 0 ≤ q < q̄,
1 for q̄ ≤ q ≤ 1

Starting from Eq. (3.65), which is valid in the interval q̄ ≤ q ≤ 1, we get the
final condition for f(q, y) in this interval:

f(q̄, y) = log cosh βy +
1

2
β2(1− q̄). (3.66)

The solution for q ∈ [0, q̄] can be found, similarly to the case of x ≡ 0,
starting from the final condition in q = q̄ and then adding to y a properly
weighted variable z, over which a Gaussian integration is performed. This
leads to

f(q, y) =

∫
dµ(z) log cosh β

(
y + z

√
q̄ − q

)
+

1

2
β2(1− q̄). (3.67)

In the general case, for a piecewise constant x with x(q) = ma for qa−1 ≤ q <
qa (ma > 0), it is convenient to introduce the auxiliary function ga(q, y) =
expmaf(q, y) satisfying the equation

∂

∂q
ga(q, y) +

1

2

∂2

∂y2
ga(q, y) = 0. (3.68)

The final condition (3.63) for gK in the last interval is gK(qK , y) = coshmK βy,
and - as we have jsut seen for f(q, y) in the case x ≡ 0 - the solution in
the interval [qK−2, qK−1] is obtained from the final condition, adding to y a
properly weighted gaussian variable, and then integrating it

gK−1(q, y) =

∫
dµ(zK)gK

(
qK , y + zK

√
qK − q

)
, (3.69)

whence for q ∈ [qK−2, qK−1] we have the solution

exp f(q, y) =

(∫
dµ(zK) exp

(
mKf

(
qK , y + zK

√
qK − q

))) 1
mK

. (3.70)
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The general solution for all previous intervals is then found by iterating such
an algorithm. Notice that, if m1 = 0, the solution in the corresponding
interval can be computed, as we saw for x = xq̄, starting from the one valid
for q ∈ [q1, q2] and integrating it

f(q, y) =

∫
dµ(z1)f(q1, y + zK

√
qK − qK−1 + ...+ z1

√
q1 − q), (3.71)

which is equivalently obtained from the general formula for a finite ma, in the
limit m1 → 0. Since any functional order parameter can be approximated (in
the L1 norm) with piecewise constant x, and since it can be shown that f is
pointwise continuous with respect to x, we can handle mostly with piecewise
constant order parameters. This important result is stated in the following

Theorem 3.4. The function f is monotone in x in the sense that

x(q) ≤ x̄(q) ∀q ∈ [0, 1] ⇒ f(q, y;x, β) ≤ f(q, y; x̄, β)

for any q ∈ [0, 1], y ∈ R. Moreover, f is pointwise continuous in the
L1([0, 1], dq) norm. In fact, for generic x and x̄, we have

|f(q, y;x, β)− f(q, y; x̄, β)| ≤ β2

2

∫ 1

q

|x(q′)− x̄(q′)|dq′.

Once the function f is introduced, we are now ready for the following
important definitions.

Definition 3.5. The trial auxiliary function ᾱ, depending on the functional
order parameter x, is defined as

ᾱ(β, h;x) ≡ log 2 + f(0, h;x, β)− β2

2

∫ 1

0

qx(q)dq. (3.72)

Let us observe that, in this definition, the function f appears evaluated
at q = 0, and y = h, where h is the value of the external magnetic field.

Definition 3.6. The Parisi spontaneously broken replica symmetry solution
is defined by

ᾱ(β, h) ≡ inf
x
ᾱ(β, h;x), (3.73)

where the infimum is taken with respect to all functional order parameters
x.
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The main prediction of Parisi theory is that, for the Sherrington-Kirkpa-
trick model, this infimum is related to the free energy in the thermodynamic
limit as

−βf(β|h) = lim
N→∞

N−1E logZN(β, h; J) = ᾱ(β, h). (3.74)

Moreover, the functional parameter x realizing the infimum in (3.73) was
interpreted by Parisi as the cumulative distribution function associated to
the overlap probability distribution P(q), i.e.

x(q) =

∫ q

0

P(q′)dq′. (3.75)

In other words, if replica symmetry holds, then P(q) = δ(q − q̄) and the
optimal order parameter is just a step function, as in Figure 3.2. The 2-step
choice of x(q) corresponds to the first level of broken replica symmetry, and
so on. When discussing the replica symmetric solution, we already noticed
that the RS free energy is maximized by the proper choice of the parame-
ter q. Here, we stress again that, according to (3.73), the trial functional
−βᾱ(β, h;x) has to be maximized over the space of functional order param-
eter in order to obtain the infinite volume free energy f(β|h). The usual
variational principle of statistical mechanics, which follows from the second
principle of thermodynamics, states that the free energy can be obtained
through minimization of a suitable free energy functional, on all possible
trial states. This means that, for any order parameter x different from the
optimal one, −βᾱ(β, h;x) cannot be interpreted as the free energy associ-
ated to some trial state. However, it has been shown that the the value given
in the Parisi Ansatz is a lower bound for the quenched average of the free
energy, uniformly in the size of the system [58]. Furthermore, in the same
paper a sum rule for the difference between the Parisi formula (3.73) and the
real free energy was given. Afterwards, this difference has been showed to be
vanishing in the thermodynamic limit [126].

3.5 Guerra’s interpolating scheme

The idea behind the method precisely follows the same reasoning of the
CW case (exploited in Section 2.4), despite obvious mathematical differences:
to make them clear, we directly introduce the next

Definition 3.7. The interpolating partition function and the (thermody-
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namic limit of ) the quenched free energy in the Guerra’s scheme read as

ZN(β, t) =
∑

σ

exp
{√

t
β√
N

∑

i<j

Jijσiσj + A
√

1− t
∑

i

ziσi

}
, (3.76)

fN(β, t) = − 1

βN
E logZN(β, t). (3.77)

Of course, one can also defined the (disorder-dependent) Boltzmann factor
BN(t) and the Boltzmann-Gibbs state ωt(·) in perfect analogy to the CW
model:

BN(t) = exp
{√

t
β√
N

∑

i<j

Jijσiσj + A
√

1− t
∑

i

ziσi

}
,

ωt(F ) =

∑
σ F (σ)BN(t)∑

σ BN(t)
.

Finally, one can define the (thermodynamic limit of the) statistical pressure
in the usual way αN(β, t) = −βfN(β, t). Of course, the original system is
reproduced at t = 1, while for t = 0 we replaced the problem with a one-
body interacting system. The quenched free energy of the SK model (in the
thermodynamic limit) is therefore given by the sum rule

f(β) ≡ f(β, t = 1) = f(β, t = 0) +

∫ 1

0

ds
[
∂tf(β, t)

]
t=s
. (3.78)

Some comments are in order here. First of all, the main difference w.r.t.
the CW interpolation scheme is that, here, each spin is subjected to a dif-
ferent external field zi (which is however chosen to share the same Gaussian
distribution for all the sites). In the CW model, this feature was not needed
since all the couplings were equal (this can be seen as Gaussian distributions
collapsing to Dirac deltas). Then, in order to have a z-independent parti-
tion function, we should also average over the z realizations. Moreover, we
also stress that, w.r.t. the CW model, the interpolating parameter appears
through square roots. This is needed because, in the computation, we should
use the integration by parts formula over quenched disorder, so this choice
is used to precisely cancel unwanted factors.1 The coefficient A in the def-
inition of the generalized partition function will be determined later. As a
final note, we again omitted the dependence of previous quantities on the
quenched disored J and z to make the notation more compact.

1For a N(0, 1) variable X, we recall that the integration by parts formula is
EXXf(X) = EX∂Xf(X).
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The derivative of the generalized free energy with respect to the interpo-
lating parameter t is:

df(β, t)

dt
= − lim

N→∞

1

βN
E
( 1

2
√
t

β√
N

∑

i<j

Jijωt(σiσj)−
A

2
√

1− t
∑

i

ziωt(σi)
)
.

(3.79)
Then, integrating by parts w.r.t. to the variables Jij and zi, we have

df(β, t)

dt
= − lim

N→∞

1

βN
E
( β2

4N

∑

ij

(1− ωt(σiσj)2)− A2

2

∑

i

(1− ωt(σi)2)
)
.

(3.80)
The next point in the resolution is to note that the squares of spin correlation
functions can be linked to the order parameter of SK model by expressing
them in terms of the 〈·〉 averages previously defined. Indeed, we have

∑

i

Eωt(σi)2 =
∑

i

Eω(1)
t × ω

(2)
t (σ

(1)
i σ

(2)
i ) = N〈q12〉t, (3.81)

∑

i

Eωt(σiσj)2 =
∑

i

Eω(1)
t × ω

(2)
t (σ

(1)
i σ

(2)
i σ

(1)
j σ

(2)
j ) = N2〈q2

12〉t. (3.82)

Therefore, the derivative of the interpolating free energy is

df(β, t)

dt
= −β

4
lim
N→∞

E
(

1− 〈q2
12〉t −

2A2

β2
(1− 〈q12〉t)

)
. (3.83)

Choosing now A = β
√
q, where q is the thermodynamic value of the overlap

(meaning that we are assuming the replica symmetric Ansatz since, in the
thermodynamic limit, it does not fluctuate), we have

df(β, t)

dt
=
β

4
lim
N→∞

E
(
〈(q12 − q)2〉t − (1− q)2

)
. (3.84)

In the thermodynamic limit and in the replica symmetry regime, the overlap
assumes its thermodynamic value q with probability 1. Therefore, the first
term in the last equation goes to zero, leaving only with

df(β, t)

dt
= −β

4
(q − 1)2. (3.85)

The computation of the t = 0 case is straightforward, since it is a one-body
problem with Gaussian disorder. Indeed, we easily get

f(β, 0) = − lim
N→∞

1

βN
E log

∑

σ

exp
(
A
∑

i

ziσi

)
=

= − lim
N→∞

1

βN

∑

i

E log 2 cosh(Azi).
(3.86)
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In this last equation, the quenched average involves only the z variables. The
result of this integration is actually independent on the index i. Therefore,
by recalling the choice for the parameter A, this directly implies that

f(β, 0) = − 1

β
E log 2 cosh(β

√
qz). (3.87)

By putting everything together according to the sum rule (3.78) and making
the Gaussian integration explicit, we get the next

Theorem 3.5. The explicit expression for the SK pressure in terms of the
two replica overlap, in the thermodynamic limit and under the replica sym-
metric assumption, reads as

fRS(β) = − 1

β

∫ +∞

−∞
dµ(z) log 2 cosh(β

√
qz)− β

4
(1− q)2. (3.88)

The latter equation precisely reproduce the replica trick prediction (3.47)
with vanishing external field h = 0.

3.6 The Hamilton-Jabobi formalism

In this Section, we will use the Hamilton-Jacobi framework used in sec-
tion 2.5 in order to the Sherrington-Kirkpatrick mean field spin glass model.
Again, we are interested in an explicit expression for the quenched free energy
f(β) (or better the pressure α(β)) in the thermodynamic limit.

Mirroring Section 2.5, we introduce two fictitious spacetime coordinates
t and x, so that we can make the following

Definition 3.8. The Guerra interpolating function in the Hamilton-Jacobi
approach to the mean field spin-glass model is

αN(t, x) =
1

N
E log

∑

σ

exp
{√ t

N

∑

i<j

Jijσiσj +
√
x

N∑

i=1

J1
i σi

}
, (3.89)

where J1
i , ∀i = 1, . . . , N , are independently and identically distributed uni-

tary Gaussian random variables.

The pressure (in the vanishing external field case) is recovered whenever
evaluating αN(t, x) at t = β2, x = 0. However, w.r.t. the CW model, for
the SK the pressure αN(β, h) is directly connected to the action SN(t, x) of a
Hamilton-Jacobi equation, but it is not the action itself. Indeed, the action
is obtained by performing a linear transformation in the {t, x} plane on the
pressure. This fact is formalized in the following
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Definition 3.9. The Guerra action SN(t, x) for the SK model is

SN(t, x) = 2αN(t, x)− x− t

2
. (3.90)

By direct computations, we can see that the following relations hold:

∂tSN(t, x) = −1

2
〈q2

12〉t,x, (3.91)

∂xSN(t, x) = −〈q12〉t,x.

To proceed, we need to introduce the potentials

V0(t, x) =
1

2

(
〈q2

12〉 − 〈q12〉2
)
,

V1(t, x) = −1

2

(
〈q2

12〉 − 4〈q12q23〉+ 3〈q12q34〉
)
.

By direct construction, it is straightforward to check that the following propo-
sition holds:

Proposition 3.2. The Guerra action for the SK model obeys the following
Hamilton-Jacobi PDE:

∂SN(t, x)

∂t
+

1

2

(
∂SN(t, x)

∂x

)2

− 1

2

(
〈q2

12〉 − 〈q12〉2
)
≡ −V0(t, x). (3.92)

If we add a vanishing (in the thermodynamic limit) potential, containing
the second derivative of SN(t, x), such as

lim
N→∞

1

2N

∂2SN(t, x)

∂x2
≡ V1(t, x) = 0,

and assuming the replica symmetric scheme, where limN→∞ (〈q2
12〉 − 〈q12〉2) =

0, we can easily check that the action SN(t, x) satisfies the differential equa-
tion

lim
N→∞

(
∂tSN(t, x) +

1

2
(∂xSN(t, x))2 − 1

2N
∂2
xxSN(t, x)

)
= 0.

A direct comparison shows that this differential equation is the same as the
CW case, so that we can solve it easily with the usual Cole-Hopf trans-
form. A reminder to Parisi theory is in order here: as discussed in detail
in [19], since the overlap is not self-averaging in the true solution of the SK
model [93], we force V0(t, x) to be zero in order to get straightforwardly the
replica-symmetric solution. On the other hand, V1(t, x) is always zero in the
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thermodynamic limit (and of course reduces to an elementary identity once
read in the RS framework [56]). We stress that it is not strictly necessary to
solve this problem where V0(t, x) and V1(t, x) are pasted in the same equation,
since we could split the standard Hamilton-Jacobi equation for the Guerra

action from the constraint 1
2N

∂2SN (t,x)
∂2x

= 0. However, such a “compact pro-
cedure” allows to obtain the RS free energy solving a Fourier problem (with
all its related know-now) for its Cole-Hopf transform.

To compute explicitly V1(t, x), it is convenient to introduce the x-streaming
relative to a generic observable F which depends on s replicas as [59]

∂x〈Fs〉 = N〈F
( s∑

ab

qab − s
s∑

a

qas+1 +
s(s+ 1)

2
qs+1,s+2

)
〉.

Hence, remembering from (3.91) that ∂xSN(x, t) = −〈q12〉, we get

− lim
N→∞

1

N
∂2
xxSN(t, x) = lim

N→∞

(
〈q2

12〉 − 4〈q12q23〉+ 3〈q12q34〉
)

= 0. (3.93)

As we did for the CW model, we can solve the Burgers-like equation for the
action

∂tSN(t, x) +
1

2

(
∂xSN(t, x)

)2 − 1

2N
∂2
xxSN(t, x) = 0,

mapping the latter into a Fourier equation via the Cole-Hopf transform,
namely

ΦN(t, x) = e−NSN (t,x).

Of course, the Cole-Hopf transform of Guerra action satisfies the heat equa-
tion

∂ΦN(t, x)

∂t
− 1

2N

∂2ΦN(t, x)

∂x2
= 0. (3.94)

Denoting with Φ̂N(t, k) the Fourier transform of ΦN(t, x), defined by equation
(2.31), as in the CW case we have the algebraic equation

∂tΦ̂N(t, k) +
k2

2N
Φ̂N(t, k) = 0.

Using Φ0(k) to denote the Cauchy initial condition, we arrive at the solution
in the Fourier space

Φ̂N(t, k) = Φ̂0(k)e−
k2

2N
t. (3.95)

The solution in the original space is obtained by simple application of the
Convolution Theorem:

ΦN(t, x) =

∫
dy Gt(x− y)Φ0(y) =

√
N

2πt

∫
dy e−N

(x−y)2

2t Φ0(y), (3.96)
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where Gt(x− y) is the Green propagator (defined in (2.33)) and

Φ0(y) = e−NS0(y).

From the definition of the interpolating function (3.89) and from the defini-
tion (3.90), we can directly get the expression for S0(y), which reads

S0(y) = 2 ln 2 + 2

∫ +∞

−∞

dz√
2π
e−z

2/2 ln cosh(
√
yz)− y.

By direct substitution, we easily obtain

SN(t, x) = − 1

N
ln ΦN(t, x) = − 1

N
ln

√
N

2πt

∫
dy exp

{
−N

((x− y)2

2t
+

+ 2 ln 2 + 2

∫ +∞

−∞

dz√
2π
e−z

2/2 ln cosh(z
√
y)− y

)}
.

Once computed in the thermodynamic limit N →∞ by means of the saddle
point method, this expression reads

S(t, x) = inf
y

{(x− y)2

2t
+ S0(y)

}
=

= inf
y

{(x− y)2

2t
+ 2 ln 2 + 2

∫ +∞

−∞

dz√
2π
e−z

2/2 ln cosh(z
√
y)− y

}
.

(3.97)

We now denote by ŷ(t, x) the location where the infimum in (3.97) is achieved.
As we are going to show, its inverse x(t, y) is the location at time t of the
fictitious particle initially at y. To do this, we observe that the previous
maximizing condition can also be expressed as:

S(t, x)− x2

2t
= − sup

y

{
φ0(y) +

xy

t

}
, (3.98)

where φ0(y) = −y2/2t−S0(y). Hence, the solution of the Burgers-like equa-
tion can be expressed again in terms of a Legendre transform of φ0(y). From
the extremal condition, we get

x = ŷ − t
∫ +∞

−∞

dz√
2π

e−z
2/2 tanh2(

√
ŷz) = ŷ + tu(t, x), (3.99)

with ŷ maximizer. The last equality holds because - in the thermodynamic
limit - the Burgers equation becomes inviscid, hence trajectories represent
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Galilean motion with a velocity u(t, x) given explicitly by the previous ex-
pression. Under the replica symmetric assumption, from equation (3.91)
and the definition of u(t, x) = ∂xS(t, x), in the thermodynamic limit we can
finally recover the self-consistent equation for the overlap

u(t, x) = ∂xS(t, x) = −〈q12〉t,x = −
∫ +∞

−∞

dz√
2π
e−z

2/2 tanh2(z
√
ŷ(t, x)),

whose are the order parameter values minimizing the free energy, thus giving
the exact value of this quantity in the thermodynamic limit. To recover
statistical mechanics, we need to evaluate everything at x = 0 (e.g. in
equation (3.99)), so that the value of ŷ0 = tq that maximizes the expression
(3.98) is

ŷ0 = tq = t

∫ +∞

−∞

dz√
2π
e−z

2/2 tanh2(z
√
tq).

This translates in the self-consistency equation for the order parameter q
given by

q =

∫ +∞

−∞

dz√
2π
e−z

2/2 tanh2(z
√
tq), (3.100)

Going back to equation (3.97), with ŷ maximizer, we finally have

S(x, t) =
(x− ŷ)2

2t
+ 2 ln 2 + 2

∫ +∞

−∞

dz√
2π
e−z

2/2 ln cosh
(
z
√
ŷ
)
− ŷ.

Evaluating everything at x = 0 and t = β2 (thus we use the relation ŷ0 = qβ2)
we can finally state:

Theorem 3.6. The replica symmetric thermodynamic limit of the SK free
energy density of the mean field spin-glass model is determined by the mini-
mum value of

f(β) = − 1

β
α(β),

where

α(β) = ln 2 +

∫ +∞

−∞

dz√
2π
e−z

2/2 ln cosh
(
β
√
qz
)

+
β2

4
(1− q)2. (3.101)
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Part Two: Statistical Mechanics for Information
Storage and Retrieve



Chapter 4

Retrival phase of AI: the
Hopfield network

Neural network models are complex systems designed on the basis on the
associative memory notion and on the principle that stable neural activities
encode retrieved patterns of information (e.g. images). By associative mem-
ory we mean the ability of cortical modules in mammals’ brain to remember
names, objects, faces, scheme, etc. (i.e. patterns of information generally
speaking) starting from incomplete or corrupted data supply. Let us illus-
trate hereafter a very minimal description about how the neural system works
(following the milestone by Amit [11]) obviously, still from a modelling per-
spective.

Neurons can be considered as big cells, called soma, covered by a mem-
brane to which are attached different fibres emitting electrical spikes gen-
erated from the neuron itself. The outgoing signal passes through a bigger
fibre conduct called the axon. The latter splits into smaller channels that are
attached, through the dendrites, to the external membrane of other neurons.
The point of conjunction of the dendrites with the recipient neuron is called
synapse. When a neuron is active, it emits an electrical wave propagating
across the different dendrites. At the end of this process, a new electrical po-
tential on the synapse of the recipient neurons. The emission of these packs
happen when the total synaptic potential, i.e. the sum of the potentials
received from other neurons, is higher than a certain activation threshold h̄
and are active at random times (asynchronous dynamic). In 1949, D. Hebb
pointed out the fact that neural pathways are strengthened each time they
are used, a concept fundamentally essential to the ways in which humans
learn. If two nerves fire at the same time - he argued - then the connection
between them is enhanced [128]. The total number of neurons in the human

67



CHAPTER 4. AI: HOPFIELD NETWORKS 68

brain is between 109 and 1010, and each neuron is generally connected to
104 other neurons through dendrites. A bridge between neuron dynamics
and memory processes has been made thanks to Y. Miyashita’s experiments
(1988) [95], in which a trained monkey showed neural activity in a well de-
fined region once a picture is presented for the first time. The same group of
neurons reactivates when the monkey sees the same typology of images.

The theoretical prototype for a wide class of associative memory models
is the Hopfield network [65]. It is a strongly stylized version of a cortical
module which is based on the basic assumptions that

• There are essentially two types of variables: neurons (nodes in the neu-
ral network) and synapses (links between the nodes). These variables
live on very separate time scales, so that we can question about neural
dynamics and emerging properties of networks of interacting neurons
keeping quenched the synapses;

• There is just one type of neurons and it is represented as a binary
variables (e.g. Ising spins or Boolean variables), whose possible values
represent respectively its firing (+1) or its quiescent (-1) states;

• The synapses are both excitatory and inhibitory. On average, the 50%
of them are positive (excitatory) and the remaining 50% negative, i.e.
inhibitory, leaving the bulk of the Hopfield paradigm stable. While
the different nature of the synapses is a biological must, the balanced
ratio is instead biologically unreasonable, since we know that there is
a larger fraction in inhibitory contributions (but this simplification has
been already overcome a long time ago [11]);

• The interactions are assumed to be symmetric, i.e. Jij = Jji. Again,
this is false from the biological point of view (Dale law actually states
the opposite [128]). However, as masterfully discussed by Amit, this
wrong assumption is one of the most clever starting point in order to
construct a reference framework: this is because - as long as the cou-
plings are symmetric - the detailed balance holds and any - reasonably
not pathological - stochastic neural dynamics converges to the Gibbs
measure for an opportune cost-function, e.g. the Hopfield Hamiltonian
[37].

In the first part of the present Chapter, we first give a mathematical
glance at the Hopfield network and the statistical mechanical quantities that
we need to tackle its emergent properties. After that, we illustrate the con-
nection between the models that we studied in the previous chapters (i.e. the



CHAPTER 4. AI: HOPFIELD NETWORKS 69

Curie-Weiss model and the Sherrington-Kirkpatrick mean field spin glass)
and the Hopfield network, thus justifying the previous discussion and there-
fore motivating the key role they (i.e. CW and SK) actually play as “limiting
cases” for the behaviour of the Hopfield model (respectively, for too few and
too many stored patterns). Then, we will approach the Gibbs measure of
the Hopfield model from a purely inferential perspective (this is to justify
why we should keep an equilibrium effective description of a phenomenon
that appears far from equilibrium). Finally, we will address the problem
of pattern storage via the signal-to-noise technique, closing the descriptive
part of the properties of the Hopfield network. In the second part, we will
address the problem of obtaining a phase diagram for Hopfield model by
heavily relying upon the statistical mechanical techniques we have shown so
far (mainly replica trick and interpolation method), focusing on various types
of information processing (ranging from storing digital to real patterns).

4.1 Generalities

We consider a fully connected neural network consisting in N neurons.
To each of them i is assigned a dichotomic variable σi whose possible values
represent the active (σi = +1) or quiescent (σi = −1) states. It is worth
noticing that the mean field approximation is here not as rude as in Physics of
many-body systems (since neurons are effectively highly connected and each
neuron in the cortex may share connections with up to O(106) peers). Of
course, we shall not consider this as a model of the brain network as a whole,
but rather of the small different regions involved with the memorization of
patterns.

We start our discussion by giving the following

Definition 4.1. The synaptic potential hi that the i-th neuron receives from
the other N − 1 is defined as

hi =
N∑

j=1
j 6=i

Jijσj,

where Jij, the synaptic matrix, codes the intensity of the synaptic action of
neuron j over neuron i.

Associative memory models are built to recognize a certain group of words
or patterns, so the next step is to formalize how the information is encoded
in neural networks. A pattern is defined as a sequence of random variables
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ξ = (ξ1, . . . , ξN). In this thesis, we will mainly work with Boolean and
Gaussian patterns, namely patterns whose entries are extracted according to
a given probability distribution, respectively P(ξi = +1) = P(ξi = −1) = 1/2
∀i for the Boolean case and P(ξi) = N(0, 1) ∀i in the Gaussian one. All the
patterns we will deal with will share the same length N . Since we want
to store several patterns, we have to introduce another index to labelling
different words: {ξ1, . . . , ξP}. In doing this, we shall assume that each ξµi is
independent from the others.

The choice of the synaptic coupling Jij ∀i, j = 1, . . . , N ensuring the local
attractiveness of each pattern under the neural dynamics (see [101]) is the
one incorporating Hebb’s learning rule, i.e.

Jij =
1

N

P∑

µ=1

ξµi ξ
µ
j . (4.1)

Once we specified the nature of dynamical variables and the interaction ma-
trix, we can start by introducing the Hamiltonian for the Hopfield model.

Definition 4.2. The Hamiltonian (or cost function in Machine Learning
jargon) of the Hopfield model equipped with N neurons σi, i ∈ (1, ..., N) and
P patterns ξµ, µ ∈ (1, ..., P ) is

HN(σ|ξ) = − 1

N

P∑

µ=1

∑

1≤i<j≤N

ξµi ξ
µ
j σiσj. (4.2)

The next step is to introduce a set spin-dependent quantities measuring
the resemblance of a given network configuration with the stored patterns.
These quantities will clearly play the role of order parameters for the Hopfield
model.

Definition 4.3. We define P overlaps mµ, µ ∈ (1, ..., P ) between the pat-
terns and the neurons, also called Mattis magnetizations, as

mµ(σ)
.

= mµ =
1

N

N∑

i=1

ξµi σi ∈ [−1, 1]. (4.3)

The Hamiltonian can be nicely written in terms of these order parameters
as

HN(σ|ξ) ∼ −N
2

P∑

µ=1

m2
µ.

It is then crystal clear that, in order for the energy to be minimized, it is
more convenient for some mµ to equal to +1 (or −1 because of the spin-flip
symmetry σi → −σi) meaning that the neurons are all parallel to the pattern,
thus indicating a retrieving behaviour.
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4.2 The CW and the SK limits

In this Section, we illustrate the connection between the Hopfield model
and the two models we studied in Chapters 2 and 3, namely the Curie-Weiss
and the Sherrington-Kirkpatrick.

The mathematical models of associative memory systems are built in
such a way that the distribution of neural activity at an equilibrium state
is a codification of a recognized image or notion. In particular, the act of
retrieving stored data from partial informations is strictly correlated to find-
ing the minimum values of the system energy. The Sherrington-Kirkpatrick
model displays a large number of energy minima (as expected for a cognitive
system), yet it is not suitable to act as a associative memory model since its
equilibrium states are too “disordered”. The Hamiltonian introduced above
presents global minima which are not purely random like those in SK (since
they must represent ordered stored patterns, a feature which resembles the
CW model), but the amount of these minima must be possibly extensive in
the number of spins/neurons N . Therefore, a reasonable associative neural
network should be designed in order to retain a “ferromagnetic flavor” within
a “glassy panorama”, i.e. we need something in between. Remarkably, the
Hopfield model defined by (4.2) lies exactly in between a Curie-Weiss model
and a Sherrington-Kirkpatrick model. Let us clarify this point.

From the CW to Hopfield

By comparing (2.1) and (4.2), and in particular their expression through
the order parameters, we can firstly observe that CW model can be inter-
preted as an (actually very rudimental) model of a neural network where
N neurons collaborate to store one pattern of information (together with
its spin-flip symmetric partner). Such information patterns, which are built
of by all the same numbers (for instance, the sequences +1,+1, ...,+1 and
−1,−1, ...,−1), beyond containing no information by Shannon compression
arguments, in turn they represent pathological behaviours (since all the neu-
rons are simultaneously firing or silent). This last criticism can be easily
overcome thanks to the Mattis-gauge, namely a re-definition of the neurons
as

σi 7−→ ξiσi,

where ξi = ±1 are quenched random entries extracted with equal probability.
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Definition 4.4. The Mattis Hamiltonian reads as

HMattis
N (σ, ξ) = − 1

N

N∑

i=1

ξiξjσiσj.

The Mattis magnetization is defined as

mM =
1

N

N∑

i=1

ξiσi.

In order to inspect the network properties in its lowest energy minima,
we perform a comparison with the CW model in the noiseless case β → ∞.
In terms of the (standard) magnetization,the Curie-Weiss model reads as
HN(σ) ' −Nm2/2 and, analogously for HM

N (σ, ξ) we have

HM
N (σ, ξ) ' −N

2
m2
M .

It is then clear that, in the low noise limit (where collective properties may
emerge), as the minimum of free energy is achieved in the Curie-Weiss model
for m → ±1, the same holds in the Mattis model for mM → ±1. The
only difference lies in the fact that, in the latter case, spins tend to align in
parallel (or anti-parallel) to the vector ξ. For instance, if the pattern ξ is,
say, ξ = (+1,−1,−1,−1,+1,+1) in a model with N = 6, the equilibrium
configurations of the network will be σ = (+1,−1,−1,−1,+1,+1) and the
spin-flip symmetric partner σ = (−1,+1,+1,+1,−1,−1). Thus, the net-
work relaxes autonomously to a state where some of its neurons are firing
while others are quiescent, as prescribed by the stored pattern ξ. We stress
that, as the entries of the vectors ξ are chosen randomly to be ±1 with equal
probability, the retrieval of free energy minimum now corresponds to a spin
configuration which is also the most entropic for the Shannon-McMillan ar-
gument. Thus, both the most likely and the most difficult to handle (as its
information compression is no longer possible).

Two remarks are in order. At this point, one would be tempted to call
the spins σi neurons, but it is definitely inconvenient to build a network via
N spins/neurons, which are further meant to be diverging (i.e. N →∞), in
order to handle one stored pattern of information only. Along the theoretical
physics route, overcoming this limitation is quite natural (as provides the
Hebbian prescription): if we want a network able to cope with P patterns,
the simplest Hamiltonian should simply be the sum of Mattis Hamiltonians
over these stored patterns, namely

HN(σ|ξ) = − 1

N

∑

1≤i,j≤N

( P∑

µ=1

ξµi ξ
µ
j

)
σiσj,
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thus recovering the definition (4.2) for the Hopfield network Hamiltonian.
Therefore, we can conclude that the Curie-Weiss network can be interpreted
as a Hopfield neural network where solely one trivial pattern can be handled.

From the SK to Hopfield

Despite the extension to the case P > 1 is formally straightforward,
the investigation of the system as P grows becomes by far more tricky. In-
deed, neural networks belong to the so-called “complex system” realm. Com-
plex properties can be distinguished by simple behaviours with the fact fact
that for the latter the number of free-energy minima of the system does not
scale with the volume N , while for complex systems the opposite feature
takes place according to a proper function of N . In particular, the Curie-
Weiss/Mattis model has two minima only, whatever N (even if N → ∞),
thus constituting the paradigmatic example for a simple system. On the
other side, in the previous Chapter 3 we introduced the prototype of com-
plex systems, the Sherrington-Kirkpatrick model. It presents an amount of
minima scaling as ∼ ecN (with c not depending on N).

We remind that the SK Hamiltonian (3.2) is built with a interaction ma-
trix J whose entries Jij ∼ N(0, 1). This implies that couplings can be either
positive (hence favouring parallel spin configurations) as well as negative
(encouraging anti-parallel spin configuration). Thus, in the thermodynamic
limit, spins will receive conflicting signals with large probability, so we speak
about “frustrated networks”. Indeed frustration, the hallmark of complex-
ity, is fundamental in order to split the phase space in several disconnected
zones, i.e. in order to have several minima (or several stored patterns in neu-
ral network language). The mean field statistical mechanics for the low-noise
behavior of spin-glasses has been first described by Parisi and it predicts a hi-
erarchical organization of states and a relaxation dynamic spread over many
timescales. Here, we just need to know that their natural order parameter
is no longer the magnetization (since these systems do not magnetize), but
the replica overlap Qab introduced in the previous Chapter. Spin-glasses are
balanced ensembles of ferromagnets and antiferromagnets and, as a conse-
quence, the magnetization m is always equal to zero. On the other hand, a
comparison between two realizations of the system (pertaining to the same
coupling set) is meaningful, since at large temperatures it is expected to
be zero, as everything is uncorrelated, but at low temperature their overlap
is strictly non-vanishing, as spins freeze in disordered but correlated states.
More precisely, given two “replicas” of the system, labeled as a and b and
with overlap Qab, the mean-field spin glass has a completely random param-
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agnetic phase with 〈q〉 ≡ 0, and a “glassy phase” with 〈q〉 > 0. These phase
are split by a phase transition at βc = Tc = 1.

We showed above how, when P = 1 the Hopfield model (with boolean pat-
terns) recovers the Mattis model (which is nothing but a gauge-transformed
Curie-Weiss model). Conversely, when P →∞,

1√
N

P∑

µ=1

ξµi ξ
µ
j −→ N(0, 1),

by virtue of the standard central limit theorem, so that the Hopfield model
recovers the Sherrington-Kirkpatrick one. To understand this point, we start
by considering the Hebb construction of the synaptic strength

Jij =
1

N

∑

µ

ξµi ξ
µ
j , (4.4)

where each pattern bit is extracted (in our analysis) with probability P(ξµi =
±1) = 1/2. Since each pattern independently and identically distributed
(i.i.d.), this directly implies that P(ξµi ξ

µ
j = ±1) = 1/2 itself, meaning that

E ξµi ξ
µ
j = 0 and Var(ξµi ξ

µ
j ) = 1. When summing a large number of such vari-

ables, they should be described (in agreement with the central limit theorem,
CLT) with a Gaussian distribution. Indeed

Theorem 4.1 (Central Limit Theorem). Consider a set X1, . . . , Xn of i.i.d.
random variables with mean µi and variance σ2

i <∞, and call

s2
n =

n∑

i=1

σ2
i . (4.5)

If, for some δ > 0, the Lyapunov condition is satisfied

lim
n→∞

1

s2+δ
n

n∑

i=1

E[|Xi − µi|2+δ] = 0 (4.6)

then the quantity s−1
n

∑
i(Xi−µi) converges (in distributional sense) to N(0, 1).

The Hebb coupling matrix can be rewritten as Jij =
√

λN
N
J̃ij, where

J̃ij =
1√
P

∑

µ

ξµi ξ
µ
j , (4.7)
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and λN = P/N is the storage capacity (at finite N).1 Now, since the variables
ξµi ξ

µ
j have zero mean and variance 1, we have sn = P−1/2. It is straightforward

to verify that such a sample of variables satisfy the Lyapunov condition for
all δ > 0. Thus, for large P the coupling matrix J̃ converges in probability
to N(0, 1).

Remark 4.1. These result is mathematically rigorous only if P is sent into
infinity independently on the network size N .

The argument presented above suggests that, when the numbers of stored
patterns is too large with respect to the network size, the Hebb coupling
matrix behaves (apart for a constant prefactor) as

Jij ∼
1√
N
J̃ij, (4.8)

where P(J̃ij) = N(0, 1) for all i, j. This is indeed the form of the coupling ma-
trix for the Sherrington-Kirkpatrick model. Therefore, Hopfield model with
a too high stored information is expected to behave as a spin glass network.
This naive argument turns out to be true: for α high enough, Hopfield model
behaves as a spin glass model, with some differences with respect to the SK
case. Such a crossover between CW (or Mattis) and SK models signals that,
in order to investigate its statistical properties, we need both the P Mattis
magnetizations mµ (quantifying retrieval of the whole stored patterns, that
is the vocabulary), and the two-replica overlaps Qab (to control the glassi-
ness growth if the vocabulary gets enlarged). Moreover, we also a tunable
parameter measuring the ratio between the stored patterns and the amount
of available neurons, namely λ = limN→∞ P/N , i.e. the storage capacity at
large N . As far as P scales sub-linearly with N (i.e. in the low storage
regime with λ = 0), the phase diagram is ruled by the noise level β only: for
β < βc the system is a paramagnet (with both mµ = 0 and Qab = 0), while
for β > βc the system performs as an attractor, with mµ 6= 0 for a given
µ ∈ (1, . . . , P ). In this regime, no dangerous glassy phase is lurking, yet the
model is able to store only a tiny amount of patterns. Conversely, when P
scales linearly with N , i.e. in the high-storage regime defined by λ > 0, the
phase diagram lives in the λ, β plane. When λ is small enough, the system
is expected to behave similarly to λ = 0 case, hence as an associative net-
work (with a particular non-vanishing Mattis magnetization but also with
the two-replica overlap slightly positive, since the glassy nature is intrinsic
for λ > 0). However, for λ large enough, the Hopfield model collapses on the

1Notice that, throughout the rest of the thesis, we will use simply λ also if we are
working at finite size N .
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Sherrington-Kirkpatrick model as expected, with the Mattis magnetizations
brutally reduced to zero and the two-replicac overlap close to one. The tran-
sition to the spin-glass phase is often called “blackout scenario” in neural
network community [11, 89, 51].

We can summarize the content of the Hopfield model capabilities through
its phase diagram as follows.1 First of all, if the thermal noise T = β−1 and
the storage capacity λ are sufficiently low, the system works with almost
no errors as an associative neural network (or pattern recognizer), meaning
that the attractors associated to stored patterns are very stable (they are
global minima in the quenched free energy landscape). In particular, in
the noiseless case β → ∞, the critical capacity bounding such a regime is
λc ' 0.051. Outside this region, the network could still work as an associative
memory, but the stored patterns are just local minima (with the spin glass
states starting to dominate the landscape): this is the scenario provided that
the storage capacity 0.0051 ≤ λ ≤ λc ' 0.138. For λ > 0.138, the minima
related to the patterns are destroyed and solely the spin-glass panorama
remains stable.

Re-introducing the noise in the discussion, the network can escape from
the retrieval region in the phase diagram, essentially in one more way. If the
noise in the network is above the critical line Tc = 1 +

√
λ, the network lies

in its ergodic phase: making these predictions quantitative is a non-trivial
task in statistical mechanics as we will see in details soon. With respect to
the storage capacity λ, we distinguish between the following two regimes:

• Low storage (or low load) regime. This is the regime we investigate
under the assumption that the patterns stored in the network grow
slowly with the system size, i.e. P ∼ logN , such that λ = 0. Tools
closer to the statistical mechanics of ferromagnets suffice to investigate
this regime.

• High storage (or high load) regime. This is the regime we investigate
under the hypotesis that the number of patterns stored in the network
grows quickly with the system size, i.e. P = λN for large N , with
λ ∈ R+. Tools closer to the statistical mechanics of spin glasses are
needed to address its investigation.

Remark 4.2. We stress that, despite we know how to prove the existence
of thermodynamic limit of the quenched free energy both for mean field

1What follows is strictly true only in the thermodynamic limit, replica symmetric
regime and uncorrelated patterns.
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ferromagnets as well as mean field spin glasses, at presen, no proof of such an
existence is available for the Hopfield model in the high storage regime. This
is essentially because its quenched free energy shares properties with those of
both the models, but the SK free energy is super-extensive while the CW free
energy is sub-extensive in the system size. Their mixture actually escapes a
rigorous treatment with the mathematical tools available at present. We will
not give a proof of the existence of such a limit in the low storage, as we
will give such a proof for an improved version of the Hopfield model we will
discuss in Section 6.3.

4.3 A heuristic digression about the phase

space structure

Let us now get more acquainted with the statistical mechanical picture of
the Hopfield model. To recall the notation, we have a set of P digital patterns
ξµ with µ = 1, . . . , P of length N , and we want to store them in a network
composed by N boolean spins σi = ±1 for i = 1, . . . , N . According to the
Hebb rule, the memory is allocated in the synaptic strength by building up
the coupling matrix as

Jij =
1

N

P∑

µ=1

ξµi ξ
µ
j . (4.9)

Then, if we assume that the network evolves sequentially according to the
update rule1

σi(t+ 1) = sign(tanh(β
∑

j 6=i

Jijσj(t)) + ηi), (4.10)

then its dynamics will end in an equilibrium configuration, which is described
by the probability distribution P(σ) ∼ exp(−βHN(σ|ξ)) with

HN(σ|ξ) = −
∑

i,j<i

( 1

N

∑

µ

ξµi ξ
µ
j

)
σiσj. (4.11)

The whole thermodynamical properties of Hopfield neural networks are there-
fore completely determined and derived starting from this Hamiltonian (or
cost function in neural network jargon).

1Here, we set the thresholds for firing hi = 0 since we want to deal only with sponta-
neous magnetization properties.



CHAPTER 4. AI: HOPFIELD NETWORKS 78

Stored patterns as attractors

As we said, the basic principle lying behind the functionality of Hopfield
networks as associative memory prototype is that stored patterns are associ-
ated to system configurations which are attractors for the network dynamics.
To make it simple, the situation is the following. Once the P pattern are
stored according to the Hebb rule, the system should associate the input with
the corresponding stored pattern. However, in general the presented input
is affected by some external (and not removable) noise, or it is an imperfect
realization of the corresponding “concept”. Because of the noise, it is easy to
understand that an associative memory could not work by comparing each
bit in the input with those of all possible stored patterns. There should be
a dynamics (internal to the network) finding out the nearest pattern asso-
ciated to the prescribed input. This motivates the attracting character of
stored patterns. If the system receive a (sufficiently low) noisy input, then
- by autonomous dynamics - the network is able to reconstruct the pattern
we want to be retrieved. This is the pattern recognition or reconstruction
capability of Hopfield model.

In the theory of dynamical systems, the concept of attractor can be in-
troduced in various ways. The definition we will use requires a metric char-
acterization of the phase space. To fulfill this requirement, one should endow
the configuration space of the Hopfield network with the Hamming distance:

Definition 4.5. Given two network configurations σ1 and σ2, the Hamming
distance is defined as

d(σ1,σ2) =
1

2N

N∑

i=1

|σ1,i − σ2,i|. (4.12)

Remark 4.3. It is easy to show that this definition clearly fulfils all the
requirements for a distance. Moreover, when the network size is large, it is
possible to define the concept of arbitrarily near configurations. This makes
the concept of neighbourhood mathematically well-defined (at least in the
thermodynamic limit).

Then, by looking at the previous discussion about pattern recognition,
we can introduce the concept of attractor with the following [111]

Definition 4.6. Given a dynamical system whose dynamics is parametrized
by a (continuous or discrete) time t and a dynamical function Tt,

1 a set A

1Here, the notation T stands for the “transfer” map, which is endowed with semi-group
properties: T0 = I and Tt · Ts = Tt+s, where in the case under consideration t ∈ Z+.
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of the phase space is attracting if it has a neighbourhood U 6= ∅ (called the
attraction basin) such that

• For every neighbourhood V of A, then Tt(U) ⊂ V for sufficiently large
t;

• It is dynamically invariant, i.e. Tt(A) = A for all t.

To go deeper in the characterization of stored patterns as attractors for
the network dynamics, let us write the Hamiltonian as

HN(σ|ξ) ∼ −1

2

N∑

i,j=1

( 1

N

P∑

µ=1

ξµi ξ
µ
j

)
σiσj = −N

2

P∑

µ=1

m2
µ, (4.13)

where we used the symbol ∼ as “apart for a O(1/N)” error. Now, let us
randomly extract configuration σ which is uncorrelated to the patterns for
all µ = 1, . . . , P . This means that each term in the sum are boolean variables
with probability P(ξµi σi = ±1) = 1/2. Then, the evaluation of the associated
Mattis magnetizations is equivalent to the computation of the displacement
in a one-dimensional random walk. Since the net displacement has zero
mean (because of the independence of random steps), one should estimate
the Mattis magnetization with the square root of its variance, meaning that

mµ ∼
√

Em2
µ =

√
1

N2

∑

ij

Eξµi ξ
µ
j σiσj =

1√
N
, (4.14)

since E(ξµi ξ
µ
j σiσj) = δij, with E being the average of the random walk. Then,

we can evaluate the Hamiltonian for network configurations which are un-
correlated to all the patterns as

HN(σ|ξ) = −N
2

P∑

µ=1

m2
µ ∼ O(1), (4.15)

provided that the number of patterns P is finite. On the other hand, let
us assume now that the network configuration is strongly correlated to a
stored pattern (say for example σ = ξ1) and uncorrelated to all the others,
meaning that m1 = 1 and mµ ∼ N−1/2 for µ ≥ 2. Then, the Hamiltonian
can be estimated as

HN(ξ1|ξ) ' −N
2

+ O(1). (4.16)

Then, configurations aligned to the patterns are very convenient from an
energetic point of view, with their stability growing with the network size.
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Figure 4.1: Set of P = 6 patterns stored in a Hopfield network of
N = 625 spins. Patterns are black and while images: the network is dealing
with digital storage of information [37].

Moreover, they are the most stable configurations, since 0 ≤ |mµ| ≤ 1.
This implies that (if the number of stored patterns is finite), such config-
urations are global minima for the energy. Now, since the Hamiltonian is
a Lyapunov function for the network dynamics (meaning that its temporal
derivative is always non-negative, and vanishing at the equilibrium points),
as a consequence they are fixed point, and the network evolves towards such
configurations: they are attractors for the network dynamics.

An example of attractive power of stored patterns is reported in Fig.
4.2. Here, we consider a Hopfield network consisting in N = 625 spins in
which we stored the set of P = 6 patterns reported in Fig. 4.1, organized
in square lattices of 25× 25 size. According to the previous discussion, such
configurations are associated to attractors for the network dynamics, mean-
ing that, if the network is prepared sufficiently near to a given pattern (i.e.
in its attraction basin), then the network dynamics will end in a fixed point
coincident with that pattern. To verify this statement, we initially prepared
the network aligned to the first pattern (the smiling face), then we flip each
spin with probability 0.2 (which means that we have a 20% noise level in the
presented input). In the first row of Fig. 4.2, it is resumed the recognition
of the first pattern for different evolution time steps starting from a noisy
initial condition. In particular, we see that at t = 1800 the original pattern
is almost reconstructed. In the plot below in the same figure, we see the time
evolution of the Mattis magnetizations. The order parameter m1 starts from
an initial value ∼ 0.6, and - as time flows - it approach the value 1, while all
the other Mattis magnetization are always close to zero. What we discussed
so far could lead to an optimistic overestimation of the associative power of
Hopfield model. Indeed, by simple performances/processing resources argu-
ments, one could be tempted to store more and more patterns for a given
network size. However, as we already said, Hopfield networks behave very
well for P < 0.051N (and moderately well for P < 0.138N).1 The reason

1Again, we stress that it is valid for a huge number of neurons in the network.



CHAPTER 4. AI: HOPFIELD NETWORKS 81

behind this limitations are however clear to researchers working in the field,
and it is two-fold. First of all, the energetic arguments presented above are
strictly true for a finite number of patterns for given N . On the other side,
when the number of patterns is extensive in N (meaning that P = λN), they
are no longer valid, so a detailed analysis of equilibrium statistical mechanics
of Hopfield model is needed (and this will be the subject of the following
Sections). Furthermore, we said that such configurations are global minima
for the energy function. However, it is not excluded that others fixed point
arises when applying the Hebb learning rule. Indeed, this turns out to be the
case, also if the information stored is low (P/N � 1). These additional min-
ima have no counterpart in terms of stored patterns, so they are traditionally
called spurious fixed points. An example of spurious attractor is given by

Figure 4.2: Example of pattern reconstruction in a Hopfield network
of N = 625 spins that stored P = 6 patterns. Starting with a corrupted
information, the Hopfield network is able to retrieve the associated pattern.
We observe that, among the six Mattis magnetizations dedicated to quantify
the retrieval of the six stored patterns, just one out of them grows up to one
and its corresponding pattern is indeed retrieved by the network.
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the configuration
ξ̃ = sign(ξ1 + ξ2 + ξ3). (4.17)

The Achille’s heel of Hopfield network is that the number of such configura-
tions grows very fast with the number of stored patterns (indeed, the growth
is exponential in P , to be compared to the linear abundance of pure fixed
points). From the dynamical point of view, this is suddenly a tragedy, since
it means that, storing more patterns, the probability for the network dynam-
ics to be trapped in the attraction basins of spurious states gets higher and
higher. As a consequence, the attracting power of pure fixed points is dra-
matically downsized. A pictorial representation of this situation is reported
in Fig. 4.4.

An example of dynamics ending in spurious configurations is reported in
Fig. 4.3. In this case, we prepared the network in the spurious configuration
(4.17), then we flip again each spin with probability 0.2 and let the network
evolve for a sufficient long time. In the first row, we see that the system
reaches a configuration which is not in the stored patterns set, and which
is indeed a fixed point since all of the order parameters settle on constant
values (the Mattis magnetizations with highest equilibrium values are those
associated to the first three patterns used to build up the spurious config-
uration). At this point, it is strongly needed a more careful understanding
of pure and spurious fixed points for the network dynamics. This is possible
with the so-called signal/noise analysis.

Signal-to-noise analysis

To get started with this analysis, we need to go back the Hamiltonian
(4.2). By preparing the system near a given pattern, say ξ1, we can express
it as (again including self-interactions)

HN(σ|ξ) = − 1

2N

N∑

i,j=1

ξ1
i ξ

1
jσiσj −

1

2N

∑

µ≥2

N∑

i,j=1

ξµi ξ
µ
j σiσj. (4.18)

It is clear that the first term tends to align the network configuration with the
first pattern, and can therefore be interpreted as a signal contribution. On
the other hand, since in general interactions are frustrated, the second term
has the effect to destroy the correlation of the configuration σ and the first
pattern. Therefore, it can be interpreted as an intrinsic noise contribution.
Thus, the goal of signal/noise analysis is to establish under which conditions
a given network configuration is stable with respect to the intrinsic noise (in
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Figure 4.3: Example of dynamics ending in a spurious state in a
Hopfield network of N = 625 spins that stored P = 6 patterns. In this
example, it is possible to observe that several (three) Mattis magmetization
raise sensibly over the noise due to the finite size effects and, correspondingly,
the network has not been able to properly retrieve a single pattern, rather
obtaining a useless mixture of the stored patterns.

doing this, external thermal noise is set to zero: β →∞). The condition for
a given configuration to be dynamically stable is

hiσi ≥ 0 for each i, (4.19)

where hi =
∑

j 6=i Jijσj = 1
N

∑
j 6=i
∑

µ ξ
µ
i ξ

µ
j σj is the internal field acting on

the i-th neuron.

First of all, we would like to analyze the stability of pure attractors, so
we set σ = ξ1. In this case, we have

h1ξ
1
1 =

1

N

∑

j>1

∑

µ

ξµ1 ξ
µ
j ξ

1
j ξ

1
1 =

N − 1

N
+

1

N

∑

j>1

∑

µ>1

ξµ1 ξ
µ
j ξ

1
j ξ

1
1 , (4.20)

where we separated the signal and the noise contributions and used the
dichotomic nature of the patterns. The same analysis can be carried out
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1

2b

3b

2a

Figure 4.4: Pictorial representation of minima landscape for the
Hopfield model. Starting with a noisy initial condition (1), the Hopfield
network succeeds if the internal dynamics ends in a pure state configuration
(with the evolution 1 → 2b → 3b). However, the network could end in a
metastable state 2a, therefore failing to retrieve the desired pattern.

for all the other spins i. Clearly, the former term is, in the thermody-
namic limit, equal to 1. On the other hand, the noise term is a sum of
(N − 1)(P − 1) ' N(P − 1) variables taking values ±1 with equal probabil-
ity.1 Therefore, the noise term is a random walk of N(P − 1) unitary steps.
With this observation, we can evaluated the displacement of the random walk
with the square root of the variance, which leads to

∣∣∣ 1

N

∑

j>1

∑

µ>1

ξµ1 ξ
µ
j ξ

1
j ξ

1
1

∣∣∣ ∼
√
P − 1

N
. (4.21)

From this simple computations, we arrive to an important conclusion: the
pure attractor configurations are stable (i.e. the intrinsic noise of the network
is negligible) provided that P � N (this also holds in the thermodynamic
limit). This is no longer that the high storage regime (P = λN), which thus
requires a separate analysis. A similar results holds also if we flip a fraction
d of the spins in the initial configuration, giving hiσi ∼ 1 − 2d + noise. In
the low storage regime, the noise is still of order N−1/2, then the system will

1This fact holds since each bit of different patterns at the same site i and of the same
pattern µ at different sites are uncorrelated.
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quickly align to the pattern in order to increase the signal term (i.e. lower
the energy), ending therefore in the pure attractor. This implies that pure
attractors have a large attraction basins for P � N .

A similar analysis can be carried out also for spurious attractors, but a
little more cumbersome since they are particular combinations of the stored
patterns. To illustrate this point, let us consider the 3-symmetric mixture
configuration (4.17). Without loss of generality, we can consider only a sin-
gle spin i = 1 and fix ξ1

1 = 1, so we have four possibilities corresponding
ξ2,3

1 = ±1. Among these, only three would give σ1 = 1, therefore we have
P(σ1 = 1) = 3/4 (recall that patterns are supposed to be uncorrelated).
Thus, in general

P(σ1 = ξµ1 ) =
3

4
, P(σ1 = −ξµ1 ) =

1

4
for µ = 1, 2, 3. (4.22)

This implies that, in the thermodynamic limit, we have 3N/4 spins aligned
with each of the µ = 1, 2, 3 pattern and N/4 with opposite orientation. Then

mµ =
1

N

N∑

i=1

ξµi σi =
1

N

(3N

4
− N

4

)
=

1

2
, µ = 1, 2, 3, (4.23)

while mµ ∼ O(N−1/2) for µ > 3. This result should be compared with
the numerical results reported in Fig. 4.3. The stability of the spurious
configuration in this case is given by

h1σ1 =
∑

µ

mµξ
µ
1σ1 = σ1(m1ξ

1
1 +m2ξ

2
1 +m3ξ

3
1 +

∑

µ>3

mµξ
µ
1 ). (4.24)

Again, we have a signal contribution (given by the explicit terms in brackets)
and a noise term (the sum over µ > 3). For the former, we have

Signal = 0.5
(
ξ1

1 + ξ2
1 + ξ3

1

)
sgn

(
ξ1

1 + ξ2
1 + ξ3

1

)
= 0.5|ξ1

i + ξ2
i + ξ3

i |. (4.25)

The lowest value of the signal is 0.5 (corresponding to the case in which
two of the bits have the same orientation while the other has opposite sign).
Clearly, spurious attractors have a lower signal contribution with respect to
the pure ones, making smaller the relative attraction basins (despite they
are still large, as can be seen again from Fig. 4.3). However, in order for
the initial state to be in the attraction basin of these particular 3-mixture
states, the former has to present a large overlap with all the three patterns
rather than a single one (which is possible only if the patterns are strongly
correlated or when they are high in number). Concerning the intrinsic noise
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term, it is again a one-dimensional random walk with N(P − 3) values.
Therefore, with the same arguments as above, it is evaluated to be of the
order of

√
(P − 3)/N , with the same conclusions as before.

Of course, spurious attractors can have more intricated structure, given
by combination of all possible subsets of the patterns. If we consider combi-
nations of the form ξ̃n ∼

∑n
µ=1 ξ

µ, the taxonomy of the associated energies
do respect the following classification [11]

E1 < E3 < E5 < · · · < E∞ < . . . E4 < E2. (4.26)

4.4 The Hopfield model from statistical in-

ference

As one may question about the validity of the equilibrium statistical
mechanical approach since the problem we are facing ultimately addresses
steady states of out-of-equilibrium current flows, it is very instructive to
check that the probability distribution resulted from an inferential proce-
dure exactly matches the Gibbs measure of the Hopfield model [36, 69]. In
an experimental scenario, in order to check retrieval performances of an asso-
ciative neural network, one should measure at least two (series of) numbers:
the mean values of the overlaps between the final output and the stored pat-
terns and their relative variances. In other words, the experimental setup
requires the observation of the quantities

〈mµ〉exp =
1

N

∑

i

ξµi 〈σi〉exp, 〈m2
µ〉exp =

1

N2

∑

ij

ξµi ξ
µ
j 〈σiσj〉exp. (4.27)

The subscript exp means that we are considering experimentally evaluated
quantities on some given sample. In order to make the notation more clear,
we shall omit it, but the averages 〈·〉 should not be confused with the theo-
retical expectation values 〈·〉 ≡ EΩJ introduced in the previous Chapter.

The goal is then to determine the probability distribution P(σ) account-
ing for these data. To do this, the standard tool coming from statistical
inference is the maximum entropy principle discussed in the first Chapter.
The basic idea is that P(σ) is obtained by maximizing the relative Shannon
entropy S[P] = −

∑
σ P(σ) logP(σ). However, we have to impose some other

constraints via a Lagrange multiplier problem. First of all, P(σ) should be
a probability distribution, so the sum on the whole space should be equal to
1. Furthermore, we have to require that the mean values of the overlap mµ
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and its square m2
µ equal the experimental data. In other words, we should

maximize the quantity1

SA,β,h[P] = −
∑

σ

P(σ) logP(σ) + AN
(∑

σ

P(σ)− 1
)

+

+ hN
∑

µ

(∑

σ

P(σ)
1

N

∑

i

ξµi σi − 〈mµ〉
)

+
βN

2

∑

µ

(∑

σ

P(σ)
1

N2

∑

ij

ξµi ξ
µ
j σiσj − 〈m2

µ〉
)
,

(4.28)

with respect to P(σ) and the parameters A, h, β. The constraint ∂AS = 0
is equivalent to require P(σ) is indeed a probability distribution, while the
requirements ∂hS = ∂βS = 0 effectively fix the theoretical observables with
the experimental data. Finally,

δS[P]

δP(σ)
= − logP(σ)− 1 + AN + h

∑

iµ

ξµi σi +
β

2N

∑

ijµ

ξµi ξ
µ
j σiσj = 0, (4.29)

which means that

P(σ) = cost exp
( β

2N

∑

ijµ

ξµi ξ
µ
j σiσj + h

∑

iµ

ξµi σi

)
(4.30)

By putting the constant equal to cost = ZN(β)−1, we prove the following

Theorem 4.2. The partition function associated to the probability distribu-
tion P(σ) maximizing the Shannon entropy (4.28) with the costraints (4.27)
for the first and the second moment of neural activity is

ZN(β) =
∑

σ

exp
( β

2N

∑

ijµ

ξµi ξ
µ
j σiσj + h

∑

iµ

ξµi σi

)
. (4.31)

Remark 4.4. Clearly, the second term is a bias term driving the systems
towards a precise configuration (upon the breaking of parity symmetry). Of
course, in neural networks applications one is often interested in the devel-
opment of a spontaneous magnetization in absence of biases. In such a case,
one has to chose 〈mµ〉 = 0 (this of course does not mean that all final config-
urations have mµ = 0, but the sum over all the possible configurations would
give 〈mµ〉 = 0). In other words, we have to set h = 0, then we perfectly have
the Hopfield partition function, as we will see in a moment.

1Note that we added some extra N factor in order to ensure that all terms have
the same order. Indeed, in the case of a constant probability distribution, i.e. P(σ) =∏
i P(σi) = 2−N , therefore the logarithm in the Shannon entropy would give a factor N

in the first term.
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4.5 Low storage of Boolean and Gaussian pat-

terns

In this Section, we will concern with the statistical mechanics treatment
of the low storage regime (i.e. λ = 0 case) of the Hopfield model. Before
to proceed, we would like to stress that we can rewrite the Hamiltonian as
(4.11)

HN(σ|ξ) = − 1

N

∑

i,j<i

P∑

µ=1

ξµi ξ
µ
j σiσj = − 1

2N

∑

ijµ

ξµi ξ
µ
j σiσj +

1

2N

∑

iµ

(ξµi )2σ2
i .

(4.32)
It is clear that the second term equals P/2 (while the energy is extensive
in the network size), and it can be neglected in the thermodynamic limit in
the low storage regime. Thus, we will omit it in the following computations,
since it trivially contributes to the partition function (and therefore to the
free energy). In order to make this Chapter self-contained, also in this case
we give the fundamental definition for the statistical mechanics picture of
Hopfield model.

Definition 4.7. The (pattern realization dependent) partition function of
the Hopfield model equipped with N neurons σi, i ∈ (1, ..., N) and P patterns
ξµ, µ ∈ (1, ..., P ) and described by the Hamiltonian (4.2) is

ZN(β) =
∑

σ

exp(−βHN(σ|ξ)). (4.33)

The associated Boltzmann factor and Boltzmann-Gibbs average are respec-
tively BN(β,σ) = exp(−βHN(σ|ξ)) and

ωξ(F ) =

∑
σ F (σ)BN(β,σ)∑

σ BN(β,σ)
, (4.34)

for any arbitrary function F (σ) of the spins. The statistical pressure is
αN(β) = −βfN(β), where

fN(β) = − 1

βN
E logZN(β), (4.35)

is the (quenched) free energy.

The main interest of this Section (and of the following one, for which
the same definitions hold) is to find the expression of the free energy in the
thermodynamic limit f(β) = limN→∞ fN(β) in terms of the order parameters,
both in the low and high storage regimes.
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Saddle point method

The simplest way to determine the free energy for Hopfield model (and
consequently the self-consistency equations for the order parameters) is the
saddle point method. To apply this technique, we firstly express the (pat-
tern realization dependent) partition function ZN(β) =

∑
σ BN(β,σ) by

introducing the density of the states in the following way:

ZN(β) =
∑

σ

exp
{ β

2N

∑

ijµ

ξµi ξ
µ
j σiσj

}
=

=
∑

σ

∫ ( P∏

µ=1

dmµδ(mµ − 1
N

∑

i

ξµi σi)
)

exp
(βN

2

∑

µ

m2
µ

)
=

=
∑

σ

∫ ( P∏

µ=1

dmµ
Ndm̄µ

2π

)
exp

(
iN
∑

µ

m̄µmµ − i
∑

iµ

m̄µξ
µ
i σi

+
βN

2

∑

µ

m2
µ

)
.

This trick allows to linearize the spin-dependent part of the partition func-
tion, so that we can directly sum over the network configurations to get

ZN(β) =

∫ ( P∏

µ=1

dmµ
Ndm̄µ

2π

)
exp

(
iN
∑

µ

m̄µmµ

+
∑

i

log 2 cos(
∑

µ

m̄µξ
µ
i ) +

βN

2

∑

µ

m2
µ

)
.

On the N →∞ saddle point, we can replace m̄µ with the extremality condi-
tion of the quantity in the exponent with respect to mµ (which is m̄µ = iβmµ)
and thus evaluated the integrals over the m̄ variables. Then, we can write

ZN(β) ∼
N→∞

∫ ( P∏

µ=1

dmµ

)
exp

(
− βN

2

∑

µ

m2
µ +

∑

i

log 2 cosh(β
∑

µ

mµξ
µ
i )
)
.

On the r.h.s. of the last equation, we can again apply the saddle point
formula, so finally we get

ZN(β) ∼
N→∞

(2π

N

)P
2

exp
(
− βN

2

∑

µ

m2
µ +

∑

i

log 2 cosh(β
∑

µ

mµξ
µ
i )
)
.
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Then, the quenched free energy in the thermodynamic limit is therefore

f(β) =
1

2

∑

µ

m2
µ −

1

βN

∑

i

E log 2 cosh(β
∑

µ

mµξ
µ
i ), (4.36)

where order parameters satisfy the extremality condition. However, when
commuting the sum over the spin index and the average over external noise,
it’s easy to understand that the only non-trivial operations concern with the
sum over the configurations the vector ξi = (ξ1

i , . . . , ξ
P
i ) for fixed i. Then,

the net average E in (4.36) is

E ≡ 1

2P

∑

ξ1
i=±1

· · ·
∑

ξPi =±1

. (4.37)

Since we are summing over µ and since each pattern is extracted with equal
probability with no regard on the index i, each term in the sum is equal,1 so
we prove the following [12]

Theorem 4.3. The (quenched) free energy of the Hopfield model in the ther-
modynamic limit of the low storage regime is

f(β) =
1

2

∑

µ

m2
µ −

1

β
E log 2 cosh(β

∑

µ

mµξ
µ), (4.38)

where the Mattis magnetizations satisfy the self-consistency equations

mµ = E ξµ tanh(β
∑

ν

mνξ
ν), (4.39)

at the equilibrium states.

Remark 4.5. In particular, if we assume the only a single pattern is candi-
date to be retrieved, namely m1 6= 0 while mµ = 0 for all µ > 1, we have the
simpler self-consistency equation

m1 = tanh(βm1), (4.40)

which is precisely the Curie-Weiss law. To obtain this, we used the fact
that the hyperbolic tangent is a odd function, and since ξ1

i = ±1 we have
tanh(βm1ξ

1
i ) = ξ1

i tanh(βm1), therefore compensating the ξ1
i prefactor. Since

in this way there is no explicit dependence on the patterns, the E average is
trivially computed.

1This is strictly true in the thermodynamic limit, in which the frequencies of pattern
extractions equal the probabilities.



CHAPTER 4. AI: HOPFIELD NETWORKS 91

The Hamilton-Jacobi framework

We recall that, for CW model, the Guerra mechanical analogy consists
in interpreting the statistical pressure as the Hamilton-Jacobi action for a
classical particle propagating freely in a 1 + 1-dimensional space, while the
magnetization is interpreted as the classical spatial momentum. In the Hop-
field case, we have P Mattis magnetizations, so it is natural to expect that, in
this case, the dual mechanical system consists in a classical particle traveling
in a P + 1-dimensional space. Then, our basic quantity is the generalized
partition function introduced in the next

Definition 4.8. The generalized partition function ZN(β; t,x) ≡ ZN(t,x)
of the Hopfield model in the low storage regime, suitable for the Hamilton-
Jacobi analysis, reads as

ZN(t,x) =
∑

σ

exp
{
− tN

2

P∑

µ=1

m2
µ +N

P∑

µ=1

xµmµ

}
, (4.41)

where x = (x1, . . . , xP ). The Boltzmann-Gibbs average with respect to this
partition function will be denoted by ωt,x(·). The generalized statistical pres-
sure is

αN(t,x) =
1

N
E logZN(t,x). (4.42)

Then, the derivatives of the statistical pressure with respect to the space-
time coordinates are

∂αN(t,x)

∂t
= −1

2

P∑

µ=1

Eωt,x(m2
µ), ∇xαN(t,x) =

P∑

µ=1

Eωt,x(mµ). (4.43)

With a simple check and by imposing the self-averaging of the order param-
eters in the thermodynamic limit (

∑P
µ=1[Eωt,x(m2

µ) − Eωt,x(mµ)2] → 0 as
N →∞), we find that the next proposition holds:

Proposition 4.1. The Guerra’s action SN(t,x) = αN(t,x) for the Hopfield
model in the low storage regime obeys the following Hamilton-Jacobi PDE

∂SN(t,x)

∂t
+

1

2
(∇xSN(t,x))2 + VN(t,x) = 0, (4.44)

with VN(t,x) =
∑P

µ=1[Eωt,x(m2
µ)− Eωt,x(mµ)2].

Note that this is the straightforward generalization of the CW model.
As in the latter case, the potential vanishes in the thermodynamic limit
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because of the self-averaging property of the order parameters, leaving us
with the Hamilton-Jacobi equations for a free particle. Of course, the classical
solution of such an equation (4.44) are straight trajectories (in the P + 1-
dimensional space this time), i.e. xµ = x0,µ + (t− t0)mµ, where we called mµ

the thermodynamic value of the Mattis magnetization.1

Proposition 4.2. The (thermodynamic limit of the) action can be computed
via the fundamental theorem of calculus as

S(t,x) = S(t0,x0) +

∫ t

t0

dt′L. (4.46)

Also in this case, the Lagrangian L = 1
2

∑P
µ=1m

2 is constant over the
classical trajectories, so the integral is trivial. Again, we fix the initial con-
dition t0 = 0 and express the starting point x0 is terms of x and t. Then,
for the one-body term, we have

S(0,x0) =
1

N

∑

i

E log 2 cosh(x0 · ξi) =

= E log 2 cosh(x0 · ξ),
(4.47)

where in the last line we used the argument in the previous section. With
these straightforward computation, we find the statistical pressure

S(t,x) =
t

2

P∑

µ=1

m2 + E log 2 cosh(x0 · ξ). (4.48)

Finally, imposing t = −β, xµ = x0,µ + (t − t0)mµ and set x = 0, we obtain
the following

Theorem 4.4. The thermodynamic limit of the Guerra’s action (i.e. the
statistical pressure) for the Hopfield model in the low storage regime reads as

α(β) = S(−β, 0) = −β
2

P∑

µ=1

m2 + E log 2 cosh(β
P∑

µ=1

mµξ
µ). (4.49)

Recalling that α(β) = −βf(β), this is exactly the expression of the sta-
tistical pressure previously obtained with a pure statistical mechanical treat-
ment (4.38).

1This means that
P (m(σ)) −→

N→∞
δ(m(σ)−m), (4.45)

with m = (m1, . . . ,mP ) and δ being the P -dimensional Dirac delta distribution and
m = limN→∞ Eωt,x(m(σ)).
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4.6 High storage of Boolean patterns: replica

trick.

It is time to turn to the complex case, which is the high storage limit
P = λN with λ ∈ R+. Before focusing on the explicit expression of the
quenched free energy for the Hopfield model in the high load regime, let us
stress a little detail on the energy function, rewriting it as

HN(σ|ξ) = − 1

N

∑

i,j<i

P∑

µ=1

ξµi ξ
µ
j σiσj = − 1

2N

∑

ijµ

ξµi ξ
µ
j σiσj +

P

2
. (4.50)

In the high storage case, also the last term is of order O(N) and contributes
to the free energy. However, this contribution is constant and equals λ/2,
so we can forget about it during the calculations (thus including also self-
interactions during the calculations) and then correcting the obtained expres-
sion at the end by reintroducing this term. Of course, the definitions 4.7 hold
also in this case, so we avoid to repeat them here. The only difference is that,
here, we make explicit the dependent on the storage capacity λ (previously,
it was not needed because λ = 0 in the low storage regime).

Rather, we would like to stress an important point on methodology we
will use in the following. Since we are interested in the retrieval regime, in
which at least one pattern (as usual, we suppose it is ξ1) is candidate to be
retrieved, we will separate a ξ1-dependent signal term, while all the other
P − 1 contributions by the not-retrieved patterns accounts for the genesis
of the intrinsic slow noise in the network. As a consequence, we should not
average over all possible pattern realizations, but only on those contributing
to the internal noise: in other words, we should consider (taking into account
the self-interactions correction) the quenched free energy

f(β, λ) = − lim
N→∞

1

βN
E′ logZN(β, λ) +

λ

2
, (4.51)

where the average over quenched disorder is

E′ ≡ Eξ2 . . .EξP . (4.52)

Thus, in the replica trick approach (where the logarithm of the partition
function is represented as a limit of zero replica of the replicated partition
function) the relevant quantity is E′Zn

N(β, λ). Introducing the replica index
a running over different equivalent realization of the same system, we can
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write it as

E′Zn
N(β, λ) = E′

∑

σ(1)

. . .
∑

σ(n)

exp
( β

2N

∑

ijaµ

ξµi ξ
µ
j σ

(a)
i σ

(a)
j

)
=

= E′
∑

σ(1)

. . .
∑

σ(n)

∫ (∏

aµ

dµ(z(a)
µ )
)

exp
(√ β

N

∑

iµa

ξµi σ
(a)
i z(a)

µ

)
,

(4.53)

where in the last line we linearized the spin-dependence by using a Gaussian
representation of the partition function. Here, we have of course

∫
dµ(z) =

∫ +∞

−∞

dz√
2π

exp(−z2/2). (4.54)

Since the average over the quenched disorder only involves not-retrieved pat-
terns, we can split the replicated Boltzmann factor in two distinct factors,
incorporating respectively the signal and the intrinsic noise. Thus, we can
write

E′Zn
N(β, λ) =

∑

σ(1)

. . .
∑

σ(n)

zsignal[σ]znoise[σ], (4.55)

where

zsignal[σ] =

∫ ( n∏

a=1

dµ(z
(a)
1 )
)

exp
(√ β

N

∑

ia

ξ1
i σ

(a)
i z

(a)
1

)
,

znoise[σ] =

∫ ( ∏

a,µ≥2

dµ(z(a)
µ )
)
E′ exp

(√ β

N

∑

ia,µ≥2

ξµi σ
(a)
i z(a)

µ

)
.

(4.56)

The signal contribution is easy to handle with, so we start by considering
the noise factor. On the latter, we can easily perform the average over
not-retrieved patterns. This produces a log cosh(

√
β/N

∑
a σ

(a)
i z

(a)
µ ) in the

exponential. The argument of this function is a quantity of order O(N−1/2),
since the sum involves only the replica index, so we can therefore expand the
function at the leading order. After some trivial rearrangements, the whole
noise factor can be therefore rewritten as

znoise[σ] =
∏

µ≥2

∫ (∏

a

dµ(z(a)
µ )
)

exp
( β

2N

∑

iab

σ
(a)
i σ

(b)
i z(a)

µ z(b)
µ

)
. (4.57)

The crucial point in this expression is that the argument of the exponential
accounts for two kind of overlaps: the first one ∼

∑
i σ

(a)
i σ

(b)
i is the overlap of

different spin replicas; the second one ∼
∑

µ z
(a)
µ z

(b)
µ is an analogous quantity
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for replicas of the hidden variables zµ (to use a Machine Learning jargon).
We can therefore introduce these overlaps directly into the partition function
by insertion of multiple Dirac deltas, therefore obtaining

znoise[σ] =
∏

µ≥2

∫ ( n∏

a=1

dµ(z(a)
µ )
)(∏

ab

dQabδ(Qab − 1
N

∑

i

σ
(a)
i σ

(b)
i )
)
·

· exp
( β

2N

∑

ab

Qabz
(a)
µ z(b)

µ

)
.

(4.58)

The integral over the z variables is Gaussian, so we can easily evaluate it.
Using the Fourier representation of the Dirac deltas, we finally found the
following form for the noise term:1

znoise[σ] =

∫ (∏

ab

dQab
NdPab

2π

)
exp

(
iN
∑

ab

PabQab − i
∑

iab

Pabσ
(a)
i σ

(b)
i

− P

2
log det(1− βQ)

)
.

(4.59)

where 1 and Q are respectively the n × n identity and overlap matrices.
Again, we note here that - as in the SK case - there are no couplings between
spins belonging to the same replicas, so that we can reintroduce new spin
variables sa = ±1 with a = 1, . . . , n. This allows to further simplify the
expression. Including the singal term, with some manipulations we arrive
(after some trivial rescalings z

(a)
1 →

√
βNm

(a)
1 , Pab → iλβ

2

2
Pab) at the final

result

E′Zn
N(β, λ) =

∫
dµ(m1,Q,P ) exp(−NA[m1,Q,P ]), (4.60)

where

A[m1,Q,P ] =
β

2

∑

a

(m
(a)
1 )2 +

λβ2

2

∑

ab

PabQab +
λ

2
log det(1− βQ)

− E log
∑

s

exp
(
β
∑

a

ξ1m
(a)
1 sa +

αβ2

2

∑

ab

Pabsasb

)
,

(4.61)

and dµ(m1,Q,P ) is the measure over the order parameters (apart for con-
stant factors, it is simply given by the Euclidean measure). Of course, the

1Note that, to be precise, since we have P − 1 integration variables z, the prefactor
of the last term should be P − 1. However, since we want to deal with the high storage
limit, the difference between P and P − 1 is negligible in the thermodynamic limit.
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free energy of Hopfield model is recovered by taking the limit

f(β, λ) = lim
n→0

1

βn
A[m1,Q,P ]. (4.62)

At this point, we can no longer proceed without assuming a precise form for
the overlap order parameters.

The replica symmetric solution

In the Hopfield model, the RS Ansatz is realized by taking the value of the
Mattis magnetization independent on the replica realization. On the other
side, the overlap are suppose to have equal non-diagonal elements. Moreover,
we set the diagonal entries of the Q matrix equal to 1 (meaning that each
replica has maximal overlap with itself), while for the P overlap we can set
it to zero.1 In mathematical terms, this leads to the choice

m
(a)
1 = m1 ∀a,
Qab = δab + q(1− δab),
Pab = p(1− δab).

(4.63)

Therefore, we are left only with three order parameters. With this Ansatz, it
is possible to compute the replica symmetric free energy fRS(β, λ). Although
the first terms in A[m1,Q,P ] are actually easy to evaluate in the n → 0
(and we refer to [37] to an exhaustive description), we stress that the last
one (involving the quenched averaged E) can be estimated as

−λβ
2

2
np+ nE

∫
dµ(z) log 2 cosh(βm1ξ

1 + βz
√
λp) + O(n2). (4.64)

Putting everything together and including the correction term λ/(2β) as
prescribed above, we are finally able to state the following [13]

Theorem 4.5. The replica symmetric free energy for the Hopfield model in
the high storage regime is

fRS(β, λ) =
m2

1

2
+
λβ

2
p(1− q) +

λ

2β

(
β + log[1− β(1− q)]− qβ

1− β(1− q)

)

− 1

β

∫
dµ(z) log 2 cosh

(
βm1 + βz

√
λq

1− β(1− q)

)
,

(4.65)

1In general, one can choose to set the diagonal entries of the P equal to a fixed value
pD. However, it is possible to show that, under the RS assumption, when extremizing the
free energy such an order parameter is not dynamical (meaning that its self-consistency
equation is trivial), so one can consistently set it to 0.
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where the order parameters satisfy the self-consistency equations

m1 =

∫ +∞

−∞
dµ(z) tanh

(
βm1 + βz

√
λq

1− β(1− q)

)
,

q =

∫ +∞

−∞
dµ(z) tanh2

(
βm1 + βz

√
λq

1− β(1− q)

)
.

(4.66)

at the equilibrium states.

Remark 4.6. We highlight here two points. First of all, the self-consistency
equation for the overlap p is algebraic, so it can be easily eliminated on
the saddle point when evaluating the free energy. Therefore, we are left
only with two order parameters satisfying coupled integral equations. The
second point is that it was possible to directly evaluate the quenched average
E since we assumed from the beginning that we are working with only one
pattern ξ1 candidate to be retrieved. In this way, because of the invariance of
Gaussian measure under parity transformation and since the function log cosh
is even, we can trivially compute the quenched average. The extension of this
equations to the case of l condensed patterns ξµ (with µ ∈ (1, . . . , l)) is

mµ =

∫ +∞

−∞
dµ(z)E ξµ tanh

(
βm · ξ + βz

√
λq

1− β(1− q)

)
,

q =

∫ +∞

−∞
dµ(z)E tanh2

(
βm · ξ + βz

√
λq

1− β(1− q)

)
.

(4.67)

Remark 4.7. The Hopfield model in the high storage case beyond the replica
symmetric assumption is a very hard task. At present time, the best knowl-
edge we have about it stops at the 2RSB step [121]. However, it has been
shown that the modification due to the replica symmetry breaking is negli-
gible to a first approximation (we refer to [37, 122] for further details).

4.7 High storage of Gaussian patterns: inter-

polation method

The Hopfield neural network presents different thermodynamic behaviours
depending on the amount of noise the network is embedded in, the amount
of load the network has to face but also the nature of the patterns coding the
information the network is dealing with, as we will prove in this Section. In
particular we are going to show that if the patterns have real entries (rather
than digital as previously assumed) a retrieval region in the phase diagram
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is no longer possible: this is not really surprising since, if we think that with
digital patterns the model can handle at most a fraction O(N) of them, the
amount of information supplied to the network with real patterns if real pat-
terns are supplied to the network is not even comparable. Consequently, the
system (when not in the ergodic phase) is always a spin-glass, and it can
never work as a pattern recognizer.

In this Section, using an analogy among neural networks and bipartite
spin glasses, we move the interpolating techniques (essentially based on two
different stochastic perturbations) which we use to give a complete descrip-
tion of the analogical Hopfield model phase diagram in the replica symmetric
approximation in the high storage regime, and we’ll show that the network
doesn’t present a retrieval phase. The solely difference w.r.t. the model an-
alyzed in the previous Section is the pattern probability distribution (which
previously was P(ξµi ) = (1/2)δξµi ,+1 +(1/2)δξµi ,−1), is here replaced by a Gaus-
sian probability distribution, i.e.

P(ξµi ) =
1√
2π
e−(ξµi )2/2.

We can apply the Gaussian integration to linearize with respect to the bilinear
quenched memories carried by ξµi ξ

µ
j the Hopfield partition function, thus

obtaining

ZN(β, λ) =
∑

σ

∫ P∏

µ=1

dµ(zµ) exp
{√ β

N

P∑

µ=1

N∑

i=1

ξµi σizµ

}
, (4.68)

where dµ(zµ) is again the standard Gaussian measure for all the zµ. Taken F
as a generic function of the neurons, we define the Gibbs measure ω(F ) like
in equation (2.4) at a given level of noise β. The s-replicated Gibbs measure
is defined as in (3.14) in which we replace the coupling matrix J with the
pattern vectors ξ. All the single Gibbs measures are independent at the same
noise level β−1, and share an identical distribution of quenched memories ξ.

Here, the quenched average E is obviously defined as

E
[
F (ξ)

]
=

∫ P∏

µ=1

N∏

i=1

dξµi e
−

(ξ
µ
i

)2

2

√
2π

F (ξ) =

∫
F (ξ)dµ(ξ),

for a generic function of these memories F (ξ). Of course, E[ξµi ] = 0 and
E[(ξµi )2] = 1.Reflecting the bipartite nature of the Hopfield model expressed
by Eq. (4.68), we again introduce two other order parameters:
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Definition 4.9. The overlap between the replicated neurons (first party
overlap), is defined as

Qab =
1

N

N∑

i=1

σ
(a)
i σ

(b)
i ∈ [−1,+1].

The overlap between the replicated Gaussian variables z (second party over-
lap), is defined as

Pab =
1

P

P∑

µ=1

z(a)
µ z(b)

µ ∈ (−∞,+∞).

Both the two order parameters above play a considerable role in the
theory, since they can express thermodynamical quantities.

We now pay attention to the structure of the free energy: as standard in
the interpolation scheme, we want to obtain the it via a sum rule in which
we may isolate explicitly the order parameter fluctuations in order to be
able to neglect them achieving a replica-symmetric behaviour. Due to the
equivalence among neural networks and bipartite spin-glasses [27], we need
to generalize the way cavity field and the stochastic stability techniques [10]
work on spin glasses to these structures by introducing the following interpo-
lation scheme. For the sake of clearness, in order to exploit the interpolation
method adapted to the physics of the model, we introduce 3 free parameters
in the interpolating structure (i.e. A,B,C) that we fix a fortiori, once the
sum rule is almost achieved. In a pure stochastic stability fashion, we need
to introduce also two classes of i.i.d. N(0, 1) variables, namely N variables ηi
and P variables θµ, whose average is still encoded into the E operator. Then,
we make the following

Definition 4.10. The (pattern realization dependent) interpolating statis-
tical αN(β; t) ≡ αN(t) pressure is

αN(t) =
1

N
E log

∑

σ

∫ P∏

µ=1

dµ(zµ) exp
{√

t
β

N

N∑

i=1

P∑

µ=1

ξµi σizµ

}
·

· exp
{
A
√

1− t
N∑

i=1

ηiσi

}
· exp

{
B
√

1− t
P∑

µ=1

θµzµ

}
·

· exp
{
C

1− t
2

P∑

µ=1

z2
µ

}
,

(4.69)

where ηi, θµ ∼ N(0, 1).
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Remark 4.8. Of course, in this way also the interpolating partition function
ZN(t) and the Boltzmann factor BN(t) are straightforwardly defined.

As usual, we stress that t ∈ [0, 1] interpolates between t = 0 (where the
interpolating quenched pressure becomes made of non-interacting systems,
i.e. a series of one-body problems whose integration is straightforward) and
the opposite limit, t = 1 recovering the original quenched free energy. The
plan is again to evaluate the t-streaming of such a quantity and then obtain
the Hopfield model free energy by using the fundamental theorem of calculus,
just like we did for the Curie-Weiss model in Section 2.4 and for Sherrington-
Kirkpatrick spin glass in 3.5. To formalize this procedure, we state the
following

Proposition 4.3. The quenched free energy of the Hopfield model, equipped
with real-valued patterns, in the high storage regime, is realized as

αN(β, λ) = αN(t = 1) = αN(t = 0) +

∫ 1

0

ds
[
∂tαN(t)

]
t=s
. (4.70)

When evaluating the streaming ∂tα, we get the sum of four terms, which
we call I, II, III and IV. Each one of them comes as a consequence of the
derivation of a corresponding exponential term appearing in the interpolating
pressure (4.69). Once introduced the averages ωt(·) and 〈·〉t = EΩt that
naturally extend the Gibbs measures encoded in the interpolating scheme
(and reduce to the proper one whenever setting t = 1), we can write them
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down as

I =
1

N
E
[ 1

ZN(t)

∑

σ

∫
dµ(z)

√
β

N

N∑

i=1

P∑

µ=1

ξµi σizµ·
1

2
√
t
BN(t)

]
=

=

√
β

2N
√
Nt

N∑

i=1

P∑

µ=1

E
[
ξµi ωt(σizµ)

]
=

√
β

2N
√
Nt

N∑

i=1

P∑

µ=1

E
[
∂ξµi ωt(σizµ)

]
=

=
β

2N

P−1∑

µ=1

Eωt(z2
µ)− λβ

2
〈q12p12〉t;

(4.71)

II =
1

N
E
[ 1

ZN(t)

∑

σ

∫
dµ(z)

−A
2
√

1− t

N∑

i=1

ηiσiBN(t)
]

=

=
−A

2N
√

1− t

N∑

i=1

E
[
ηiωt(σi)

]
=

−A
2N
√

1− t

N∑

i=1

E
[
∂ηiωt(σi)

]
=

= −A
2

2

(
1− 〈q12〉t

)
;

(4.72)

III =
1

N
E
[ 1

ZN(t)

∑

σ

∫
dµ(z)

−B
2
√

1− t

P−1∑

µ=1

θµzµBN(t)
]

=

=
−B

2N
√

1− t

P−1∑

µ=1

E
[
θµωt(zµ)

]
=

−B
2N
√

1− t
E
[
∂θµωt(zµ)

]
=

= −B
2

2N

P−1∑

µ=1

Eωt(z2
µ) +

λB2

2
〈p12〉t.

(4.73)

In the computation of these three terms, we used Wick theorem with respect
to the auxiliary fields ηi and ηµ. Finally, the term IV is easily calculated as

IV =
1

N
E
[ 1

ZN(t)

∑

σ

∫
dµ(z)

−C
2

P−1∑

µ=1

z2
µBN(t)

]
= − C

2N

P∑

µ=1

Eωt(z2
µ),

(4.74)

In the replica symmetric ansatz, the order parameters m, q12, p12 do not fluc-
tuate with respect to the quenched average, so let us define their thermody-
namic values as 〈m〉t = m, 〈q12〉t = q, 〈p12〉t = p. Summing all the contribu-
tions given by I, II, III and IV, and adding conveniently and subtracting the
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term λβqp/2, we get

∂αN(t)

∂t
= (β −B2 − C)

1

2N
E

P∑

µ=1

ωt(z
2
µ)− λβ

2
〈q12p12〉t

− A2

2
(1− 〈q12〉t) +

λB2

2
〈p12〉t +

λβ

2
qp− λβ

2
qp.

Since A, B and C are tunable parameters, we can make the following choice:

A =
√
λβp, B =

√
βq, C = β(1− q),

so that we get

∂αN(t)

∂t
= −λβ

2
〈(q12 − q)(p12 − p)〉t −

λβ

2
p(1− q). (4.75)

Remark 4.9. In the definition of the overlaps Qab and Pab, we showed that
these quantities can also take negative values. This might seem in contradic-
tion with the definition of the parameters A and B because we have a square
root of a potentially negative term. Going on with the discussion, precisely
once we get to the self-consistency equations, we will verify that these quan-
tities can only take non-negative values, thus justifying our procedure.

In order to get the replica symmetric solution αN(β) we impose the self-
averaging of the overlaps in the thermodynamic limit, so that we need to
evaluate only

αN(β) = αN(t = 0)− λβ

2
p(1− q)− λβ

2
,

where we have reinserted the factor that comes from the diagonal term of
the first party as explained previously. The evaluation of αN(t = 0) is easily
performed because it is a one-body calculation. With simple manipulations,
we have

αN(t = 0) =
1

N
E log

∑

σ

exp
{√

λβp
N∑

i=1

ηiσi

}

+
1

N
E log

∫ P∏

µ=1

dzµ exp
{
− 1

2

P∑

µ=1

z2
µ(1− β(1− q)) +

√
βq

P∑

µ=1

θµzµ

}
=

=

∫
dµ(z) log 2 cosh

(√
λβpz

)
+
λ

2
log
(

1− β(1− q̄)
)

+ λE log

∫
dre−r

2/2e

√
βq̄

1−β(1−q̄)ηr,
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where we introduced r = σz, with σ defining the standard Gaussian variance
such that σ2 = (1− β(1− q))−1. As a consequence, we get

αN(t = 0) = log 2 +

∫
dµ(z) log cosh(

√
λβpz)

+
λ

2
log
( 1

1− β(1− q)

)
+
λβ

2

q

1− β(1− q)
.

Overall, we can state the next theorem.

Theorem 4.6. The thermodynamic limit of the replica symmetric pressure
function of the analogical Hopfield neural network is given by the following
expression

α(β, λ) = log 2 +

∫
dµ(z) log cosh(

√
λβpz) +

λ

2
log
( 1

1− β(1− q)

)

+
λβ

2

q

1− β(1− q)
− λβ

2
p(1− q)− λβ

2
,

(4.76)

where q and p satisfy equations (4.77) and (4.78) respectively at the equilib-
rium states.

Indeed, self-consistency relations can be found by imposing equal to zero
the partial derivatives of the free energy with respect to its order parameters.
Therefore, we obtain

∂α

∂q
=
λβ

2

(
p− βq

(1− β(1− q))2

)
= 0, (4.77)

∂α

∂p
=
λβ

2

(∫
dµ(z) tanh2(

√
λβpz)− q

)
= 0. (4.78)

Upon eliminating p on the saddle point, we have

q =

∫
dµ(z) tanh2

( √
λqβz

1− β(1− q)

)
. (4.79)

Remark 4.10. We would like to point out two key observations:

• the quenched noise is universal. In fact, if we look back at Eq. (3.100)
(with t = 1) and compare it to equation (4.79), we see that the part
identifying the value of q for the phase transition has the same struc-
ture. We will verify this universal property also for the hybrid neural
network, thus deducing that the SG-paramagnetic line is the same in
every model showing these properties.
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• the signal is not universal. In particular, while a retrieval phase (coded
by a positive Mattis magnetization in the thermodynamic limit) is avail-
able when the stored patterns are digital, in the high storage this region
is destroyed if the stored patterns have real-valued entries.

We are now ready to analyze hybrid Hopfield neural networks, whose
patterns are mixtures of Boolean and Gaussian samples. Before entering the
(quite lenghty) calculations, we would to motivate why we are going to spend
a lot of efforts for tackling this problem. In a nutshell, as we will see in the
next Chapter (which is devoted to learning capabilities of neural networks),
we will introduce the Restricted Boltzmann Machine (RBM) as the archetype
of machine learning: remarkably we will show that RBMs and Hopfield net-
works share the same marginal distributions, suggesting the intuitive concept
that learning and retrieval are two aspects of a single phenomenon that is
cognition. However, while we equipped the Hopfield model with both real
valued and discrete patterns, patterns in the RBM - or weights in Machine
Learning jargon - must necessarily be real since learning requires making
derivatives w.r.t. these weights. However, we already saw that Hopfield net-
works with solely real-valued patterns do not have a retrieval region. Thus,
in order for the learning algorithms of the RBMs to be able to harmoni-
cally coexist with the retrieval phase in the dual Hopfield models, we will
see that an hybrid Hopfield network still preserves the phase diagramù of the
Boolean Hopfield model, despite having the bulk of patterns with real-valued
entries. Hence, the overall theoretical scaffold of AI - when analyzed through
statistical mechanics - is preserved.

4.7.1 The hybrid case: a Boolean pattern in a real sea

We will begin our discussion by setting up the characteristics of the model
and the statistical tools. We recall here

Definition 4.11. The Hamiltonian function for the analog Hopfield neural
network with N Ising spins σi = ±1, i = 1, . . . , N and P patterns is

HN(σ|ξ) = − 1

N

∑

1≤i<j≤N

P∑

µ=1

ξµi ξ
µ
j σiσj, (4.80)

where ξµi ∼ N(0, 1) ∀i = 1, . . . , N , µ = 1, . . . , P .

In our hybrid model, we will instead introduce one binary pattern ξ̃ and
P − 1 ∼ λN , with λ > 0, real patterns ξµi with the following probability
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distributions:
{
ξ̃i : P{ξ̃i = 1} = P{ξ̃i = −1} = 1

2
∀i = 1 . . . N,

ξµi ∼ N(0, 1) ∀i = 1 . . . N, µ = 1, . . . , P − 1.

The Hamiltonian is therefore naturally splitted in two terms separating the
part that concerning the binary pattern from the real ones. Therefore, we
have the following

Definition 4.12. The Hamiltonian for an hybrid Hopfield neural network
with N Ising spins σi = ±1, i = 1, . . . , N , one Boolean ξ̃ and P −1 Gaussian
patterns ξµi is

HN(σ|ξ, ξ̃) = − 1

N

N∑

i<j

ξ̃iξ̃jσiσj −
1

N

N∑

i<j

P−1∑

µ=1

ξµi ξ
µ
j σiσj, (4.81)

where P(ξ̃i = ±1) = 1/2 and P(ξµi ) = N(0, 1).

It is clear that the such an Hamiltonian can be expressed as1

HN(σ|ξ, ξ̃) = − 1

2N

N∑

i,j=1

ξ̃iξ̃jσiσj −
1

2N

N∑

i,j=1

P−1∑

µ=1

ξµi ξ
µ
j σiσj +

1

2N

N∑

i=1

P−1∑

µ=1

(ξµi )2.

(4.82)

It is important to notice that, if we perform a Mattis gauge on the Boolean
term, the Hamiltonian is written as the sum of a Curie-Weiss and an analog
Hopfield term. Such structure will be convenient in preparation for the next
Section, where we will combine the Guerra interpolation techniques done for
both of the models in sections 2.4 and 4.7. Then:

Definition 4.13. The partition function associated to the Hamiltonian (4.81)
is

ZN(β, λ) =e−
β

2N

∑
iµ(ξµi )2

∑

σ

exp
{ β

2N

N∑

i,j=1

ξ̃iξ̃jσiσj +
β

2N

N∑

i,j=1

P−1∑

µ=1

ξµi ξ
µ
j σiσj

}
.

(4.83)
1In this equality, we used the identity

∑
i,j xixj =

∑
i x

2
i + 2

∑
i<j xixj and included

the self-interaction on the Boolean part with an error vanishing in the thermodynamic
limit.
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Even though the partition function ZN , and the functions that we will
obtain from it, is also a function of the patterns, to simplify the notation
we only leave visible (as standard in this thesis) the dependency from the
parameters β and λ.

Our ultimate goal is to write an explicit expression for the thermodynamic
limit of the quenched free energy density fN(β, λ) or of the statistical pressure
αN(β, λ) in the order parameters. After that, we want to find the minimizing
measures for the free energy by deriving this expression with respect to the
order parameters. As a result, we will get the self-consistency equations for
the latters, whose solutions will be the ones we are looking for to have the
actual value of the free energy of the system at the equilbrium. For practical
reasons, we choose to work on the quenched intensive pressure αN(β, λ), of
which we remind the definition:

Definition 4.14. The statistical pressure and the free energy of the hybrid
Hopfield model (4.81) are

αN(β, λ) = −βfN(β) =
1

N
E logZN(β), (4.84)

where E stands for the average over the quenched memories for any generic
function F (ξ, ξ̃) depending on ξ and ξ̃, that is

E[F (ξ, ξ̃)] =

∫ P−1∏

µ=1

N∏

i=1

dξµi√
2π
e−

(ξ
µ
i

)2

2 ·
N∏

j=1

∑

{ξ̃j}

1

2
F (ξ, ξ̃). (4.85)

As we did for standard Hopfield model, it is now useful to apply the
Gaussian integration to linearize the second factor of equation (4.83) with
respect to the bilinear quenched memories carried by ξµi ξ

µ
j :

ZN(β, λ) = exp
(
− β

2N

∑

i

∑

µ

(ξµi )2
)
·

·
∑

σ

exp
{ β

2N

N∑

i,j=1

ξ̃iξ̃jσiσj +
β

2N

N∑

i,j=1

P−1∑

µ=1

ξµi ξ
µ
j σiσj

}
=

= exp
(
− β

2N

∑

iµ

(ξµi )2
)∑

σ

exp
{ β

2N

N∑

i,j=1

ξ̃iξ̃jσiσj

}
·

·
∫

RP−1

dµ(z) exp
{√ β

N

P−1∑

µ=1

N∑

i=1

ξµi σizµ

}
,

(4.86)
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where dµ(z) =
∏P−1

µ=1
dzµ√

2π
ez

2
µ/2 is the (P − 1)-dimensional Gaussian measure.

Therefore, using the definition of αN given in (4.84) and equations (4.83) and
(4.86), we have

αN(β, λ) =− λβ

2
+

1

N
E log

∑

σ

exp
{ β

2N

∑

ij

ξ̃iξ̃jσiσj

}
·

·
∫

RP−1

dµ(z) exp
{√ β

N

P−1∑

µ=1

N∑

i=1

ξµi σizµ

}
.

(4.87)

Given expression (4.87), we can notice that the second term is factorized into
an exponential that refers to the binary pattern and the other one referring
to the gaussian patterns. As mentioned previously after equation (4.82), the
presence of these two distinct factors recalling the Curie-Weiss and the Hop-
field models, suggests the choice of an interpolation function that combines
the ones used in these cases. Therefore, we shall proceed in perfect analogy
with sections 2.4 and 4.7. To do so, we have to introduce four tunable pa-
rameters A,B,C, ψ (to be fixed later) and two classes {ηi}Ni=1 and {θµ}p−1

µ=1

of i.i.d. N(0, 1) variables. Therefore, with the use of a parameter t ∈ [0, 1],
we can define the following interpolating functions.

Definition 4.15. The interpolating partition function for the simple hybrid
Hopfield network is the following:

ZN(β, λ; t)
.

=ZN(t) = e−
β

2N

∑
i

∑
µ(ξµi )2

∑

σ

∫
dµ(z) exp

{
t
β

2
Nm2

}
·

· exp
{

(1− t)ψNm+
√
t

√
β

N

N∑

i=1

P−1∑

µ=1

ξµi σizµ

}
·

· exp
{
A
√

1− t
N∑

i=1

ηiσi +B
√

1− t
P−1∑

µ=1

θµzµ

}
·

· exp
{

(1− t)C
2

P−1∑

µ=1

z2
µ

}
,

(4.88)

and the interpolating quenched intensive pressure is

αN(β, λ; t)
.

= αN(t) =
1

N
E logZN(t). (4.89)

Again, it is simple to check that we recover the same interpolating prop-
erties that we had for the separate models. In fact, αN(t = 1) = αN(β, λ)
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and αN(t = 0) is made of a series of one-body systems. Furthermore, thanks
to equation (4.88), we can extend the Gibbs measures ω and Ω to their in-
terpolating counterparts ωt and Ωt. We can therefore introduce the average
〈·〉t = EΩt recovering the proper measures for t = 1. Hence, assuming that
αN(t) is sufficiently regular, we give the expression for the quenched intensive
pressure using as usual the fundamental theorem of calculus:

Proposition 4.4. The thermodynamic limit of the quenched free energy of
the hybrid Hopfield model is realized as

αN(β, λ) = αN(t = 1) = αN(t = 0) +

∫ 1

0

ds
[
∂tαN(t)

]
t=s
. (4.90)

Since αN(t = 0) = 1
N
E logZN(t = 0) consists in one-body systems, we

can directly evaluated it. Thus, we obtain

ZN(t = 0) = e−
β

2N

∑
iµ(ξµi )2

∑

σ

exp
{
ψ

N∑

i=1

ξ̃iσi + A
N∑

i=1

ηiσi

}
·

·
∫
dµ(z) exp

{C
2

P−1∑

µ=1

z2
µ +B

P−1∑

µ=1

θµzµ

}
=

= e−
β

2N

∑
iµ(ξµi )2

( N∏

i=1

∑

σ

e(ψ+Aηi)σi
)∫ P−1∏

µ=1

dzµ√
2π
e−( 1−C

2 )z2
µ+Bθµzµ =

= e−
β

2N

∑
iµ(ξµi )2

(
2N

N∏

i=1

cosh(ψξ̃i + Aηi)
) e

P−1
2(1−C)

B2θ2

(1− C)(P−1)/2
,

(4.91)

where θ ∼ N(0, 1). Consequently, the associated intensive pressure is

αN(t = 0) = −λβ
2

+E log 2 cosh(ψξ̃+Aθ)− λ
2

log(1−C)+
λB2

2(1− C)
. (4.92)

Finally, we have to calculate ∂tαN(t) = ∂t
1
N
E logZN(t). In this computation,

it is convenient to observe that it is the sum of six terms (I, II, III, IV, V,
VI), each coming from the derivation of the corresponding exponential term
in equation (4.88).
Terms I and II come from the boolean section and their calculation is straight-
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forward:

I =
1

N
E
[ 1

ZN(t)

∫
dµ(z)

∑

σ

β

2
Nm2BN(t)

]
=

=
β

2
Eωt(m2)

(4.93)

II =
1

N
E
[ 1

ZN(t)

∫
dµ(z)

∑

σ

(−ψNm)BN(t)
]

=

= −ψEωt(m),

(4.94)

where BN(t) is the generalized Boltzmann state. For terms III, IV and V,
we proceed in perfect analogy with section 4.7 by using Wick theorem on the
patterns and the auxiliary fields:

III =
1

N
E
[∑

σ

∫
dµ(z)

√
β

N

N,P−1∑

i,µ

ξµi σizµ·
1

2
√
t
BN(t)

]
=

=

√
β

2N
√
Nt

N,P−1∑

i,µ

E
[
ξµi ωt(σizµ)

]
=

=

√
β

2N
√
Nt

N,P−1∑

i,µ

E
[
∂ξµi ωt(σizµ)

]
=

=
β

2N

P−1∑

µ=1

Eωt(z2
µ)− λβ

2
〈q12p12〉t;

(4.95)

IV =
1

N
E
[ 1

ZN(t)

∑

σ

∫
dµ(z)

−A
2
√

1− t

N∑

i=1

ηiσiBN(t)
]

=

=
−A

2N
√

1− t

N∑

i=1

E
[
ηiωt(σi)

]
=

=
−A

2N
√

1− t

N∑

i=1

E
[
∂ηiωt(σi)

]
=

= −A
2

2

(
1− 〈q12〉t

)
;

(4.96)
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V =
1

N
E
[ 1

ZN(t)

∑

σ

∫
dµ(z)

−B
2
√

1− t

P−1∑

µ=1

θµzµBN(t)
]

=

=
−B

2N
√

1− t

P−1∑

µ=1

E
[
θµωt(zµ)

]
=

−B
2N
√

1− t
E
[
∂θµωt(zµ)

]
=

= −B
2

2N

P−1∑

µ=1

Eωt(z2
µ) +

λB2

2
〈p12〉t.

(4.97)

Finally, the term VI is easily computed with standard Gaussian integration,
so

VI =
1

N
E
[ 1

ZN(t)

∑

σ

∫
dµ(z)

−C
2

P−1∑

µ=1

z2
µBN(t)

]
=

= − C

2N

P−1∑

µ=1

Eωt(z2
µ).

(4.98)

Summing the final expressions of equations (4.93), (4.94), (4.95), (4.96),
(4.97) and (4.98), we get

∂αN
∂t

(t) = Eωt
(β

2

(
m2 − 2ψ

β
m
))

+
1

2N

(
β −B2 − C

) P−1∑

µ=1

Eωt(z2
µ)+

− λβ

〈q12p12〉t
− A2

2

(
1− 〈q12〉t

)
+
λB2

2
〈p12〉t.

(4.99)

Again, to assume the the replica symmetric ansatz, we require that the order
parameters m, q12, p12 do not fluctuate with respect to the quenched average
in the thermodynamic limit, so we introduce the only values that they can
acquire:

〈m〉t = m̄, 〈q12〉t = q, 〈p12〉t = p.

We now fix the four parameters A,B,C, ψ in order to simplify the expression
of αN(t), then making the RS Ansatz in the thermodynamic limit. We choose

A =
√
λβp, B =

√
βq, C = β(1− q), ψ = m̄β, (4.100)

where the choice of ψ can be justified for the same reasons that we illustrated
in section 2.4. Replacing these values and adding and subtracting λβ

2
qp in

Eq. (4.99), we have

∂αN
∂t

(t) =
β

2
Eωt((m− m̄2))− 1

2
βm̄2 − λβ

2
〈(q12 − q)(p12 − p)〉t −

λβ

2
p(1− q).

(4.101)
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According to Eq. (4.90), we can finally write the explicit expression for the
quenched pressure at a finite volume N using expressions (4.92) and (4.101)

αN(β, λ) =− λβ

2
+ log 2 + E log cosh(βm̄+

√
λβpθ)− λ

2
log
(
1− β(1− q)

)
+

− λβ

2
· q

1− β(1− q)
+
β

2
Eωt((m− m̄)2)− β

2
m̄2+

− λβ

2
〈(q12 − q)(p12 − p)〉t −

λβ

2
p(1− q).

(4.102)

Finally, performing the thermodynamic limit of the previous equation and
making the RS ansatz, we have that

Eωt((m− m̄)2) −→
N→∞

0,

〈(q12 − q)(p12 − p)〉t −→
N→∞

0,

so we can state the following theorem

Theorem 4.7. The replica symmetric thermodynamic limit of the free en-
ergy density of the hybrid Hopfield neural network with N Ising spins σi ∈
{−1,+1} ∀i = 1, . . . , N , one binary pattern and a high load of P − 1 real
patterns, described by the Hamiltonian (4.82), is determined by the minimum
value of the following function:

f(β, λ) = − 1

β
α(β, λ),

where

α(β, λ) =− λβ

2
+ log 2 + E log cosh(βm+

√
λβpθ)− 1

2
βm2+

− λ

2
log
(
1− β(1− q)

)
+

λβq

2
(
1− β(1− q)

) − λβ

2
p(1− q),

(4.103)

where the order parameter m, q and p are respectively the magnetization, the
binary and real overlaps.

Note that, for the sake of notation homogeneity, in previous the we
dropped the bar over the thermodynamic value for the magnetization.

Remark 4.11. For λ = 0, we obtain the classic intensive pressure of the
Curie-Weiss model, see Chapter 2. Furthermore, eliminating the Boolean
pattern, i.e. putting m = 0, we recover the expression for the Hopfield
network with a high load of analogical patterns (4.76).
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To find the value of the free energy of the system, according to the mini-
mum energy principle and the maximum entropy principle, we have to values
for the order parameters in which f is minimized (or α is maximized). To
achieve this, we derive equation (4.103) with respect to its order parameters
and set the result equal to zero, thus obtaining the self-consistency relations.

∂α

∂p
=

∂

∂p

∫ +∞

−∞

dθ√
2π
e−θ

2/2 log cosh(βm+
√
λβpθ)− λβ

2
(1− q) =

=

√
λβ

2
√
p

∫ +∞

−∞

dθ√
2π
θe−θ

2/2 tanh(βm+
√
λβpθ) =

= −λβ
2

∫ +∞

−∞
dµ(θ) tanh2(βm+

√
λβpθ) +

λβ

2
− λβ

2
(1− q) = 0,

(4.104)

where we have performed an integration by parts in to get to the third
equation, and

∂α

∂q
=
λβ

2

[
− 1

1− β(1− q)
+

1− β
(1− β(1− q))2

+ p

]
= 0 (4.105)

∂α

∂m
=

∂

∂m

∫
dµ(θ) log cosh(βm+

√
λβpθ)− βm =

=

∫ +∞

−∞
dµ(θ) tanh(βm+

√
λβpθ)β − βm = 0.

(4.106)

Hence, we get the three self-consistency equations

m =

∫

R
d(θ) tanh(βm+

√
λβpθ), (4.107)

q =

∫

R
dµ(θ) tanh2(βm+

√
λβpθ), (4.108)

p =
βq

(
1− β(1− q)

)2 . (4.109)

From these equations we find that q has a second order transition phase,
thus giving the SG-paramagnetic transition, while we the magnetization m̄
doesn’t only have the null value as a solution to (4.107), thus showing a first
order transition phase from a ferromagnetic state to a paramagnetic one.
We can finally assert that the hybrid Hopfield neural network with one
boolean pattern and a high load of real patters presents a retrieval phase
of the boolean memory. The details of these last considerations will be illus-
trated in the next section with an appropriate phase diagram, because this
simple model is just a particular case of the general one with a low storage
of boolean patterns.
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4.7.2 The hybrid case: many Boolean patterns in a
real sea

After studying the hybrid model with one boolean pattern and a high
load of real patterns, it comes naturally to wonder whether the non trivial
case of a hybrid network with the same amount of real patters but with a low
load of binary ones will behave in the same way. To answer to this question,
we have combined two different solving strategies: the stochastic stability
and the Hamilton-Jacobi technique.

We will assign the variables ξ̃ν , ν = 1, . . . , K ∼ γ logN to the dychotomic
patterns and ξµ, µ = 1, . . . , P ∼ λN to the real ones (obviously γ, λ ≥ 0).
The probability distribution generating the patterns are respectively

{
P{ξ̃νi = 1} = P{ξ̃νi = −1} = 1

2
∀i = 1, . . . , N and ν = 1, . . . , k

ξµi ∼ N(0, 1) ∀i = 1, . . . , N and µ = 1, . . . , p.

Following the description of the generic Hopfield neural network given in
(4.2), we then define

Definition 4.16. The Hamiltonian function for the hybrid Hopfield neural
network with a high load P of real patterns and a low load K of boolean
memories is

HN(σ|ξ, ξ̃) =− 1

N

∑

1≤i<j≤N

K∑

ν=1

ξ̃νi ξ̃
ν
j σiσj −

1

N

∑

1≤i<j≤N

P∑

µ=1

ξµi ξ
µ
j σiσj =

=− 1

2N

N∑

i,j=1

K∑

ν=1

ξ̃νi ξ̃
ν
j σiσj −

1

2N

N∑

i,j=1

P∑

µ=1

ξµi ξ
µ
j σiσj +

k

2

+
1

2N

N∑

i=1

P∑

µ=1

(ξµi )2 .

(4.110)

Of course, the average over the quenched memories {ξ̃νi }i,ν and {ξµi }i,µ for
a generic function F (ξ, ξ̃) is now

E
[
F (ξ, ξ̃)

]
=

∫ P∏

µ=1

N∏

i=1

dξµi√
2π
e−

(ξ
µ
i

)2

2 ·
k∏

ν=1

N∏

j=1

∑

{ξ̃νj }

1

2
F (ξ, ξ̃).

In the partition function, we first notice that we can isolate the diagonal
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factor as follows:

ZN(β, λ) = exp
{
− βK

2
+

β

2N

N∑

i=1

P∑

µ=1

(ξµi )2
}
·

·
∑

σ

exp
{ β

2N

N∑

i,j=1

K∑

ν=1

ξ̃νi ξ̃
ν
j σiσj +

β

2N

N∑

i,j=1

P∑

µ=1

ξµi ξ
µ
j σiσj

}
.

(4.111)

Therefore, the pressure density function is

αN(β, λ) =
1

N
E logZN(β, λ) =

=
1

N
E
[
− βK

2
− β

2N

N∑

i=1

P∑

µ=1

(ξµi )2
]
+

+
1

N
E log

(∑

σ

exp
{ β

2N

N∑

i,j=1

K∑

ν=1

ξ̃νi ξ̃
ν
j σiσj +

β

2N

N∑

i,j=1

P∑

µ=1

ξµi ξ
µ
j σiσj

})
=

=− O(logN/N)− λβ

2
+

+
1

N
E log

(∑

σ

exp
{ β

2N

N∑

i,j=1

K∑

ν=1

ξ̃νi ξ̃
ν
j σiσj +

β

2N

N∑

i,j=1

P∑

µ=1

ξµi ξ
µ
j σiσj

})
,

(4.112)

in which λ = P/N is kept finite for N →∞. The simple Gibbs measure and
the s-replicated one are defined in the standard way (using the appropriate
Hamiltonian obviously for the weights). Again, sometimes it will be conve-
nient to use the notation 〈·〉 instead of Eω(·) or EΩ(·), depending on the
context. Finally, we define the order parameters of our model. For tackling
the quenched noise, we keep the two-replica overlaps q and p we used so far,
while to handle with the signal carried by the digital stored patterns, we in-
troduce (one for each boolean pattern) the standard Mattis magnetizations
as

mν =
1

N

N∑

i=1

ξ̃νi σi ∈ [−1, 1]. (4.113)

As always, we are interested in finding an explicit expression for the pres-
sure density in terms of the order parameters and the set of self-consistency
equations. Looking at expression (4.112), we have to work on the third term
of the equation. One possible way to proceed is to combine the Hamilton-
Jacobi procedure, that will be the main tool for what concerns the Boolean



CHAPTER 4. AI: HOPFIELD NETWORKS 115

section of the model, and the stochastic stability, that we will use for the
analogical part.

Summarizing the process, we will first study a generalized model depend-
ing on the interpolating parameters t ∈ R, x ∈ RK , ψ ∈ [0, 1] such that,
once set to t = β, x = 0 and ψ = 1, we recover our original hybrid network.
Subsequently, we will apply the stochastic stability method to simplify the
expression of the pressure density function. The Hamilton-Jacobi formalism
comes in hand when dealing with the explicit calculation of αN(t, x, ψ = 0)
in which we will interpret one term as the density pressure of a Hopfield
network with binary patterns and an external field. We also highlight the
fact that the order in which we apply these two methods is interchangeable,
and in the next Section we show how, reasonably proceeding the other way
around, we obtain the same results.

It is useful to repeat what we have done in equation (4.86) to linearize
the gaussian section of the pressure density function αN(β). Following the
same steps, we define

Definition 4.17. The generalized partition function for the hybrid Hopfield
neural network in this framework is

ZN(t,x, ψ) = exp
{
− βK

2
− β

2N

N∑

i=1

P∑

µ=1

(ξµi )2
}
·

∑

σ

∫

RP
dµ(z) exp

{ t

2N

N∑

i,j=1

K∑

ν=1

ξ̃νi ξ̃
ν
j σiσj +

K∑

ν=1

xν

N∑

i=1

ξ̃νi σi

}
·

· exp
{√

ψ

√
β

N

P∑

µ=1

N∑

i=1

ξµi σizµ + A
√

1− ψ
N∑

i=1

ηiσi

}
·

· exp
{
B
√

1− ψ
P∑

µ=1

θµzµ + C
1− ψ

2

P∑

µ=1

(zµ)2
}
,

(4.114)

with θµ, ηi ∼ N(0, 1) ∀µ = 1, . . . , P , i = 1, . . . , N .

In the same fashion as previous cases, we can extend the Gibbs measures
to ωt,x,ψ and Ωt,x,ψ and the overall average to 〈·〉t,x,ψ. We stress the fact
these quantities maintain the same interpolation properties of the partition
function, thus recovering standard statistical mechanics measures ones we
set t = β, x = 0 and ψ = 1.
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Proposition 4.5. As standard at this point, in order to obtain an explicit
expression for the quenched free energy of the hybrid Hopfield model, we apply
the Fundamental Theorem of Calculus to αN(t,x, ψ) in the ψ variable:

αN(t,x)
.

= αN(t,x, ψ = 1) =

= αN(t,x, ψ = 0) +

∫ 1

0

dϕ
[
∂ψαN(t,x, ψ)

]
ψ=ϕ

.
(4.115)

To compute the first term we only have to go through a standard Gaussian
integration, hence

αN(t,x, ψ = 0) = −O(logN/N)− λβ

2
+

+
1

N
E
[

log
∑

σ

exp
{ t

2N

N∑

i,j=1

K∑

ν=1

ξ̃νi ξ̃
ν
j σiσj +

K∑

ν=1

xν

N∑

i=1

ξ̃νi σi + A

N∑

i=1

ηiσi

}
·

·
∫

RP

dz1 · · · dzP
(2π)P/2

exp
{ P∑

µ=1

(
Bθµzµ +

C − 1

2
z2
µ

)}]
=

=− O(logN/N)− λβ

2
+

1

N
E log

( 1

(1− C)P/2
e

B2θ2

2(1−C)
P
)

+

+
1

N
E log

∑

σ

exp
{ t

2N

N∑

i,j=1

K∑

ν=1

ξ̃νi ξ̃
ν
j σiσj +

K∑

ν=1

xν

N∑

i=1

ξ̃νi σi + A
N∑

i=1

ηiσi

}
.

(4.116)

Is now important to notice that the fourth term of Eq. (4.116), i.e. the
second expected value, can be interpreted as the generalized pressure density
function α̃N(t,x) of a Hopfield network with K binary patterns {ξ̃ν} and an
external field hi = A

∑
i ηi, with a generalized partition function

Z̃N(t,x) =
∑

σ

exp
{tN

2

K∑

ν=1

m2
ν +N

K∑

ν=1

xνmν + A

N∑

i=1

ηiσi

}
,

in which we explicit the dependency on the Mattis magnetizations, the or-
der parameter defined in Eq. (4.113). These observations lead to the choice
of applying of the Hamilton-Jacobi formalism to solve the matter in hand,
and we are now going to follow the technique’s guidelines we have illustrated
in the previous chapters to tackle this issue. For the sake of clearness, we
shall summarize the main steps: we first check the properties of α̃N(t,x)’s
derivatives and notice that we can define a Hamilton-Jacobi action that is
equal to α̃N(t,x) (but with the opposite sign). As a second step, we intro-
duce a vector ΓN(t, x) depending on the generalized pressure and satisfying
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a Burgers-like equation. By performing a Cole-Hopf transform, we arrive to
a heat equation which we solve using standard methods. The solution to
this equation can be obtained via saddle point method and, being α̃N(t,x)
in a logarithmic relation with this function, so we can compute the thermo-
dynamic limit for the pressure function and set the interpolating parameters
to the ones recovering our model. Now let ys go into details.

It is simple to check that α̃N(t,x) has the following properties:

∂tα̃N(t,x) =
1

2

K∑

ν=1

〈m2
ν〉t,x, ∂xν α̃N(t,x) = 〈mν〉t,x, (4.117)

so we can now proceed according to the Hamilton-Jacobi formalism. In
fact, if we consider −α̃N(t,x), it is immediate to check that, thanks to the
properties (4.117), we built a Hamilton-Jacobi action, hence

∂t
(
−α̃N(t,x)

)
+

1

2

(
∂xα̃N(t,x)

)2
+ VN(t, x) = 0, (4.118)

with a potential VN(t,x) = 1
2

∑
ν

(
〈m2

ν〉t,x − 〈mν〉2t,x
)

= 1
2N
∇2
xα̃N(t,x). So,

introducing the vector ΓνN(t,x) = −∂xν α̃N(t,x), we obtain the Burgers equa-
tions by deriving equation (4.118) with respect to xν :

∂tΓ
ν
N(t,x) +

k∑

τ=1

ΓτN(t,x)· ∂xτΓνN(t,x) =
1

2N

k∑

τ=1

∂2
xτxτΓ

ν
N(t,x), ∀ν.

(4.119)
Performing the Cole-Hopf transformation ΦN(t,x) := eNα̃N (t,x), we can assert
that solving (4.119) is equivalent to solve the Cauchy problem

{
∂ΦN(t,x)− 1

2N
∆ΦN(t,x) = 0, t ∈ R, x ∈ RK

ΦN(0,x) = eNα̃N (0,x), x ∈ RK .
(4.120)

We solve the problem above through the standard techniques we used in
sections 2.5 and 3.6 for the CW and the SK models, therefore introducing the
general solution as convolution of the initial data and the Green propagator
G as

ΦN(t,x) =

∫

RK
dx′1 · · · dx′KG(t,x− x′)ΦN(0,x′), (4.121)

where G(t,x) = ( N
2πt

)K/2e−
∑
ν x

2
νN

2t . The computations for the initial condition
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ΦN(0,x) are not elaborate:

ΦN(0,x) = exp
{
E log

∑

σ

exp
{∑

i

∑

ν

xν ξ̃
ν
i σi + A

∑

i

ηiσi

}}
=

= exp
{
E log

N∏

i=1

∑

σ

e

(∑
ν xν ξ̃

ν
i +Aηi

)
σi
}

=

= exp
{
N log 2 +

N∑

i=1

E log cosh
( K∑

ν=1

ξ̃νi xν + Aηi

)}
.

The solution to the problem (4.120) is therefore given by the following saddle
point equation:

ΦN(t,x) =
( N

2πt

)K/2 ∫

RK
dx′1 · · · dx′Ke−Ng(t,x,x

′),

where

g(t,x,x′) =
1

2t

K∑

ν=1

(xν − x′ν)2 − log 2− 1

N

N∑

i=1

E log cosh
( K∑

ν=1

ξ̃νi x
′
ν + Aηi

)
.

(4.122)
Recalling that α̃N(t,x) = 1

N
log ΦN(t,x), when performing the thermody-

namic limit (which is what we are ultimately interested in), we have that
α̃(t,x) is determined by

α̃(t,x) = lim
N→∞

α̃N(t,x) = − min
x′∈RK

g(t,x,x′). (4.123)

Equation (4.115) is almost all explicit. What is now left to be calculated is
the integral term, for which it is sufficient to calculate the ψ-derivative of the
pressure function. The process is analogous with the one adopted in Section
4.7.1, and we shall not report all the steps of the calculations:

∂ψα̃N(t,x) =
1

N
E
∂ψZN(t,x, ψ)

ZN(t,x, ψ)
=

1

2N
(β −B2 − C)

P∑

µ=1

Eω(z2
µ)t,x+

− λβ

2
〈q12p12〉t,x −

A2

2
(1− 〈q12〉t,x) +

λβ2

2
〈p12〉t,x.

(4.124)

Again we have that, in the replica symmetric Ansatz, the order parameters
m, q12, p12 do not fluctuate with respect to the quenched average, so let us
define the only values that they can acquire: 〈m〉t,x = m̄, 〈q12〉t,x = q,
〈p12〉t,x = p. Fixing the tunable parameters as

A =
√
λβp, B =

√
βq, C = β(1− q),
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and adding and subtracting the term λβ
2
qp in Eq. (4.124), we have

∂ψα̃N(t,x) = −λβ
2
〈(q12 − q)(p12 − p)〉t,x −

λβ

2
p(1− q). (4.125)

Also in this case we point out that, even though in the definition of the
overlaps qab and pab we showed that these quantities can take negative values,
we will verify in the self-consistency equations that these quantities can only
take non-negative values, without conflicts with the choice of the tunable
parameters.

To get the final expression of the thermodynamic limit of the pressure
density, we shall make the RS ansatz in (4.125), perform the N → ∞ limit
in both (4.125) and (4.116) and set t = β, x = 0. Therefore, performing the
minimization of the function (4.122), with the values of t and x that we fixed
just now, we have to set x′ν = βm̄ν ∀ν = 1, . . . , K. We can finally conclude
the section with the following theorem.

Theorem 4.8. The replica symmetric thermodynamic limit of the free en-
ergy density of the hybrid Hopfield neural network with N Ising spins σi ∈
{−1,+1} ∀i = 1, . . . , N , a low load (i.e. K ∼ γ logN) of binary patterns
and a high load (i.e. P ∼ λN) real patters, described by the Hamiltonian
(4.110) is determined by the minimum value of

f(β, λ) = − 1

β
α(β, λ),

where

α(β, λ) =− λβ

2
− λ

2
log
(
1− β(1− q)

)
+

λβq

2
(
1− β(1− q)

) − β

2

∑

ν

m2
ν+

+

∫ +∞

−∞
dµ(η)E log 2 cosh(β

∑

ν

ξ̃νmν +
√
λβpη)− λβ

2
p(1− q),

(4.126)

with E being the average over the binary patterns and η ∼ N(0, 1).

Also in this case, we dropped the bar over m to make notation coherent
with other Chapters, but we remind that it should be always intended as
the thermodynamic limit of Mattis magnetization in the replica symmetry
assumption.

Remark 4.12. Like for the previous models, we highlight the fact that, for
λ = 0 and ν = 1, we gain the CW pressure density function. If λ > 0 and
ν = 1, we recover the equation for the basic case of one boolean pattern and
a high load of analogical memories (4.103). Finally, if λ = 0 we precisely
recover the CW expression for the quenched pressure.
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As always, we conclude this Section by deriving the self-consistency for
the order parameters minimizing the free energy, or equivalently maximizing
the statistical pressure. The derivative expressions are the following:

∂α

∂q
=
λβ

2

(
− βq
(
1− β(1− q)

)2

)
= 0,

∂α

∂p
= −λβ

2
(1− q) +

∫ +∞

−∞
dµ(η)E

(
tanh

(
β
∑

ν

ξ̃νmν +
√
λβpη

)η
2

√
λβ

p

)
= 0,

∂α

∂mν

= βmν −
∫ +∞

−∞
dµ(η)E

(
tanh

(
β
∑

ν

ξ̃νmν +
√
λβpη

)
βξ̃ν
)

= 0.

Applying an integration by part to the second equation, we have

mν =

∫ +∞

−∞
dµ(η)E ξ̃ν tanh

(
β

K∑

ν=1

ξ̃νmν +
√
λβpη

)
, (4.127)

q =

∫ +∞

−∞
dµ(η)E tanh2

(
β

K∑

ν=1

ξ̃νmν +
√
λβpη

)
, (4.128)

p =
βq

(
1− β(1− q)

)2 . (4.129)

Again, the SG-paramagnetic transition is of the second order with a crit-
ical exponent equal to 1, while the paramagnetic-ferromagnetic transition
is of the first degree with a critical exponent equal to 1/2. While the SG-
paramagnetic line can be found analytically, to be able to detect the transi-
tion from the retrieval phase to the SG one we need computer calculations.
Considering expression (4.128), one can approximate the square of the hy-
perbolic tangent with its argument and then use the Taylor expansion of the
latter for q ∼ 0, thus having:

q ' β2λ

(1− β)2
q + O(q2).

Then, the transition line is given by equation

β2λ

(1− β)2
= 1 ⇔ T = 1 +

√
λ.

For the numerical calculations we performed the pure state ansatz, mean-
ing that we assumed that we can eventually retrieve one pattern at the time,
thus having only one possible mν 6= 0. The program calculates the values
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of α(β, λ) in many different points of the {λ, β} plane, and plots the points
where the minimizing value of the order paramenter mν goes from being non
vanishing (the retrieval phase) to being equal to zero (the SG phase). What
we obtained is the scheme reported in 4.5.

I
II

III

IV

Figure 4.5: Phase diagram for the hybrid Hopfield neural network.
From the bottom to the top: pure retrieval region (I), in which pure states
are global minima for the free energy; mixed retrieval region (II), in which
pure states are only local minima for the free energy; spin-glass (III) and
ergodic (IV) regions.

The {λ, T} plane is divided into three regions. The one above the green
(SG-paramagnetic) line is where the system behaves as a paramagnet because
the noise created by the temperature is too high and the neurons can only
behave randomly, and the average magnetization and the average overlap
are both null. This line is determined analytically with the calculations we
performed above. The points on the SG-paramagnetic line represent the
values (λ, T ) such that the order parameter q goes from being positive to
zero, hence presenting a (second order) phase transition.

Between the green and the blue line we recover a spin-glass behaviour,
with the average magnetization equal to zero and a positive average overlap.

Finally, between the plane axes and the blue line, we have the retrieval
region. Here, we have a positive value for the average magnetization and for
the average overlap. The blue line has been traced thanks to a numerical
simulation that locates the (λ, T ) points where we have a (first order) phase
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transition for the magnetization, which goes from being null (spin-glass and
paramagnetic behaviour) to noon vanishing (as the temperature decreases).

From this plot we can conclude that the hybrid Hopfield neural network
with a high storage of real patterns presents a retrieval phase of the boolean
patterns memorized in a low load. Furthermore, we notice how the SG-
paramagnetic line is determined by the same equation as the previous basic
model and as the one belonging to the classic Hopfield neural network [37].



Chapter 5

Learning phase of AI: the
Boltzmann machine

Until now, we focused on the retrieval capabilities of neural networks, but
before we can be able to retrieve a pattern of information, we have to learn
it. This is the field of the branch of AI termed machine learning. The aim
of this Chapter is to give the basic definition of a learning algorithm (giving
two key examples, namely linear regression and the perceptron training), in
order to define the archetype of a learning machine, namely the Restricted
Boltzmann Machine, coupled with its learning rule (namely the Hinton’s
contrastive divergence), and link the learning capabilities of this machine
with the retrieval skills of the Hopfield network by proving that the two
models, ultimately, share the same quenched free energy (and thus the same
phase diagram).

Generally speaking, for a (Boltzmann) machine to be able to learn, it
must have (at least) a visible layer (where a set of binary data vectors can
be presented) and an hidden layer to process the information provided to
the visible layer (also another output layer is often considered, however the
minimal model can still be thought of as an elementary two-party network).
In order to learn, the machine must rearrange its internal connections (e.g.
weights), ultimately mimicking synaptic dynamics rather than neural one
(that is due to information retrieval as we largely saw at this point).

5.1 Generalities

A machine learning algorithm is an algorithm that is able to learn from
data. But what do we mean by learning? T. M. Mitchell provides the
following definition: “A computer program is said to learn from experience
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Ewith respect to some class of tasks T and performance measure P, if its
performance at tasks in T , as measured by P, improves with experience E.”

One can imagine a very wide variety of experiences E , tasks T , and per-
formance measures P , and we do not make any attempt in these thesis to
provide a formal definition of what may be used for each of these entities.
Instead, this Section provides intuitive descriptions and examples of the dif-
ferent kinds of tasks, performance measures and experiences that can be used
to construct machine learning algorithms.

The task, T
The process of learning itself is not the task, as it is solely our means of

attaining the ability to perform the task. For example, if we want a robot
to be able to walk, then walking is the task. We could program the robot to
learn to walk, or we could attempt to directly write a program that specifies
how to walk manually.

Machine learning tasks are usually described in terms of how the machine
learning system should process an example. An example is a collection of
features that have been quantitatively measured from some object or event
that we want the machine learning system to process. We typically represent
an example as a vector x ∈ Rn where each entry xi of the vector is a feature.
For example, the features of an image are usually the values of the pixels in
the image.

Many kinds of tasks can be solved with machine learning. Some of the
most common machine learning tasks include the following:

• Classification: In this type of task, the computer program is asked
to specify which of k categories some input belongs to. To solve this
task, the learning algorithm is usually asked to produce a function
f : Rn → {1, . . . , k}. When y = f(x), the model assigns an input de-
scribed by vector x to a category identified by numeric code y. There
are other variants of the classification task, for example, where f out-
puts a probability distribution over classes. An example of a classifi-
cation task is object recognition, where the input is an image (usually
described as a set of pixel brightness values), and the output is a nu-
meric code identifying the object in the image. Modern object recog-
nition is best accomplished with deep learning, the ultimate frontier of
machine learning (we won’t address it directly in this thesis, so we refer
to [57, 114, 120]). Object recognition is the same basic technology that
allows computers to recognize faces.
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• Classification with missing inputs : Classification becomes more chal-
lenging if the computer program is not guaranteed that every measure-
ment in its input vector will always be provided. In order to solve the
classification task, the learning algorithm only has to define a single
function mapping from a vector input to a categorical output. When
some of the inputs may be missing, rather than providing a single classi-
fication function, the learning algorithm must learn a set of functions.
Each function corresponds to classifying x with a different subset of
its inputs missing. This kind of situation arises frequently in medical
diagnosis, because many kinds of medical tests are expensive or inva-
sive. One way to efficiently define such a large set of functions is to
learn a probability distribution over all of the relevant variables, then
solve the classification task by marginalizing out the missing variables.
With n input variables, we can now obtain all 2n different classification
functions needed for each possible set of missing inputs, but we only
need to learn a single function describing the joint probability distri-
bution. Many of the other tasks described in this Section can also be
generalized to work with missing inputs.

• Regression: In this type of task, the computer program is asked to
predict a numerical value given some input. To solve this task, the
learning algorithm is asked to output a function f : Rn → R. This
type of task is similar to classification, except that the format of output
is different. An example of a regression task is the prediction of the
expected claim amount that an insured person will make (used to set
insurance premiums), or the prediction of future prices of securities.
These kinds of predictions are also used for algorithmic trading.

• Transcription: In this type of task, the machine learning system is
asked to observe a relatively unstructured representation of some kind
of data and transcribe it into discrete, textual form. For example, in
optical character recognition, the computer program is shown a pho-
tograph containing an image of text and is asked to return this text
in the form of a sequence of characters (e.g. ASCII format). Google
Street View uses deep learning to process address numbers in this way.
Another example is speech recognition, where the computer program
is provided an audio wave form and emits a sequence of characters
or word ID codes describing the words that were spoken in the au-
dio recording. Deep learning is a crucial component of modern speech
recognition systems used at major companies including Microsoft, IBM
and Google.
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• Density estimation or probability mass function estimation: In the den-
sity estimation problem, the machine learning algorithm is asked to
learn a function Pmodel : Rn → R, where Pmodel(x) can be interpreted
as a probability density function (if x is continuous) or a probability
mass function (if x is discrete) on the space that the examples were
drawn from. To do such a task well (we will specify exactly what that
means when we discuss performance measures P), the algorithm needs
to learn the structure of the data it has seen. It must know where
examples cluster tightly and where they are unlikely to occur. Most
of the tasks described above require the learning algorithm to at least
implicitly capture the structure of the probability distribution. Density
estimation allows us to explicitly capture it. In principle, we can then
perform computations on that distribution in order to solve the other
tasks as well. In practice, density estimation does not always allow us
to solve all of these related tasks, because in many cases the required
operations on P(x) are computationally intractable.

Of course, many other tasks and types of tasks are possible. The types
of tasks we list here are intended only to provide examples of what machine
learning can do, not to define a rigid taxonomy.

5.1.1 The performance measure, P
In order to evaluate the abilities of a machine learning algorithm, we must

design a quantitative measure of its performances. Usually, this performance
measure P is specific to the task T being carried out by the system. For tasks
such as classification, classification with missing inputs, we often measure
the accuracy of the model, which is just the proportion of examples for
which the model produces the correct output. We can also obtain equivalent
information by measuring the error rate, the proportion of examples for which
the model produces an incorrect output. We often refer to the error rate as
the expected 0 − 1 loss. The 0 − 1 loss on a particular example is 0 if it is
correctly classified and 1 if it is not. On the other hand, for tasks such as
density estimation, it does not make sense to measure accuracy, error rate,
or any other kind of 0− 1 loss. Instead, we must use a different performance
metric that gives the model a continuous-valued score for each example. The
most common approach is to report the average log-probability the model
assigns to some examples.

Usually, we are interested in how well the machine learning algorithm
performs on data that it has not seen before, since this determines how well
it will work when deployed in the real world. We therefore evaluate these
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performance measures using a test set of data that is separate from the data
used for training the machine learning system. The choice of performance
measure may seem straightforward and objective, but it is often difficult to
choose one well-describing the desired behavior of the system. In some cases,
this is because it is difficult to decide what should be measured. For example,
when performing a transcription task, should we measure the accuracy of the
system at transcribing entire sequences, or should we use a more fine-grained
performance measure that gives partial credit for getting some elements of
the sequence correct? When performing a regression task, should we penalize
the system more if it frequently makes medium-sized mistakes or if it rarely
makes very large ones? Clearly, these kinds of design choices depend on
the application. In other cases, we know what quantity we would ideally
like to measure, but measuring it is impractical. For example, such kind of
difficulties arises frequently in the context of density estimation. Many of the
best probabilistic models represent probability distributions only implicitly.
Computing the actual probability value assigned to a specific point in space
is intractable in many such models. In these cases, one must design an
alternative criterion that still corresponds to the define objectives, or design
a good approximation to the desired criterion.

5.1.2 The experience, E
Machine learning algorithms can be broadly categorized as unsupervised

or supervised by what kind of experience they are allowed to have during
the learning process. Most of the learning algorithms can be understood as
being allowed to experience an entire dataset. A dataset is a collection of
many examples, as defined earlier. Unsupervised learning algorithms expe-
rience a dataset containing many features, then learn useful properties of
the structure of this dataset. In the context of deep learning, we usually
want to learn the entire probability distribution that generated a dataset,
whether explicitly as in density estimation or implicitly for tasks like synthe-
sis or de-noising. Some other unsupervised learning algorithms perform other
roles, like clustering, which consists of dividing the dataset into clusters of
similar examples. Supervised learning algorithms experience a dataset con-
taining features, but each example is also associated with a label or target.
Roughly speaking, unsupervised learning involves observing several exam-
ples of a random vector x, and attempting to (implicitly or explicitly) learn
the probability distribution P(x) or some of its interesting properties, while
supervised learning involves observing several examples of a random vector
x and an associated value or vector y, and learning to predict y from x by
estimating P(y|x). The term supervised learning originates from the view
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of the target y being provided by an instructor or teacher who shows the
machine learning system what to do. In unsupervised learning, there is no
instructor or teacher, and the algorithm must learn to make sense of the data
without this guide.

Unsupervised learning and supervised learning are not formally defined
terms. The lines between them are often blurred. Many machine learning
technologies can be used to perform both tasks. For example, the chain rule
of probability states that for a vector x ∈ Rn, the joint distribution can be
decomposed as

P(x) =
n∏

i=1

P
(
xi | x1, . . . , xi−1

)
.

This decomposition means that we can solve the ostensibly unsupervised
problem of modeling P(x) by splitting it into n supervised learning problems.
Alternatively, we can solve the supervised learning problem of learning P

(
y|x
)

by using traditional unsupervised learning technologies to learn the joint dis-
tribution P(x,y), and then inferring

P(y | x) =
P(x,y)∑
y′ P(x,y′)

.

Though unsupervised learning and supervised learning are not completely
formal or distinct concepts, they do help to roughly categorize some of the
things we do with machine learning algorithms. Traditionally, people refer to
regression and classification problems as supervised learning. Density esti-
mation in support of other tasks is usually considered unsupervised learning.
Other variants of the learning paradigm are possible. For example, in semi-
supervised learning, some examples include a supervision target but others
do not.

Most machine learning algorithms simply experience a dataset. A dataset
can be described in many ways. In all cases, a dataset is a collection of
examples, which are in turn collections of features. One common way of
describing a dataset is with a design matrix containing a different example in
each row, while each column of the matrix corresponds to a different feature.
Of course, to describe a dataset as a design matrix, it must be possible to
describe each example as a vector, and each of these vectors must be the
same size. This is not always possible. For example, if you have a collection
of photographs with different widths and heights, then different photographs
will contain different numbers of pixels, so not all of the photographs may
be described with the same length of vector. In such cases, rather than
describing the dataset as a matrix with n rows, we will describe it as a set
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containing n elements: {x(1), x(2), ..., x(n)}. This notation does not imply
that any two example vectors x(i) and x(j) have the same size. In the case
of supervised learning, the example contains a label or target as well as a
collection of features. For example, if we want to use a learning algorithm
to perform object recognition from photographs, we need to specify which
object appears in each of the photos. We might do this with a numeric code,
with 0 signifying a person, 1 signifying a car, 2 signifying a cat, etc.

Often, when working with a dataset containing a design matrix of feature
observations X, we also provide a vector of labels y, with yi providing the
label for example i. Of course, sometimes the label may be more than just a
single number. For example, if we want to train a speech recognition system
to transcribe entire sentences, then the label for each example sentence is a
sequence of words. Just as there is no formal definition of supervised and
unsupervised learning,there is no rigid taxonomy of datasets or experiences.

5.1.3 An example of learning algorithm: linear regres-
sion

Our definition of a machine learning algorithm as an algorithm that is
capable of improving the performance of a computer program at some task via
experience is somewhat abstract. To make this more concrete, we present an
example of a simple machine learning algorithm that we all studied - actually
quite similarly to machines - when we were first-year students in Academy:
linear regression. The goal of the algorithm is to build a system that can
take a vector x ∈ Rn as input and predict the value of a scalar y ∈ R as
its output. In the case of linear regression, the output is a linear function of
the input. Let ŷ be the value that our model predicts y should take on. We
define the output to be

ŷ = wT ·x,

where w ∈ Rn is a vector of parameters.

Remark 5.1. Preserving a machine learning notation, we have used the
letter w to refer to parameter vector, i.e. the weight vector. The choice of
swapping w with the letter ξ, as we will do in the next Section, is made when
we want to underline the correspondence between the Boltzmann machines’
weights w and the Hopfield networks patterns ξ.

Parameters are values that control the behavior of the system. In this
case, wi is the coefficient that we multiply by feature xi before summing up
the contributions from all the features. We can think of w as a set of weights
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that determine how each feature affects the prediction. If a feature xi receives
a positive weight wi, then increasing the value of that feature increases the
value of our prediction ŷ. On the contrary, if a feature receives a negative
weight, then increasing the value of that feature decreases the value of our
prediction. If a feature weight is large in magnitude, then it has a large effect
on the prediction. Otherwise, if a feature weight is zero, it has no effect on
the prediction.

We thus have a definition of our task T : to predict y from x by outputting
ŷ = wTx. Next, we need a definition of our performance measure P . Suppose
that we have a design matrix of n example inputs that we will not use for
training, only for evaluating how well the model performs. We also have a
vector of regression targets providing the correct value of y for each of these
examples. Because this dataset will only be used for evaluation, we call it
the test set. We refer to the design matrix of inputs as X(test) and the vector
of regression targets as y(test). One way of measuring the performance of the
model is to compute the mean squared error of the model on the test set.

If ŷ(test) gives the predictions of the model on the test set, then the mean
squared error is given by

MSEtest =
1

n

∑

i

(
ŷ(test) − y(test)

)2

i
.

Intuitively, one can see that this error measure decreases to 0 when ŷ(test) =
y(test). Alternatively, we can see that

MSEtest =
1

n
‖ŷ(test) − y(test)‖2

2,

so the error increases whenever the Euclidean distance between the predic-
tions and the targets increases. To make a machine learning algorithm, we
need to design an algorithm that will improve the weights w such that it
reduces MSEtest when the algorithm is allowed to gain experience by observ-
ing a training set (X(train), y(train)). One intuitive way of doing this is just to
minimize the mean squared error on the training set, MSEtrain.
To minimize MSEtrain, we can simply solve for where its gradient is 0:

∇wMSEtrain = 0 ⇒ 1

n
∇w‖ŷ(train) − y(train)‖2

2 = 0,

⇒ ∇w
(
X(train)w − y(train)

)T(
X(train)w − y(train)

)
= 0,

⇒ 2X(train)TX(train)w − 2X(train)Ty(train) = 0,
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Figure 5.1: A linear regression problem for a training set consisting of ten
data points, each containing one feature. Because there is only one feature,
the weight vector w contains only a single parameter to learn, w1. Left:
bserve in the {x, y} plane that linear regression learns to set w1 such that
the line y = w1x comes as close as possible to passing through all the training
points. Right: the plotted point in the {w1,MSEtrain} plane indicates the
value of w1 found by the normal equations, which we can see minimizes the
mean squared error on the training set.

which leads to

w =
(
X(train)TX(train)

)−1

X(train)Ty(train). (5.1)

The system of equations, whose solution is given by equation (5.1), is known
as the normal equations.

Evaluating equation (5.1) constitutes a simple learning algorithm. For
an example of the linear regression learning algorithm in action, see Fig.
5.1. It is worth noting that the term linear regression is often used to refer
to a slightly more sophisticated model with one additional parameter - an
intercept term b. In this model, ŷ = wT · x + b, so the mapping from
parameters to predictions is still a linear function but the mapping from
features to predictions is now an affine function. This extension means that
the plot of the model’s predictions still looks like a line, but it need not
pass through the origin. Instead of adding the bias parameter b, one can
continue to use the model with only weights but augment x with an extra
entry that is always set to 1. The weight corresponding to the extra 1 entry
plays the role of the bias parameter. The intercept term b is often called the
bias parameter of the affine transformation. This terminology derives from
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the point of view that the output of the transformation is biased toward
being b in the absence of any input. This term is different from the idea
of a statistical bias, in which a statistical estimation algorithm’s expected
estimate of a quantity is not equal to the true quantity.

Linear regression is of course an extremely simple and limited learning
algorithm, but it provides an example of how a learning algorithm can work.

5.1.4 Capicity, overfitting and underfitting

The central challenge in machine learning is that we must perform well
on new, previously unseen inputs — not just those on which our model was
trained. The ability to perform well on previously unobserved inputs is called
generalization. Typically, when training a machine learning model, we have
access to a training set, we can compute some error measure on the training
set called the training error, and we reduce this training error. So far, what
we have described is simply an optimization problem. What separates ma-
chine learning from simple optimization is that we want the generalization
error, also called the test error, to be low as well. The generalization error is
defined as the expected value of the error on a new input, where the expec-
tation is taken across different possible inputs, drawn from the distribution
of inputs we expect the system to encounter in practice. Typically, one es-
timates the generalization error of a machine learning model by measuring
its performance on a test set of examples that were collected separately from
the training set.

In our linear regression example, we trained the model by minimizing the
training error

1

n(train)
‖X(train)w − y(train)‖2

2,

but we actually should also care about the test error

1

n(test)
‖X(test)w − y(test)‖2

2.

How can we affect performance on the test set when we get to observe only
the training set? The field of statistical learning theory provides some an-
swers. If the training and the test set are collected arbitrarily, there is indeed
little we can do. If instead we are allowed to make some assumptions about
how the training and test set are collected, then we can make some progress.
The train and test data are generated by a probability distribution over
datasets called the data generating process. We typically make a set of as-
sumptions known collectively as the i.i.d. assumptions. These assumptions
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are that the examples in each dataset are independent from each other, and
that the train set and test set are identically distributed, drawn from the
same probability distribution as each other. This assumption allows us to
describe the data generating process with a probability distribution over a
single example. The same distribution is then used to generate every train
example and every test example. We call that shared underlying distribution
the data generating distribution, denoted Pdata. This probabilistic framework
and the i.i.d. assumptions allow us to mathematically study the relationship
between training error and test error. As a primary consequence, we can
observe between the training and test error is that the expected training er-
ror of a randomly selected model is equal to the expected test error of that
model.

Suppose we have a probability distribution P(x,y) and we sample from
it repeatedly to generate the train set and the test set. For some fixed value
w, the expected training set error is exactly the same as the expected test set
error, because both expectations are formed using the same dataset sampling
process. The only difference between the two conditions is the name we
assign to the dataset we sample. Of course, when we use a machine learning
algorithm, we do not fix the parameters ahead of time, then sample both
datasets. We sample the training set, then use it to choose the parameters
to reduce training set error, then sample the test set. Under this process, the
expected test error is greater than or equal to the expected value of training
error. The factors determining how well a machine learning algorithm will
perform are its ability to:

1. Make the training error small;

2. Make the gap between training and test error small.

These two factors correspond to the two central challenges in machine learn-
ing: underfitting and overfitting. Underfitting occurs when the model is not
able to obtain a sufficiently low error value on the training set. Overfitting
occurs when the gap between the training error and test error is too large.
We can control whether a model is more likely to overfit or underfit by al-
tering its capacity. Informally, the capacity of a model is its ability to fit a
wide variety of functions. Models with low capacity may struggle to fit the
training set. Models with high capacity can overfit by memorizing properties
of the training set that do not serve them well on the test set.

One way to control the capacity of a learning algorithm is by choosing its
hypothesis space, the set of functions that the learning algorithm is allowed to
select as being the solution. For example, for the linear regression algorithm
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it is the set of all linear functions. We can relax this requirements by allowing
our model to include polynomials, rather than just linear functions, in the
hypothesis space. Doing so, the model capacity increases. A polynomial of
degree one gives us the linear regression model with which we are already
familiar, with prediction ŷ = b + wx. By introducing x2 as another feature,
we can learn a model that is quadratic as a function of x:

ŷ = b+ w1x+ w2x
2.

Though this model implements a quadratic function of its input, the output
is still a linear function of the parameters, so we can still use the normal
equations to train the model in closed form. We can continue to add more
powers of x as additional features, for example to obtain a polynomial of
degree p:

ŷ = b+

p∑

i=1

wix
i.

Machine learning algorithms will generally perform best when their capacity
is appropriate for the true complexity of the task they need to perform and
the amount of training data they are provided with. Models with insufficient
capacity are unable to solve complex tasks. On the other hand, models with
high capacity can solve complex tasks, but when their capacity is higher
than needed to solve the present task they may overfit. Fig. 5.2 shows this
principle in action. We compare a linear, quadratic and degree-9 predictor
attempting to fit a problem where the true underlying function is quadratic.
The linear function is unable to capture the curvature in the true underlying
problem, so it underfits. The degree-9 predictor is capable of representing the
correct function, but it is also capable of representing infinitely many other
functions that pass exactly through the training points, because we have
more parameters than training examples. We have little chance of choosing a
solution that generalizes well when so many wildly different solutions exist. In
this example, the quadratic model is perfectly matched to the true structure
of the task so it generalizes well to new data.

So far, we described only one way of changing the model capacity, i.e. the
number of input features it has, and simultaneously adding new parameters
associated with those features. There are in fact many ways of tuning it.
Capacity is not only determined by the choice of model. Indeed, the specifies
which family of functions the learning algorithm can choose from when vary-
ing the parameters in order to reduce a training objective. This is called the
representational capacity of the model. In many cases, finding the best func-
tion within this family is a very difficult optimization problem. In practice,
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Figure 5.2: Example of underfitting and overfitting issues. We fit
three models to this example training set. The training data was generated
synthetically, by randomly sampling x values and choosing y deterministically
by evaluating a quadratic function. Left: a linear function fit to the data
suffers from underfitting-it cannot capture the curvature that is present in
the data. Center: a quadratic function fit to the data generalizes well to
unseen points. It does not suffer from a significant amount of overfitting
or underfitting. Right: a polynomial of degree 9 fit to the data suffers from
overfitting. The solution passes through all of the training points exactly, but
it doesn’t extract the correct structure. It now has a deep valley in between
two training points that does not appear in the true underlying function. It
also increases sharply on the left side of the data, while the true function
decreases in this area.

the learning algorithm does not actually find the best function, but merely
one that significantly reduces the training error. These additional limita-
tions, such as the imperfection of the optimization algorithm, mean that the
learning algorithm effective capacity may be less than the representational
capacity of the model family.

Our modern ideas about improving the generalization of machine learn-
ing models are refinements of thought dating back to philosophers at least as
early as Ptolemy. Many early scholars invoke a principle of parsimony that
is now most widely known as Occam’s razor (c. 1287-1347). This princi-
ple states that among competing hypotheses explaining known observations
equally well, one should choose the “simplest” one. This idea was formalized
(and made more precise) in the 20th century by the founders of statistical
learning theory, but we will not deepen this argument for it goes beyond the
purpose of this thesis.
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Basically, while simpler functions are more likely to generalize (to have
a small gap between training and test error), we must still choose a suffi-
ciently complex hypothesis to achieve low training error. In practical appli-
cations, training error decreases until it asymptotes to the minimum possible
error value as model capacity increases (assuming the error measure has a
minimum value). Typically, generalization error has a U -shaped curve as a
function of model capacity.

5.2 The Perceptron learning rule

A perceptron [110, 94] is a neural system composed by N input Boolean
spins performing a weighted sum of the signals. The answer function S :
{−1, 1}N → {−1, 1} is therefore S(σ) = sign(

∑
i Jiσi − h), where Ji are

the weights and h is the threshold.1 If we want to train the network in
order to encode a teacher function T (σ), we should invoke the Perceptron
Convergence Theorem [37]:

Theorem 5.1. If the teacher function T (σ) is linearly separable,2 then the
update rule

∆J =
1

2
[T (σ)− sign(J · σ)]σ,

∆h = T (σ),
(5.2)

with randomly chosen σ, will converge to S(σ) = T (σ) in a finite number of
training steps.

An instructive point in this theorem is its continuous version, which is
obtained by putting a learning strength ε � 1 (defining a temporal scale
in which learning is effective) in front of the r.h.s. of equation (5.2) and
taking the ε → 0 limit. In this case, the perceptron learning rule acquires
the suggestive form

dJ

dt
= 〈[T (σ)− sign(J · σ)]σ〉 = − ∂ρ

∂J
, (5.3)

where ρ(J) = 〈(J · σ)[sign(J · σ) − T (σ)]〉. Equation (5.3) is a gradient
descent algorithm, and leads to a fixed point, i.e. to a (local) minima for

1For a statistical mechanics approach to binary perceptrons, see e.g. [70].
2With linear separability, we mean that inputs corresponding to different teacher func-

tion values can be separated by an (hyper-)plane in the configuration space.
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the error function ρ. With such a procedure, the error function decreases
monotonically with the learning time, as it can be easily checked that

dρ

dt
= −

∑

i

( ∂ρ
∂Ji

)2

≤ 0, (5.4)

until a fixed point is reached.

Gradient descent methods (and their stochastic generalizations) are com-
monly used in optimization problems, since they aim to find minima for a gen-
eral error measure. As we previously discussed, in realistic cases one should
reconstruct the teacher function from a limited number of input/output re-
lations, i.e.

Ts = T (σs) s = 1, . . . , n, (5.5)

where Ts are the teacher answers relative to the inputs σs. Moreover, also
the teacher’s data could present some degree of noise or errors. The number
of available teacher input/output relations is of course less than the full space
dimensionality (which in the Boolean case is of course 2N). On the spirit of
the above discussion, one can introduce two possible error measure

ρT =
1

n

∑

s

∆(Ts, S(σs)),

ρG =
∑

σ

∆(T (σ), S(σ)),
(5.6)

where ∆ quantifies the difference between the teacher and student answers.
Recall that the function S depends on the network parameters J and b,
which we call in compact form w. The first measure is the training error
quantifying the learning error for the data in the sample, while the second one
(the generalization error) does it on the whole state space. The second one
is the measure one should minimize in order to correctly encode the teacher
function. However, since it is not accessible pratically, one has to work on
the training error. The natural generalization of the learning perceptron rule
can be casted as the gradient descent system

dw

dt
= −∇wρT (w). (5.7)

The choice of the model capacity (which in the present case is the num-
ber of tunable parameters) is indeed related to under/overfitting issues. In
practical applications, they can be faced both with cross-validation (i.e. by
splitting the whole data set in two or more sections and using part of it to



CHAPTER 5. AI: BOLTZMANN MACHINES 138

approximate the generalization error and therefore tuning the network pa-
rameter or complexity) or regularization (which is accomplished by adding
some penalty term to the gradient descent rule). We will show at the end
of this Chapter that statistical mechanics of spin-glasses offers a theoretical
alternative to these empirical trial, by taking advantage of a deep equiva-
lence among learning and retrieval. Besides under/overfitting issues, there is
another point to highlight here, which is the fact that generally the training
dynamics does not surely end in a global minimum for the error measure
(but only in a local one). To face with this problem, it is possible to use
stochastic version of gradient descent algorithms.

In other realistic cases (such as density estimation tasks), the teacher
function can be only known in probabilistic form, i.e. the objective function
is a probability distribution. Suppose we have a set of data S = {σs, s =
1, . . . , n} generated by an unknown probability distribution Q(σ). The aim
is to find a distribution P(σ) with tunable parameters w within a class of
models best approximating the goal solution. Assuming that the data S are
generated by the P(σ), one can write their conditional probability as

P(S) =
∏

s

P(σs) = exp(NL(Λ|S)), (5.8)

where we defined the log-likelihood L(w|S) = N−1
∑

s logP(σs). The prob-
lem of finding the parameters w maximizing the probability of obtaining
the data S is equivalent to find the maximum of the log-likelihood, and it is
insensitive to the addition of a constant. The trick is to take this constant
equal to the empirical (Shannon) entropy −N−1

∑
s logQ(σs), so that the

function to be maximized is

∆N(Q,P) = − 1

N

∑

s

log
Q(σs)

P(σs)
. (5.9)

In the large data set limit n → ∞, this quantity can be proven to converge
(in probability) towards the so-called Kullback-Leibler (KL) cross entropy,
defined as

Definition 5.1. Given two probability measures Q and P, their related
Kullback-Leibler cross entropy reads as

∆(Q,P) = −
∑

σ

Q(σ) log
Q(σ)

P(σ)
, (5.10)

and quantifies the distance between the two probability distributions.
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When P = Q, the distance is equal to zero. Then, we can design a gradient
descent algorithm in order to minimize the KL distance, so that

dw

dt
= −∇w∆N(Q,P), (5.11)

with all the issue associated to the method.

Another possible approach to the learning problem is the Bayesian learn-
ing, giving a solid probabilistic basis to training procedures. The basic idea
here is that, given the set of input/output relations S = {(σs, Ts), n =
1, . . . , s} and a prior distribution P(w) for the network parameters, we can
compute by standard Bayes’ theorem the posterior distribution P(w|S), mea-
suring the conditional probability for w given the experimental data S. In
mathematical terms,

P(w|S) =
P(w)P(S|w)

P(S)
, (5.12)

where P(S|w) is the data likelihood (i.e. the probability of finding the output
Ts by presenting the questions σs for each s) upon fixing the parameter w.
Moreover, P(S) =

∫
dw′P(w′)P(S|w′). After the posterior distribution is

determined, we can evaluated the probability of find another output T̄ by
presenting a new input σ̄ as

P(T̄ |σ̄, S) =

∫
dwP(T̄ |σ̄, S)P(w|S), (5.13)

where P(T̄ |σ̄, S) is of course the probability to find the output T̄ given the
set of parameters w and presented the new input σ̄.

The Bayesian approach to learning has the great advantage of making
the training problem with solid statistical foundations, with the possibility
to make precise confidence estimations for single data predictions. Moreover,
in Bayesian learning we fix the prior distribution for the parameters (i.e. a
class of models), therefore the model complexity is fixed, so that there is no
need to cross-validate the model (and consequently all the data can be used
for training).

5.3 Restricted Boltzmann Machines and con-

trastive divergence

In the previous Chapter, we described the Hopfield model as the simplest
paradigm for machine retrieval. Since in this thesis we would like to give a
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general picture of the cognition skills of AI, hereafter we will briefly describe
the paradigmatic learning machine, i.e. the Restricted Boltzmann Machine
(RBM) [71, 63, 64, 84, 129].

Boltzmann machines are neural networks (multi-partite spin glasses in
statistical mechanical jargon) in which mutually connected neurons are or-
ganized in different layers, two in its minimal representation (visible and
hidden layer), three in the typical realization (visible layer, hidden layer and
output layer) and several in deep learning architectures (the so-called Deep
Boltzmann Machines, where the majority of layers are hidden). In the follow-
ing, we will derive the celebrated Hinton’s contrastive divergence [1, 64, 74]
learning algorithm for a standard three layer RBM. In such a network, the
first layer (denoted by σI) is the input layer, the last one (whose spins are
indicated with σIII) is the output layer, while the middle one is the hidden
layer (denoted by σII). When there is no danger of confusion, we will use a
single variable si (i = 1, . . . , NI + NH + NO) to denote all of the neurons in
the network. Crucially for the arsenal of our weapons to hold, the weights
in a RBM are required to be symmetric (Jij = Jji) and self-interactions are
excluded (Jii = 0): under these assumptions Detailed Balance holds and one
can prove that the update rule

P(si → −si) =
1

2
[1− tanh(βsihi(s))], (5.14)

converges to a unique stationary distribution described by the partition func-
tion

P(s) = Z−1 exp(−βHN(s|w)), (5.15)

HN(s|w) = −1

2

∑

ij

Jijsisj −
∑

i

bisi, (5.16)

hence the name Boltzmann for these machines. In the following, we shall
omit the dependence on the network parameters to make notation clear.

Once we have the probability distribution on the space state of the entire
network, we have to setup the training procedure. Here, we have to note
that the desired goal is a distribution relating the input and output in a
probabilistic form (with no reference on the hidden layer, as it should). We
call Q(σI,σIII) such a distribution. Then, parameters w in the network
must be tuned for P(σI,σIII) to minimize the distance from Q. As discussed
above, one can consider the maximum likelihood principle as basic principle.
In the discrete picture, the training procedure is therefore described by the
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prescriptions

∆Jij = −ε∂∆(Q,P)

∂Jij
,

∆bi = −ε∂∆(Q,P)

∂bi
,

(5.17)

where ε � 1 is the learning strength. The variation of the KL distance is
(up to the quadratic order)

δ∆(Q,P) =
∑

ij

∂∆(Q,P)

∂Jij
∆Jij +

∑

i

∂∆(Q,P)

∂bi
∆bi + O(ε2) =

= −
[∑

ij

(∂∆(Q,P)

∂Jij

)2

+
∑

i

(∂∆(Q,P)

∂bi

)2 ]
+ O(ε2),

(5.18)

so it will decrease since a fixed point is reached. Before obtaining a concrete
prescription for the parameter adjustments, we have to think again to the
supervised learning philosophy: for each given input, the student and teacher
compare their outputs, and the former update its parameters to minimize the
errors. Then, during training, the input (i.e. neurons in the first layer) are
fixed in both situations. Then, the desired probability distribution is

P(σI,σIII) =
∑

σII

P(s). (5.19)

Now, since the input layer is fixed, we have to express everything in terms of
the conditional probability P(σII,σIII|σI). Indeed

P(s) = P(σII,σIII|σI)P(σI) = P(σII,σIII|σI)Q(σI), (5.20)

since of course the probability P(σI) = Q(σI) =
∑
σIII Q(σI,σIII) is known.

Then, we have

P(σI,σIII) = Q(σI)
∑

σII

P(σII,σIII|σI). (5.21)

But
P(σII,σIII|σI) = Z(σI)−1 exp(−βHN(s)), (5.22)

where
Z(σI) =

∑

σII,σIII

exp(−βHN(s)). (5.23)
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Then

P(σI,σIII) = Q(σI)
Z(σI,σIII)

Z(σI)
, (5.24)

where of course Z(σI,σIII) =
∑
σII exp(−βHN(s)). Then, the KL distance

we have to minimize is1

∆(Q,P) = − 1

β

∑

σI,σIII

Q(σI,σIII)[logZ(σI,σIII)− logZ(σI)]. (5.25)

Now, computing the derivative with respect to Jij, we have

∂

∂Jij
logZ(σI,σIII) = −β

∑

σII

∂HN

∂Jij

e−βHN (s)

Z(σI,σIII)
= −β

∑

σII

∂HN

∂Jij
P(σII|σI,σIII),

∂

∂Jij
logZ(σI) = −β

∑

σII,σIII

∂HN

∂Jij

e−βHN (s)

Z(σI)
= −β

∑

σII,σIII

∂HN

∂Jij
P(σII,σIII|σI).

(5.26)

Putting this results into the KL distance, we have

∂∆(Q,P)

∂Jij
=

∑

σI,σII,σIII

∂HN(s)

∂Jij
P(σII|σI,σIII)Q(σI,σIII)

−
∑

σI,σII,σIII,σ̄III

∂HN(s̄)

∂Jij
P(σII, σ̄III|σI)Q(σI,σIII),

(5.27)

where s̄ = (σI,σII, σ̄III). The expression can be further simplified as

∂∆(Q,P)

∂Jij
=

∑

σI,σII,σIII

∂HN(s)

∂Jij
P(σII|σI,σIII)Q(σI,σIII)

−
∑

σI,σII,σIII

∂HN(s)

∂Jij
P(σII,σIII|σI)Q(σI).

(5.28)

Recalling the expression of the Hamiltonian for the Boltzmann machine (see
eq. 5.16), we finally arrive to the next crucial

Proposition 5.1. The Contrastive Divergence learning algorithm for RBMs
reads as

∂∆(Q,P)

∂Jij
= −(〈sisj〉clumped − 〈sisj〉free), (5.29)

1We added an extra factor β−1 for convenience. Of course, this does not affect the
minimization problem.
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where clamped means that the averages are evaluated when the visible layer
is forced on a pattern of information (the one we are storing) while free is the
standard quenched average in statistical mechanics. Of course, a completely
analogous derivation holds also for the external fields, so that finally we arrive
to the parameters update rule

∆Jij = ε(〈sisj〉clamped − 〈sisj〉free),
∆bi = ε(〈si〉clamped − 〈si〉free).

(5.30)

Remark 5.2. These learning rules are crystal clear: what these machines do
is that they try to learn the statistical structure of the data they have been
exposed to, by reproducing the lowest order correlations functions. Clearly,
as discussed in the first Chapter, as long as we deal with Gaussian the-
ories, one-point and two-point correlations functions (accounting for mean
and variances in the available data) suffice.

Remark 5.3. From the operational point of view, it is possible to numeri-
cally estimate the one- and two-point correlation functions in both clamped
and free states. Therefore, the numerical algorithm works as follows. First of
all, we fix input and output neurons and operate the network dynamics until
the hidden layer relaxes, then we compute the one- and two-point clumped
correlation functions. This procedure is repeated for many input/output
relations (σI,σIII). After that, we fix only the input layer and leave the
network reach the equilibrium until the equilibrium is reached, then we com-
pute the one- and two-point free correlation functions. Again, the procedure
is repeated for many inputs σI generated according to Q(σI). Finally, we
update the network parameters according to the prescribed rule.

5.4 Retrieving what has been learnt: associa-

tive neural nets

We mentioned how the Hopfield network is a representative model for re-
trieval and Boltzmann machines are fundamental systems for learning. From
both intuitively and formal point of view, learning and retrieval are not
two independent operations, rather two complementary aspects of cognition.
Hence, it must be possible to recover the Hebb rule for learning also starting
from the (restricted) Boltzmann machines.

To see this, for the sake of simplicity hereafter we will use them in their
simplest representation, namely as basic two-layer networks. We use the
symbol σi, i ∈ {1, ..., N} for neurons in the visible layer, zµ, µ ∈ {1, ..., P}
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Figure 5.3: Correspondence between a two-layer restricted Boltz-
mann machine and an Hopfield neural network. Note, crucially, that
the storage capacity in the latter, i.e. λ ∼ P/N , matches the ratio among
the size of the hidden layer over the visible one.

for those in the hidden layer and wµi to label the links (or weights) between
the neuron i in one layer and the neuron µ in the other layer. We can then
write the cost function for the Boltzmann machine as

HN(σ, z, w) = − 1√
N

N∑

i=1

P∑

µ=1

wµi σizµ.

This Hamiltonian represents, in the jargon of statistical mechanics, a bipar-
tite spin-glass. In order to study the related phase diagram, we work out the
statistical mechanics machinery, starting by writing the quenched pressure
of the Boltzmann machine as

αN(β) =
1

N
E ln

∑

σ

∑

z

exp

{
β√
N

N∑

i=1

P∑

µ=1

wµi σizµ

}
.

Remarkably, as there are no links within each party, from a statistical me-
chanics perspective, these networks are simple to deal with because the sums
are factorized. In particular, we can carry out the sum over z to get

αN(β) ∼ 1

N
ln
∑

σ

exp

{
β

2N

N∑

i,j=1

( P∑

µ=1

wµi w
µ
j

)
σiσj

}
,
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hence the leading contribution of the Boltzmann machine is nothing but the
Hopfield model. In fact, if we carefully look at the expressions above, we can
observe that the role of a machine weight wµi and the one of a neural network
pattern ξµi , is exactly the same.

Remark 5.4. A crucial point in this equivalence is that the storage capac-
ity of the Hopfield neural network, i.e. λ = limN→∞ P/N , mirrors the ratio
among the sizes of the two layers in the Boltzmann machine (hidden over
visible): as we know that pattern recognition can be accomplished by the
Hopfield model just if the critical capacity at which it is loaded does not ex-
ceed the critical threshold, we would be tempted to use this phase transition
also in the RBM framework. In this equivalence, a large λ (much more the
critical threshold) implies that the size of the hidden layer is far too big, thus
the network learning would typically suffer of overfitting (see Fig. 5.2).

5.5 Statistical equivalence of RBM and Hop-

field networks

To deepen the last remark we study a hybrid two-layer Boltzmann Ma-
chine (HBM) as a network in which the activity of the neurons in the visible
layer is Boolean, σi = ±1, i ∈ (1, ..., N), while those in the hidden layer
are continuous (analog). The synaptic connections between units in the two
layers are fixed and symmetric, and are defined by the synaptic matrix ξµi .

The net input to neurons σi in the digital layer is the sum of the ac-
tivities in the hidden one, weighted by the synaptic matrix, i.e.

∑
µ ξ

µ
i zµ.

Analogously, for neurons zµ in the latter is the sum of the activities in the
visible layer, always weighted by the synaptic matrix, i.e.

∑
i ξ
µ
i σi. Because

of the different nature of the units in the two layers, also their dynamics
will be different. Indeed, in the analog layer neurons evolve continuously in
time, while in the digital layer the evolution takes place in discrete steps.
In particular, the activity in the hidden layer is described by the stochastic
differential equation

T
dzµ
dt

= −zµ(t) +
∑

i

ξµi σi +

√
2T

β
ηµ(t), (5.31)

where η is a white gaussian noise with zero mean and covariance 〈ηµ(t)ην(t
′)〉 =

δµν δ(t−t′). Briefly speaking, the parameter T quantifies the timescale of the
dynamics, and the parameter β determines the strength of the fluctuations.
The first term in the right hand side is a leakage term, the second term is the
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input signal and the third term is a noise source. Noise acting on different
hidden units is uncorrelated, so they evolve independently from each other.
Eq. (5.31) describes an Ornstein-Uhlembeck diffusion process [131] and, for
fixed values of σ, the equilibrium distribution of zµ is a Gaussian distribution
centered around the input signal, which in mathematical terms is

P(zµ|σ) =

√
β

2π
exp

{
− β

2

(
zµ −

∑

i

ξµi σi

)2}
. (5.32)

In deriving this probability distribution, we are tacitly assuming that the ac-
tivity of Boolean units σ must be constant, while in fact it depends on time.
To make both features compatible, we should assume that the timescale of
diffusion T is faster than the update rate of neurons in the visible layer.
Therefore, a different equilibrium distribution for z, characterized by differ-
ent values of σ, holds between each subsequent update of σ. Since hidden
units are independent, their joint distribution is simply the product of dis-
tributions of each individual neurons, i.e. P(z|σ) =

∏P
µ=1 P(zµ|σ). On the

other side, the evolution in the visible layer follows a standard neural dy-
namics of Glauber type [11]. At a specified sequence of time intervals (much
larger than T ), the activity of units in the digital layer is updated randomly
according to a probability depending on their input. In the same way, when
updating the digital units σ, the analog variables z are kept fixed, i.e. the
update of digital units is instantaneous. Furthermore, also the activity of the
σi is independent on other units, and the probability is a logistic function of
its input, leading to

P(σi|z) =
exp[βσi

∑
µ ξ

µ
i zµ]

exp[β
∑

µ ξ
µ
i zµ] + exp[−β

∑
µ ξ

µ
i zµ]

. (5.33)

Each σi are independent on the other visible units (since there are no intra-
layer connections), so that their joint distribution is again the product of
individual distributions, i.e. P(σ|z) =

∏N
i=1 P(σi|z).

Once we have the conditional distributions of either layers at our dis-
posal, by applying Bayes’ theorem we can determine their joint distribu-
tion, P(σ, z), together with the marginal distributions P(z) and P(σ) by
the chain of equalities P(σ, z) = P(z|σ)P(σ) = P(σ|z)P(z). Using the fact
that marginal distributions depend on single layer variables. The result is,
for the joint distribution

P(σ, z) ∝ exp
(
− β

2

∑

µ

z2
µ + β

∑

i,µ

σiξ
µ
i zµ

)
. (5.34)
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The marginal distribution describing the statistics of visible neurons is equal
to

P(σ) ∝ exp
(β

2

∑

i,j

(∑

µ

ξµi ξ
µ
j

)
σiσj

)
. (5.35)

A first inspection to last equality confirms that such a marginal distribution
is exactly equal those describing the relaxation of neurons in Hopfield net-
works, where the synaptic weights of the Hopfield network are given by the
expression in round brackets: the stored patterns of the Hopfield model cor-
responds to the synaptic weights of the HBM, described by the ξ variables
and the number of patterns corresponds to the number P of hidden units.

In conclusion, HBM and Hopfield network share the same probability
distribution, once the hidden variables are marginalized, meaning that both
models are statistically equivalent. However, the analogy can be pushed
further by linking retrieval in the Hopfield network to capability of HBM
to learn a specific pattern of neural activation. The maximum number of
patterns P that can be retrieved in a Hopfield network is known [11], and
is ' 0.14N . In particular, the models should also share the same phase
diagram. As a consequence, non-retrieval regions in Hopfield model (which,
we recall, takes place for P > 0.14N at low thermal noise) can be linked
to overfitting issues in the HBM. This can be understood as follows: if the
HBM has a huge large number P of hidden variables (with respect to the
visible layers units), the model we are considering is too complex, provoking
overfitting in learning the observed patterns. This behaviour causes the
inability of the HBM to reproduce the statistics of the observed system. The
correspondence between Hopfield network and HBM allows to predicts that
the maximum number of hidden variables in the HBM is precisely 0.14N .
For a numerical check of the equivalence between HBMs and RBMs and the
relation between non-retrieval phases of the former and overfitting issues in
the latter, we refer to the work [21].

Remark 5.5. We would like to stress that this analogy does not hold by
default nor with the standard Hopfield model, as the latter is equipped with
digital patterns (and no contrastive divergence could be derived with those
patterns) neither with the analog Hopfield model, as the latter is equipped
with real-valued patterns (and no retrieval phase is allowed with those pat-
terns): it is thanks to the study of the hybrid Hopfield model we studied
at the end of the previous Chapter that we know that such an equivalence
concretely works.
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Part Three: Statistical Mechanics for Unlearning and
Sleeping



Chapter 6

Beyond the standard paradigm:
Unlearning for low storage

Once understood that the larger is the critical capacity of the Hopfield
model for pattern recognition, the stronger are the inferential skills of its
dual RBM (and consequently more resistent to overfitting), it is natural to
ask if it is possible to increase the critical threshold larger than that of the
standard reference1

To address this problem, in this and the next Chapters2 we deal with an
entirely novel problem. In particular, we will study a way to get rid off the
exponential proliferation of the unwanted spurious states naturally generated
when storing the P pure patterns. A remarkable point that Physicist and
Mathematicians could appreciate is that we arrived at writing these two
conclusive Chapters following intuitions that have been entirely “theoretically
physically driven”, and lie in the Hamilton-Jacobi approach to the statistical
mechanics of complex system (which we largely exploited in this thesis).

Indeed, whatever the route, i.e. starting from the Hebbian prescription
[61] as in the original Hopfield paper [65] or upon marginalizing over the
hidden layer in Boltzmann Machine (hence, after learning via contrastive
divergence) [21], unfortunately, we always end up in a network whose attrac-
tors are by far more than the stored patterns [11] (namely more than the
solely pure states we would see retrieved by the network). The excess stock

1Further, there is a remarkable Theorem of Information Theory due to Elisabeth
Gardner stating that, for networks with real and symmetric interactions, the maximal
critical capacity is λc = 1, quite larger than the Hopfield value λc ∼ 0.14.[53].

2The difference between these two Chapters, in a nutshell, is that in the present one we
will present the extended theory we developed in the low-storage regime - and we related
this to unlearning in neural networks - while in the final one we will tackle the whole high
storage regime - and we will related that analysis to sleeping in neural networks.

149
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of (local) minima is indeed constituted by spurious states, whose simplest
example is a 3-pattern mixture defined as

σi = sign
(
ξ1
i + ξ2

i + ξ3
i

)
. (6.1)

As we saw in Chapter 4.3, the Mattis overlap for such a state state with any
of the three patterns is - in the large N limit - mν = N−1

∑
i ξ
ν
i σi = 0.5 (for

ν = (1, 2, 3)). Hence, while smaller in amplitude than the Mattis overlap
of a pure state (whose amplitude is one), it is still a metastable state: if
orbiting in the surrounding, the network can be attracted by such spurious
states and converge to them rather than to the pure ones. Unfortunately,
as the patterns are added linearly to the memory kernel, there is an expo-
nential (combinatorial) proliferation of these unwanted meta-stable states in
the retrieval landscape of the Hopfield network. Hopfield himself suggested
a procedure to prune - or remove - (a part of) them from his coupling matrix
[66]. In a nutshell, Hopfield’s idea is again transparent, elegant and brilliant:
since there are sensibly much more spurious states (i.e. metastable minima)
than pure states (global minima), we can prepare the system at random and
make a quench (e.g. a search for minima with steepest descent rather than
conjugate gradient or stochastic algorithms). In this way, the system will
end up in a spurious state with high probability. Then, we can collect this
equilibrium (spurious) configuration and subtract it from the memory kernel,
via the pruning rule

Jij =
P∑

µ=1

ξµi ξ
µ
j − 〈σiσj〉spurious,

i.e. increasing its energy. We can do this iteratively and check that effectively
the network becomes progressively cleared from these nasty attractors: this
procedure is called unlearning [98, 97, 47, 79] and it has been linked to REM
sleep [39] (offering a possible intriguing picture for its interpretation) due to
the effectiveness of the random starting point setting for the quenching pro-
cedure in consolidating memories (phenomenon to be eventually correlated
with the rapid eye movements in that part of sleep). This will be the focus
of the present Chapter.

As a sideline, we also note that this investigation will also be of interest
for Deep Learing (the quest to overcome the reductionistic Gaussian descrip-
tion of the statistical datasets discussed in the First Chapter of this thesis),
whose main characteristic we quickly revise hereafter. Within the theoretical
framework of disordered statistical mechanics [65, 11] for AI, Hopfield recently
offered a connectionist perspective where the high skills of deep learning ma-
chines could possibly be framed [82]. The key idea is simple, and it is on
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many-body extensions of his celebrated pairwise model, and can be under-
stood as follows. Suppose we want to retrieve one out of P random patterns
ξµ stored in the network and we want to describe this property via a cost
function H(σ|ξ) that resembles Hamiltonians in Physics (such that the min-
ima of the Hamiltonian would match the patterns themselves [11, 93, 108]),
the simplest and most natural guess would be summing all the squared scalar
products between the neurons and the patterns, i.e. H(σ|ξ) ∝ −

∑P
µ (σ·ξµ)2.

In the thermodynamic limit, patterns become orthogonal.1 If the state vector
σ is uncorrelated with all of them, each parenthesized term would be very
small. On the other hand, if the state network σ is sufficiently correlated
with one of the P patterns (meaning that we are in retrieval mode), then
its contribution in the summation would be no longer negligible. The cen-
tral point in this argument lies in the requirement of local convexity of the
Hamiltonian. However, we stressed that the Hopfield model Hamiltonian is
the simplest and most natural, but it is surely not the only possible. Indeed,
all previous arguments could be generalized straightforwardly beyond the
parabolic approximation coded by the pairwise interactions, for instance in-
cluding (even) higher order contributions (the so-called P-spin terms). From
a connectionist perspective [11, 89, 51], memories are stored in the connec-
tions, adding more and more P-spin contributions to the Hamiltonian adds
more and more synapses where information can be filed. Furthermore, an in-
timate relation between Deep Learning architectures and P-spin models has
been recently argued in [92] by means of renormalization group techniques,
thus motivating the possibility to tackle modern AI problems by means of
statistical mechanics tools [15, 16, 109].

Recently, we pursued the goal to give these two branches of AI - deep
learning and unlearning - a unified point of view by allowing Hopfield model
to include also P-spin interaction terms. In doing this, we shall approach the
problem to give an expression for the free energy of the new model within
the Hamilton-Jacobi framework we discussed so far. In order to frame the
model in the most natural way, let us briefly recall the philosophy behind the
method by starting again with Curie-Weiss model. We have previously shown
that its free energy obeys a standard (i.e. classical non-relativistic) Hamilton-
Jacobi PDE in the space of the coupling and external field (playing the role
of time and space coordinates respectively). To infer statistical properties
on the CW network, we can thus use this mechanical analogy and study a

1With the term orthogonal we mean that limN→∞N−1ξµξν =
limN→∞N−1

∑N
i ξ

µ
i ξ

ν
i = δµν . However, at finite N , this is a N -long sum of terms

whose probability of being ±1 is one half: it is a random walk with zero mean and
variance N , hence spurious correlations are expected to vanish ∝ 1/

√
N .
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fictitious particle of unitary mass classically moving in this 1 + 1 spacetime
(under the proper PDE derived from the statistical mechanical framework).
Its properties, once translated back in the original setting, exactly recover
all the results of the standard statistical paradigm.

Pushing further this mechanical analogy, we introduced a very natural
generalization of the Hopfield Hamiltonian, which is simply its relativistic
version.The first remarkable feature of such an extension is that, while the
classical (Hopfield) model is described by a second-order monomial Hamil-
tonian, its relativistic version (if Taylor-expanded in the order parameters)
is an infinite sum of P-spin terms. The second point is that such terms turn
out to be exactly solely the even ones and with alternate signs, naturally
suggesting a comprehensive picture for both Deep Learning and unlearning.

We conclude this introduction by stressing that - while numerical and
heuristic explorations have been largely exploited in the Computer Science
Literature in the past decade, our aim here is to frame the problem in a
rigorous and well controllable analytical formulation. In this scenario, im-
portant contributions already appeared in the Mathematical and Theoretical
Physics Literature (see for example [27, 20, 34, 29, 30, 32, 31, 126, 125, 102]
and references therein). In this Chapter, we will deal with the (much more
controllable) low storage regime for both the classical (i.e. original Hopfield)
and relativistic models in the Hamilton-Jacobi framework, since for the latter
technical difficulties in the analytical solution are still unsolved.

The Chapter is structured as follows. As a preliminary introduction, we
set up the mathematical framework, i.e. the mechanical analogy for neural
networks. Then, we show the analogy at the classical level and solve the orig-
inal pairwise Hopfield model, re-obtaining all the well-known existing results.
After that, we push further the analogy to include higher order (P-spin) con-
tributions to the Hopfield cost function (such that all P-spin contributions
can be resummed in the relativistic Hamiltonian for a free particle). Also
in this case, within the Hamilton-Jacobi framework we obtain an exhaus-
tive statistical picture. As a technical note, we give an explicit proof of the
existence of the thermodynamic limit for the free energy and re-obtain the
above picture from a purely statistical mechanical setting (i.e. by using the
standard Guerra’s interpolation technique). Finally, we perform extensive
numerical numerical analysis of the capabilities of this extended model, in
particular in reducing the attracting power of spurious configurations. This
will be shown trough a one-to-one comparison among performances with the
Hopfield model.
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6.1 The Hamilton-Jacobi formalism (classi-

cal)

In this Section, we will briefly review the mechanical analogy for the
classical (i.e. pairwise) Hopfield model. We will show that the free energy
can be interpreted as the HJ action, therefore it obeys an Hamilton-Jacobi
PDE. By means of the mechanical analogy, we re-derive the expression for
the Hopfield free energy (in the low storage regime) in terms of the order
parameters and the associated self-consistency equations.

In order for this Chapter to be self-contained and well-readable, we re-
write the following

Definition 6.1. The Hamiltonian of the Hopfield model equipped with N
neurons σi, i ∈ (1, ..., N) and P patterns ξµ, µ ∈ (1, ..., P ) is

HN(σ|ξ) = − 1

N

P∑

µ=1

∑

1≤i<j≤N

ξµi ξ
µ
j σiσj, (6.2)

where patterns bit are extracted i.i.d. with probability P(ξµi = +1) = P(ξµi =
−1) = 1/2 for all i = 1, . . . , N and µ = 1, . . . , P .

Since all (i.e. both dynamical and slow-evolving) variables are Boolean,
we can again include self-interaction, with an error becoming negligible in
the thermodynamic limit. Therefore, the partition function is

ZN(β) =
∑

σ

exp
{ β

2N

P∑

µ=1

N∑

i,j=1

ξµi ξ
µ
j σiσj

}
, (6.3)

The ultimate goal is to find the expression for the pressure α(β) = −βf(β) =
limN→∞N

−1 logZN(β).As usual, once that the partition function is intro-
duce, we can also define the Boltzmann factor BN(β,σ), the Boltzmann-
Gibbs averages ω(·) and 〈·〉 = Eω(·), where E is the usual average over the
pattern realizations.

We now turn on setting up the Hamilton-Jacobi framework. To do this,
we have to introduce P spatial variables xµ ∈ R, µ ∈ (1, ..., P ) and a temporal
variable t ∈ R+. Then, we can give the following

Definition 6.2. The generalized partition function in the Hamilton-Jacobi
framework is defined as

ZN(β; t,x)
.

= ZN(t,x) =
∑

σ

exp
{
− t

2N

N∑

i,j=1

P∑

µ=1

ξµi ξ
µ
j σiσj +

N∑

i=1

P∑

µ=1

xµξ
µ
i σi

}
.

(6.4)
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Of course, with respect to this partition function we can introduce the
Boltzmann-Gibbs averages ωt,x(·) and 〈·〉tx (if needed) in the same way as
before. We highlight that the standard statistical mechanics framework is
recovered by setting t = −β and x = 0. In the same way, the intensive
pressure is introduced:

Definition 6.3. The intensive pressure αN(t,x) of associated to the gener-
alized partition function (6.4) is

αN(t,x) =
1

N
logZN(t,x) =

=
1

N
log
∑

σ

exp
{
− tN

2

P∑

µ=1

m2
µ +N

P∑

µ=1

xµmµ

}
,

(6.5)

where

mµ =
1

N

N∑

i=1

ξµi σi, (6.6)

are the usual Mattis overlaps µ ∈ (1, ..., P ).

It is easy to check that the space-time derivatives of the interpolating free
energy (6.5) read as

∂αN(t,x)

∂t
= −1

2

P∑

µ=1

ωt,x(m2
µ),

∂αN(t,x)

∂xµ
= ωt,x(mµ).

(6.7)

With these equalities, it is easy to prove the following

Proposition 6.1. By construction, αN(t,x) obeys the following (classical)
Hamilton-Jacobi PDE and it plays as the action SN(t,x) in the mechanical
analogy

∂αN
∂t

+
1

2

(
∂αN
∂xµ

)2

+ VN(t,x) = 0, (6.8)

VN(t,x) =
1

2

P∑

µ=1

(
ωt,x(m2

µ)− ωt,x(mµ)2
)
. (6.9)

Remark 6.1. This partial differential equation describes, even at finite vol-
ume N , the motion of a classical (non-relativistic) particle, with unitary
mass1 in P + 1 dimensions.

1Note that, according to equation (6.8), the classical momentum is ωt,x(mµ).
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Remark 6.2. In the thermodynamic limit, away from critical point, the
Mattis magnetizations self-average, i.e.

lim
N→∞

P∑

µ=1

(ωt,x(m2
µ)− ωt,x(mµ)2) = 0, (6.10)

meaning that limN→∞ VN(t,x) = V (t,x) = 0. Therefore, the Hamilton-
Jacobi PDE equation reduces to the dynamics of a free particle with unitary
mass in the P + 1-dimensional space.

Remark 6.3. In the thermodynamic limit, the motion has space-time sym-
metries whose Noëther currents, derived respectively for the momentum con-
servation and for the energy conservation as

lim
N→∞

P∑

µ=1

(ωt,x(m2
µ)− ωt,x(mµ)2) = 0 (6.11)

lim
N→∞

P∑

µ=1

(ωt,x(m4
µ)− ωt,x(m2

µ)2) = 0, (6.12)

which are respectively the momentum and energy conservation. These equal-
ities mirror the classical self-averaging properties in the statistical mechanical
jargon.

By using 6.2 in the thermodynamic limit, the fictitious particle moves
across Galilean trajectory, i.e. a straight line x = x0 + ωt,x(m) · (t − t0)
where m is the P -momentum of the particle.
Because of the mechanical analogy, the determination of an explicit expres-
sion of the free energy reduces to the explicit calculation of the action of the
free motion. As initial conditions, we are free choose t0 = 0 (which leaves to
leave only with a one-body system), so that

α(t,x) = α(0,x0) +

∫ t

0

dt′L(t′), (6.13)

where L = 1
2
ωt,x(m)2 is the Lagrangian. Since it is practically the kinetic

energy of the particle, and since the momentum is a constant of motion,
the Lagrangian itself is a constant of motion as long as V (t,x) = 0 (i.e. in
the thermodynamic limit). Hence, the only calculations required are due to
evaluate the (simple) Cauchy condition

α(0,x0) = log 2 + E log coshx0 · ξ, (6.14)
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where of course x0 = x(t) − ωt,x(m)t. Now, since in the thermodynamic
limit, the Mattis magnetizations are self-averaging quantities, they can be
replaced directly with their equilibrium values. Then, we can simply drop
the Boltzmann-Gibbs average and write simplym instead of ωt,x(m), always
taking in mind that now we mean the values of Mattis magnetization at the
equilibrium. Then, we have

Theorem 6.1. The infinite volume limit of the Hopfield action (6.5) reads
as

α(t,x) = log 2 + E log cosh(x− tm) · ξ +
t

2
m2. (6.15)

Moreover, the (classical) Hopfield free energy is recovered by setting t = −β
and x = 0, therefore

α(β) = α(−β, 0) = log 2 + E log cosh(βm · ξ)− β

2
m2. (6.16)

Remark 6.4. By direct comparison, it is easy to note that the free energy
associated to the intensive pressure (6.16) precisely equals the one of the
standard Hopfield model in the low storage regime (therefore, also the same
self-consistency equations directly follow).

6.2 The Hamilton-Jacobi formalism (relativis-

tic)

So far, we have shown that Hamilton-Jacobi framework allows to establish
a mechanical analogy which is a very powerful method to solve the thermo-
dynamics of Hopfield neural networks in the low storage regime. However,
its importance is not only computational, as we will show in this Section.
Indeed, the analogy can now be used to carry out a very natural extension of
the Hopfield cost-function. To this aim, we can notice that, as the free energy
plays as an action, we can interprete the exponent in the Maxwell-Boltzmann
weight as the product of the P +1 momentum with the P +1 position vector
(i.e. −tE+x ·m has precisely a covariant form). In other words, the under-
lying metric is not Euclidean, rather its Minkowskian version, as it happens
in special relativity.

Since the Hopfield Hamiltonian is nothing but the (kinetic) energy asso-
ciated to the fictitious particle, the mechanical analogy naturally suggests
the extension of Hopfield model by its relativistic deformation, i.e.

−m
2

2
→ −

√
1 +m2, (6.17)
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since m plays the role of momentum. Therefore, we can introduce the (rel-
ativistic) Hopfield model with the following

Definition 6.4. The Hamiltonian for the relativistic Hopfield model equipped
with N neurons σi, i ∈ (1, ..., N) and P patterns ξµ, µ ∈ (1, ..., P ) is

HN(σ|ξ) = −N
√

1 +m2, (6.18)

where the spin-dependence is implicit in the definition of the Mattis magne-
tizations

mµ =
1

N

N∑

i=1

ξµi σi. (6.19)

Remark 6.5. Notice that, Taylor-expanding the Hamiltonian (6.17) in the
Mattis magnetizations (the convergence of Taylor series is of course garantued
as long as |m| < 1), we obtain an infinite list of many-body (P-spin) contribu-
tions (going in the direction suggested by Hopfield regarding Deep Learning
[82]). Truncating the expansions at the next-to-leading order, we have

−HN(σ|ξ)

N
= 1 +

1

2N2

N∑

i,j=1

P∑

µ=1

ξµi ξ
µ
j σiσj

− 1

8N4

N∑

i,j,k,l=1

P∑

µ,ν=1

ξµi ξ
µ
j ξ

ν
kξ

ν
l σiσjσkσl + . . .

(6.20)

Further, we notice that the r.h.s. of Eq. (6.20) is an alternate-sign series,
hence it will have both contributions in learning (those with the minus sign)
and in unlearning (those with the plus sign [98, 97, 47]).

Once this Hamiltonian of the model is introduced and discussed, we can
introduce partition function, Boltzmann factor and Boltzmann-Gibbs aver-
ages, free energy and mechanical analogy properly from the previous Sections,
e.g.

Definition 6.5. The partition function of the Hopfield model is

ZN(β) =
∑

σ

exp

{
βN

√√√√1 +
1

N2

P∑

µ=1

N∑

i,j=1

ξµi ξ
µ
j σiσj

}
, (6.21)

with associated intensive pressure α(β) = −βf(β) in the thermodynamic
limit

α(β) = lim
N→∞

αN(β) = lim
N→∞

1

N
logZN(β). (6.22)
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In order to develop the model in the Hamilton-Jacobi framework, we need
the following

Definition 6.6. The generalized partition function and the action of the
relativistic Hopfield model, suitable for the mechanical analogy, read as

ZN(β; t,x)
.

= ZN(t,x) =
∑

σ

exp
{
N(−t

√
1 +m2 + x ·m)

}
, (6.23)

αN(t,x) =
1

N
logZN(t,x). (6.24)

Remark 6.6. We stress that the entire partition function can be expressed
in covariant form. Indeed, we can endow the P + 1-dimensional space with
a Minkowskian signature (+,−, . . . ,−), to which is associated a pseudo-
Riemmanian metric tensor ηAB = diag(+,−, . . . ,−) with A,B = 0 (time),
1, . . . P (space). Then, the exponent in the Boltzmann factor can be written
as −NxApA = −NηABxApB in the Einstein sum notation, with xA = (t,x)
and pA = (

√
1 +m2,m).

The expectation values ωt,x(·) and 〈·〉t,x (if needed) are straightforwardly
defined as always. Again, we stress that, by setting t = −β and x = 0 we
obtain the relativistic statistical mechanical framework we are interested in.

The next step is the computation of the computing the space-time deriva-
tives of the free energy. The relevant ones are

∂αN(t,x)

∂t
= −ωt,x(

√
1 +m2),

∂αN(t,x)

∂xµ
= ωt,x(mµ),

∂2αN(t,x)

∂t2
= N(ωt,x(1 +m2)− ωt,x(

√
1 +m2)2),

∇2
xαN(t,x) = N(ωt,x(m2)− ωt,x(m)2).

(6.25)

Then, we can state the following

Proposition 6.2. By construction, the intensive pressure αN(t,x) obeys the
following (relativistic) Hamilton-Jacobi PDE

∂2
t αN −∇2

xαN = N
(
1− (∂tαN)2 + (∇xαN)2) , (6.26)

or in the manifestly covariant form

(∂AαN)2 +
1

N
2αN = 1, (6.27)

where 2 is the D’Alambertian differential operator, i.e. 2 = ∂A∂
A (still in

Einstein notation).
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Remark 6.7. By requiring that the derivatives of the intensive pressure are
regular functions in xµ and t, in the thermodynamic limit, a.s.1 we have the
simpler differential equation

(∂Aα)2 = 1. (6.28)

From the mechanical perspective, in the thermodynamic limit, the P +1-
momentum of the particle reads as

pA = − ∂α

∂xA
= (ωt,x(

√
1 +m2), ωt,x(m)). (6.29)

In terms of this momentum, the equation for the action (6.28) is nothing but
the on-shell relation [86] relating energy, momentum and (unitary) mass. As
in the classical case, the fictitious particle in this mechanical analogy moves
on the straight lines x = x0 + v(t − t0) for arbitrary (t0,x0). Now, the
particle velocity v is related to the spatial momentum through the relation
ωt,x(m) = γv, with γ being the Lorentz factor. By well-known relation, we
can write

v =
ωt,x(m)√

1 + ωt,x(m)
. (6.30)

Then, the Lorentz in terms of the (spatial) momentum is γ =
√

1 + ωt,x(m)2.
Summing all these observations together, we end up in the determination of
an explicit expression for the relativistic free energy in terms of the Mattis
magnetizations as it reduces to the calculation of the action of this free
motion. As Cauchy conditions, we still choose t0 = 0, such that

α(t,x) = α(0,x0) +

∫ t

0

dt′L(t′) =

= α(0,x0)− t

γ
= α(0,x0)− t√

1 + ωt,x(m)2
,

(6.31)

since the Lagrangian L = −γ−1 is constant on classical trajectories. Thus,
again we have

α(0,x0) = log 2 + E log coshx0 · ξ. (6.32)

Noting that x0 = x − vt with (6.30). Then, setting t = −β, x = 0 (in
order to re-obtain the statistical mechanical framework) and writing as m
the thermodynamic value of the Mattis magnetizations (by virtue of their
self-averaging properties), we can state the next

1Almost surely because when ergodicity breaks down a gradient’s catastrophe prevents
regularity even in the infinite volume limit [20].
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Theorem 6.2. The free energy density of the relativistic Hopfield network
in the thermodynamic limit reads as

α(β) = log 2 + E log cosh
(
β ξ · m√

1 +m2

)
+

β√
1 +m2

. (6.33)

By virtue of the extremality condition, the order parameters satisfy the self-
consistency equations

mµ = E ξµ tanh
(
β ξ · m√

1 + 〈m〉2
)
, (6.34)

for each µ = 1, . . . , P .

Remark 6.8. Since the intensive pressure is related to the Hamilton-Jacobi
action in the mechanical analogy, the extremality condition for the free energy
is nothing but the Least Action Principle.

Remark 6.9. We also notice that, if we take the low momentum limit |m| �
1, we can expand the relativistic model at the lowest order

1√
1 +m2

= 1− m
2

2
+ O

(
m3
)
,

m√
1 +m2

= m+ O
(
m3
)
,

(6.35)

so recovering the classical Hopfield model and results.

6.3 The thermodynamic limit

In this Section, we shall move to prove the existence of thermodynamic
limit of the intensive pressure α(β) for the relativistic Hopfield model. The
method we will apply is based on a slight modification the Guerra-Toninelli
scheme which was originally carried out for pairwise models. We therefore
interpolate the pressure for the system with N neurons and two other non-
interacting systems (consisting in N1 and N2 neurons respectively such that
N = N1 +N2). In doing this, we will apply the Fekete Lemma [112] in order
to show that the extensive free energy of the first system is strictly smaller
than the sum of those pertaining to the two subsystems (i.e. free energy is
sub-additive). In this case, the main adaptation will consist in a proof by
reduction to absurd, assuming the free energy to be super-additive.Note that,
in the proof, we will omit the β-dependence without loosing in generality.
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Let us start by introducing the relative Mattis magnetization of the two
subsystems as

mµ
1 =

1

N1

N1∑

i=1

ξµi σi, mµ
2 =

1

N2

N2∑

i=1

ξµi σi,

so that the global order parameter can be expressed as

mµ =
1

N

N∑

i=1

ξµi σi =
1

N

( N1∑

i=1

ξµi σi +

N2∑

j=1

ξµj σj

)
=

= ρ1m1 + ρ2m2,

with the relative densities ρi = Ni/N for i = 1, 2. Analogously to what we
did in the CW and the SK cases, let us introduce an interpolating parameter
t ∈ [0, 1] and make the following

Definition 6.7. The interpolating pressure αN(t) is defined as follows

αN (t) =
1

N
E log

∑

σ

exp
{
tN
√

1 +m2

+ (1− t)
(
N1

√
1 +m2

1 +N2

√
1 +m2

2

)}
.

(6.36)

Remark 6.10. Of course, the two limits recover the two different cases.
Indeed,

αN (1) = αN , (6.37)

αN (0) = ρ1αN1 + ρ2αN2 . (6.38)

In the following, we will suppress the β-dependence of the intensive pres-
sure. The original model with N interacting neurons is therefore recovered
as

αN (1) = αN (0) +

∫ 1

0

ds[∂tαN(t)]t=s. (6.39)

Since the integral operator is monotonous (i.e. it respects inequalities), it is
sufficient to prove that the derivative of the interpolating free energy w.r.t.
t has a negative semi-definite sign. The introduction of the interpolating
intensive pressure (and therefore the generalized partition function ZN(t)),
it is straightforward to introduce the Boltzmann-Gibbs average ωt(·). Then,
it is easy to prove the following equality

∂αN
∂t

= ωt

(√
1 +m2 − ρ1

√
1 +m2

1 − ρ2

√
1 +m2

2

)
. (6.40)
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Now, since N = N1 +N2, we trivially have ρ2 = 1− ρ1. Therefore

√
1 +m2 − ρ1

√
1 +m2

1 − ρ2

√
1 +m2

2 =

=

√
1 + (ρ1m1 + (1− ρ1)m2)2 − ρ1

√
1 +m2

1 − (1− ρ1)
√

1 +m2
2.

(6.41)

Now, let us suppose for a moment that this is a positive quantity. Then,
with simple algebraic manipulations, we have

2ρ1 (1− ρ1) > 2ρ1 (1− ρ1)
(√

(1 +m2
1) (1 +m2

2)−m1m2

)
,

Since 2ρ1 (1− ρ1) > 0, then the only possibility to hold is that the quantity
in rounded brackets on the r.h.s. is less than 1, i.e.

√
(1 +m2

1) (1 +m2
2) < 1 +m1m2.

The l.h.s. is always non-negative (since, in the worst case, m1m2 = −1,
which directly leads to an absurd). Therefore, taking the square of this
equality and then with simple manipulations, we find

(
m2

2 −m2
1

)2
< 0, (6.42)

which is impossible, therefore proving the next

Proposition 6.3. The t-derivative of the interpolating free energy (6.36) is
semi-definite negative, namely

√
1 +m2 − ρ1

√
1 +m2

1 − ρ2

√
1 +m2

2 ≤ 0. (6.43)

Remark 6.11. We also highlight that the function f : x 7→
√

1 + x2 is
convex, which is, for λ ∈ [0, 1]

f (λx1 + (1− λ)x2) ≤ λf (x1) + (1− λ) f (x2) .

Therefore, identifying

λ = ρ1, x1 = m1, x2 = m2,

then it follows immediately that

√
1 +m2 ≤ ρ1

√
1 +m2

1 + ρ2

√
1 +m2

2.
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By using Proposition (6.3), we have

αN (1)− αN (0) =

∫ 1

0

ds[∂tαN(t)]t=s ≤ 0,

or more transparently

NαN ≤ N1αN1 +N2αN2 . (6.44)

Then, by applying the Fekete lemma, the following

Theorem 6.3. The infinite volume limit of the intensive pressure defined by
the relativistic Hopfield cost function in the low storage regime exists and it
equals its infimum, that is

∃ lim
N→∞

αN(t = 1) = inf
N∈N
{αN(t = 1)} = α.

is proven. A similar procedure can be carried out for all β ∈ R+.

6.4 Guerra’s interpolating scheme

To end the analytical treatment of relativistic Hopfield model in the low
storage, we will confirm the expression for the intensive pressure in terms of
the Mattis overlaps by a standard statistical mechanics route. In doing this,
we will use again Guerra’s interpolation scheme, whose philosophy is by now
crystal clear. Then, by re-introducing the interpolation parameter t ∈ [0, 1],
we introduce the following

Definition 6.8. The interpolating free energy is

αN(β; t)
.

= αN(t) =

=
1

N
E log

∑

σ

exp
(
tβN
√

1 +m2 + (1− t)βψ ·m
)
,

(6.45)

where ψ = (ψ1, . . . ψP ) are tunable auxiliary fields.

Needless to say, from the interpolating partition function it straightfor-
wardly follows the definition of the Boltzmann-Gibbs averages ωt(·). As
always, we will use the sum rule in order to reduce the problem of finding
the intensive pressure (in the thermodynamic limit) to a one-body system
computation and the t-derivative correction. It is easy to show that, for the
former, we easily get

α(t = 0) = log 2 + E log cosh
(
β

P∑

µ=1

ψµ〈mµ〉
)
. (6.46)
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On the other side, the computation of the t-derivative leads to

∂α

∂t
= βωt

(√
1 + ωt(m)2 −

P∑

µ=1

ψµωt(m)
)
, (6.47)

In general, the evaluation of this quantity is an hard task. However, in the
thermodynamic limit, calling m̄µ the equilibrium values of the µ-th Mattis
overlap (i.e. limN→∞ P (m) = δ(m−m̄)), by requiring for the self-averaging
of the order parameters and the energy to hold almost surely [17, 24, 59],
which is

lim
N→∞

P∑

µ=1

ωt((mµ − m̄µ)2) = 0, (6.48)

lim
N→∞

ωt((
√

1 +m2 −
√

1 + m̄2)2) = 0, (6.49)

we obtain

ωt

(√
1 +m2 − m · m̄√

1 + m̄2
+

1√
1 + m̄2

)
= 0.

Comparing the above equation with the r.h.s. of (6.47) and choosing ψµ =
m̄µ√
1+m̄2 , we can write

∂α(t)

∂t
− β√

1 + m̄2
= 0. (6.50)

By merging (6.50) with the Cauchy condition (6.46), we are finally able to
state the next

Theorem 6.4. The infinite volume limit of the intensive pressure defined by
the relativistic Hopfield cost function in the low storage regime in terms of
the Mattis magnetizations reads as

α(β) = log 2 + E log cosh
(
βξ · m̄√

1 + m̄2

)
+

β√
1 + m̄2

, (6.51)

and the related self-consistency equations for the Mattis magnetizations are

m̄µ = E ξµ tanh
(
βξ · m̄√

1 + m̄2

)
. (6.52)

Remark 6.12. This results are in perfect agreement with our findings with
the previously exploited Hamilton-Jacobi framework, recalling that, in those
equations, m stands for the equilibrium values of the Mattis overlaps.
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We would like to conclude this Section with the analysis of the critical
behavior of the system. Taking, without loss of generality, only ξ1 as the
candidate pattern to be retrieved, it is convenient to consider the following

Definition 6.9. The rescaled Mattis overlap associated to the pattern ξ1 is

m̂1 =
√
N(m1 − m̄1), (6.53)

where, as usual, m1 = N−1
∑N

i=1 ξ
1
i σi while m̄1 is its thermodynamic limit,

namely limN→∞ ωt(m
2
1)→ m̄1.

Notice that ωt(m̂
2
1) scales as N times the variance of ωt(m

2
1). The analysis

of critical behaviour of the relatistic Hopfield model is then performed by
studying ωt(m̂

2
1) as a function of β. What we are looking for are those values

βc for which the fluctuations of the order parameters (with respect to its
mean value m̄) diverge.

To this goal, we again exploit the interpolation scheme (6.45), and then
set t = 1 to find ω(m̂2

1). In the same spirit of what we did for the intensive
pressure, we write

ω(m̂2
1) = ωt=0(m̂2

1) +

∫ 1

0

ds[∂tωt(m̂
2
1)]t=s. (6.54)

We start by evaluating the expectation value at t = 0. To do this, it is useful
to approach the critical line from the high noise region. The advantage in
such a procedure lies in the fact that, in this region, we can take benefit
of CLT-like arguments to assume the probability distribution of the m̂1 is a
Gaussian.1 Then, the Cauchy condition can be easily evaluated as ωt=0(m̂2

1).
Indeed, we have

ωt=0(m̂2
1) = lim

N→∞
ωt=0(N(m1 − m̄1)2) =

= lim
N→∞

[1 + (N − 1)m̄2
1 +Nm̄2

1 − 2Nm̄2
1] =

= 1− m̄2
1.

(6.55)

Finally, in the ergodic region, we have trivially m̄1 = 0, so proving the
previous statement. We must now face the t-derivative: to this task it is
useful to state the next For the t-derivative of the expectation value, it will
be useful the following

1In this way, we can use Wick theorem E(zf(z)) = E(z2)E(∂zf(z)), with z Gaussian
random variable.
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Proposition 6.4. Recalling that ψµ = m̄µ/(
√

1 + m̄2), let F be a smooth
function of the Mattis overlaps. Then, above and close to the critical point
(where the Mattis overlaps are zero or infinitesimal), the following streaming
equation holds:

d

dt
ωt(F ) ∼ β

2
(ωt(Fm̂

2)− ωt(F )ωt(m̂
2)). (6.56)

To prove this Proposition, let us first note that

d

dt
ωt(F ) = βN

(
ωt(
√

1 +m2)−
P∑

µ=1

m̄µ√
1 + m̄2

ωt(Fmµ)

− ωt(F )ωt(
√

1 +m2) +
P∑

µ=1

m̄µ√
1 + m̄2

ωt(F )ωt(mµ)
)
.

(6.57)

Now, since we are approaching the critical line from the high noise region
(where the Mattis overlap changes continuously from zero to a non-vanishing
value), we can expand

√
1 + x2 ∼ 1 + x2/2 and 1/(

√
1 + x2) ∼ 1 − x2/2 in

the above equation. Finally, adding and subtracting twice (βN/2)ωt(F )m̂2

we get the proof of the above statement. Then, with the above results we get
the following Cauchy problem for the variance of the rescaled Mattis overlap:

d

dt
ωt(m̂

2
1) = βωt(m̂

2
1)2, (6.58)

ωt=0(m̂2
1) = 1. (6.59)

By solving the Cauchy problem, we can easily state the following

Theorem 6.5. The centered and rescaled fluctuations of the Mattis overlap
ωt(m1) associated to the retrieved pattern ξ1 behaves as

ω(m̂2
1) = ωt=1(m̂2

1) =
1

1− β
, (6.60)

above the critical line. Clearly, the ergodic region is limited to β < βc = 1.
In the low-noise (i.e. non-ergodic) region, the Mattis overlap may assume
non-vanishing values.

6.5 Numerical Simulations

We would like to conclude this Chapter by presenting numerical simu-
lations for the relativistic Hopfield model, always comparing our outcomes
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to the classical Hopfield model reference. More precisely, we performed ex-
tensive Monte Carlo (MC) simulations to check the retrieval capabilities of
both models. As a preliminary check, we compared the numerical results
with the theoretical predictions for the self-consistency equations. We also
performed a numerical study aiming in describing how the spurious attrac-
tion basins are reduced in the relativistic Hopfield model w.r.t to its classical
counterpart. In the first part of this Section, we will give a brief description
of numerical methods we adopted in our MC simulations, then we move to
the presentation of the results and their discussion.

6.5.1 Stochastic neural dynamics

The first step is to point the neural dynamics we adopted in our MC
simulations. Our implementation follows the standard Glauber dynamics

σi(t+ 1) = sign [tanh (βhi(σ(t))) + ηi(t)] (6.61)

hi(σ(t)) = ξ · m√
1 +m2

, (6.62)

where ηi are random variables uniformly sampled from [−1,+1]. Of course,
the update rule is formally unchanged w.r.t to the classical Hofpield model:
the only difference between the relativistic Hopfield model. The parameter
β clearly tunes the noise level in the network, triggering the amplitude of
the hyperbolic tangent (the signal term). In particular, for β → ∞ (which
is the zero-temperature limit), the hyperbolic tangent becomes a ±1 step
function, meaning that stochasticity is carried out from the update rule and
the dynamics is deterministic. On the contrary, for β → 0, the hyperbolic
tangent returns zero for each value of the signal, and the dynamics becomes
fully random.

We stress also that the entire stochatistic neural dynamics could be
framed in probabilistic form, by noting that Glauber dynamics can be re-
defined as

Pt+1(σ) =
∑

σ′

W [σ′ → σ]Pt(σ
′), (6.63)

W [σ′ → σ] =
N∏

i=1

eσihi(σ(t))

2 cosh (βhi(σ(t)))
. (6.64)

Here, Pt(σ) is the probability to find (at time t) the network in the state
σ, while W [σ′ → σ] is the transition probability from the state σ′ to σ.
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Because of the symmetry of couplings, Detailed Balance holds, ensuring that
there exists a stationary probability distribution at t→∞ such that

P∞(σ)W [σ′ → σ] = P∞(σ′)W [σ → σ′], (6.65)

Since the probability distribution P∞ should have the maximum entropy
Gibbs-expression P∞ ∝ exp(−βHN(σ|ξ)), it is possible to evaluate the
neuron-flip probability as

Pt(σi → σ′i) =
1

1 + eβ[H(σ|ξ)−H(σ′|ξ)] ,

which is nothing but the acceptance criterion of the Glauber algorithm.
Then, the MC simulations are carried out with the following method. At
each evolution step:

1. Select at random a neuron in the network, and compute the difference
∆H(σ|ξ) in the energy after its spin-flip. If ∆H(σ|ξ) < 0 (i.e. the flip
is convenient), the move is accepted with probability

exp(β∆H(σ|ξ))/[1− exp(∆H(σ|ξ))],

otherwise is rejected (Glauber criterion). Otherwise, if ∆H(σ|ξ) > 0
(i.e. the flip is not convenient), the move is rejected;

2. Iterate the rule for a number of evolution steps which is intensive in
the network size.

6.5.2 Comparison between theory and MC runs

In this Section, we will check the theoretical predictions and the results
of MC simulations carried out as described above: all the simulation have
been carried on our group computing cluster, equipped with 12 CPU Intel 3.2
Ghz that survey 512 GPU Nvidia for High Performance Parallel Processing
[77, 96] .
To make the comparison exhaustive, we will also include the (classical) Hop-
field model in this analysis. From the theoretical side, we solve the self-
consistency equations at fixed network size N both for pure and spurious
states. In Fig. 6.1 we show the behavior of the Mattis order parameter as a
function of the temperature T = β−1 by comparing numerical solutions of the
self-consistency solutions (dashed lines) and MC simulations (data points).
The upper plot refers to the pairwise (i.e. classical) Hopfield model (6.7),
while the lower one is its relativistic counterpart (6.18).
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Figure 6.1: Comparisons between MC simulations and self-
consistency solutions. The black dashed lines are the numerical solutions
of the self-consistency equations (6.34), while blue squares and red diamonds
are respectively the MC results for classical and relativistic Hopfield models.
The network parameters are fixed to N = 1000 with P = 3 (orthogonal)
stored patterns. The data points are the averages over 20 different pattern
realizations, for each of which we sampled 20 different stochastic evolution
starting with 20 random initial conditions (i.e. 8000 runs at any given noise
level T ).

Despite redundant, we stress that two branches are due to the underlying
spin-flip symmetry: both the pattern ξ1 and its symmetric partner −ξ1 are
attractors for the neural dynamics. Moreover, we highlight the presence of
the spurious states (evidenced by the two segments of magnetization’s values
m1 ∼ ±0.5) for noise level T ≤ 0.45. We also stress that, since we are work-



CHAPTER 6. AI: UNLEARNING 170

■

■
■

■
■

■
■

■

■
■ ■ ■ ■

◆

◆
◆

◆

◆

◆
◆ ◆ ◆ ◆ ◆ ◆ ◆

0.1 0.2 0.3 0.4 0.5
0.85

0.90

0.95

1.00

T

f

■ ■ ■ ■ ■
■

■

■

■

■
■

■ ■ ■

◆ ◆

◆

◆

◆

◆

◆
◆ ◆ ◆ ◆ ◆ ◆ ◆

0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

T

f

■ ■ ■ ■
■
■
■
■

■

■

■
■
■
■
■
■ ■ ■ ■ ■

◆ ◆ ◆
◆

◆

◆

◆

◆

◆
◆
◆
◆
◆◆◆◆◆ ◆ ◆ ◆

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

T

f

■ ■
■
■

■

■
■
■
■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

◆
◆

◆

◆

◆
◆
◆
◆◆

◆◆◆◆◆◆◆◆◆ ◆ ◆ ◆

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

T

f

Figure 6.2: Attraction basins analysis for classical and relativistic
Hopfield models. The plots show the retrieval frequency for classical (blue)
and relativistic (red) Hopfield models with N = 1000 for random (upper left
with P = 3) and spurious (with P = 3, 5, 7) initial conditions.

ing at finite network size N , there is no phase transition in the statistical
mechanics sence. However, the variances of the data-points spread at the
bifurcation point (i.e. at T ∼ 1), therefore signaling that a typical second or-
der phase transition takes place in the thermodynamic limit N →∞, which
is of course confirmed by our theoretical analysis.

6.5.3 Depth of the attractors and energy gaps

This final Section is devoted to a numerical analysis of attraction basins
of spurious states. To this aim, we compare the classical and relativistic Hop-
field networks (with N = 1000) and check the retrieval performances of both
models. Therefore, we prepared the system in specific configurations (to be
discussed below) and then let the systems evolves with standard stochastic
neural dynamics (for different values of the thermal noise T ) towards the
equilibrium configuration. After the system as relaxed on a stable config-
uration, we then measure the retrieval frequency f , which is the fraction
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of evolutions ending in pure state configurations as a function of the noise
level T . The analysis can be performed in three different ways, as we shall
summarize.

• Attractors from random initial conditions

At first, we prepared the system in a fully random initial configuration for
a network with P = 3 stored random patterns, then we let it thermalize
at a given noise level T with the Markov dynamics (6.63). We collect the
final state of the relaxation process (for both for the classical and the rela-
tivistic models) and then compute the retrieval frequency f . We performed
20 different stochastic evolutions for 20 different initial random conditions
and 20 pattern realizations. Results are shown in Fig. 6.2, upper left plot.
It emerges that the relativistic model slightly improves the retrieval perfor-
mances of original Hopfield network, as it can be understood by the fact
that the relativistic (red) curve is always above the pairwise counterpart.
Then, the relativistic model shows increased performances that its classical
counterpart (as long as the spurious states are locally stable).

• Attractors from spurious initial conditions

In order to better understand how spurious attraction basins are downsized
in the relativistic Hopfield model, we performed the following analysis. We
prepared the system sharply within a spurious state (the 3-patterns mixture
for P = 3, see Eq. (6.1)) and let it thermalize at a given noise level β−1

according (6.63). The statistics in this case is composed by 40 different
stochastic evolutions for each of the 40 pattern realizations. The results for
the retrieval frequency f are reported in the remaining plots of Fig. 6.2 for
P = 3 (upper right plot), P = 5 and P = 7 (respectively lower left and right
plots). We stress that we analyzed the noise range T ∈ [0, 0.5], in which
spurious states are dynamically stable attractors. For higher noise levels,
spurious states are not stable, so that there is generally no more reward in
the relativistic extension.

By inspecting the plots, also in this case it is clear that relativistic Hop-
field model systematically outperforms w.r.t. the original pairwise one.

• Attractors from noisy spurious configurations

In our last analysis (which is indeed inspired by the works of the Gardner
on the estimation of depth and stability of the basins of attractions of pure
and spurious states [53, 52]), we proceed as follows. We aligned the network
(with P = 3 random patterns) in the spurious configuration. Then, we
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randomly spin-flip a percentage d of the neurons (i.e. for e.g. d = 0, no
random spin-flip at all is performed, while for e.g. d = 50%, one half of
the spins are flipped). In other words, we are preparing the system into a
known state (e.g. the spurious state), and then we reshuffle it by kicking
randomly a percentage d of its neurons. Then, we check if the networks
returns (or the escapes) from the initial attractor as a function of d. Also
in this case, we realized 40 different stochastic evolutions for each of the
40 pattern realizations. Results are shown in Fig. 6.3 for T = 0.2 and
0.3, focusing on a 3-mixture spurious state (in order to quantify the pruning
capabilities of the relativistic model w.r.t the pairwise Hopfield one).It is clear
that, at mild noise level (T = 0.2, left plot), spurious states already becomes
unstable in the relativistic extension also for very low spin-flips percentage
d (to be compared with the classical case, in which they are still stable).
For larger values of d ∼ 0.35, both models improve the retrieval frequency
(but the relativistic one always outperforms). Finally, for moderate noise
levels (T = 0.3, right plot) the relativistic model always escapes from the
spurious state (regardless of d), making it clear that the associated attraction
basin is strongly corrupted by the unlearning contributions in the Hopfield
Hamiltonian (6.18).

In conclusion, relativistic Hopfield model has improved retrieval perfor-
mances w.r.t. the pairwise counterpart. A reasonable argument supporting
these results lies in the fact that energy barrier between the spurious states
and the maxima surrounding them are indeed downsized. Indeed, we checked
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Figure 6.3: Stability of retrieval performances for noisy spurious
inputs. Results for retrieval frequency as a function of the initial spin-flip
fraction d for T = 0.2 (left) and 0.3 (right) with 0 ≤ d ≤ 0.5. The network
parameters are fixed to N = 1000 and P = 3 stored random patterns.
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this idea by preparing the network in a spurious pattern and then performing
a noiseless random walk (i.e. not of Glauber type). In other words, at each
evolution step, a spin σi is selected and (if it is not already aligned to the
i-th entry of a given pattern), it is flipped. The procedure is performed until
the network is completely aligned to that pattern. In such a walk, an energy
barrier has to be crossed. Collecting the energy gaps and averaging on 1600
different samples (i.e. 40 pattern realizations and 40 different stochastic evo-
lutions for each one of them), we find that these energy barriers are strongly
downsize up to ∆Erelativ/∆Eclassic ∼ 0.75. This confirms our hypotesis, also
suggesting how to go beyond the standard pairwise Hopfield model in order
to account network pruning.



Chapter 7

Beyond the standard paradigm:
Sleeping for high storage

In the last Chapter, we started to see how more sophisticated neural
network models can be carried out in order to overcome the intrinsic lim-
itations of Hopfield paradigm. In our case, this was achieved by adding
an infinite series of P-spin contributions, showing how this leads to an en-
hancement of retrieval performances (at least in the low storage limit). This
can also be understood by simply looking at the critical storage capacity.
As remarked by Krotov and Hopfield in [82], P-spin neural network mod-
els allow for a critical threshold which grows more than linearly with the
network size (namely, assuming n-body coupling between the neurons, the
critical capacity roughly grows as Nn−1). However, also keeping the model
to present pairwise interactions, it is still possible to enhance the critical
capacity by saturating the Gardner upper bound (λc = 1). Indeed, we afore-
mentioned the so-called unlearning, whose core idea is to suitably modify
the interactions and make spurious configurations less stable. Even if we
implemented it in the alternating signs series (i.e. the Taylor expansion of
relativistic Hopfield Hamiltonian), unlearning was originally developed for
the pairwise model. Much progress have been made in the last two decades
(see for instance [35, 66, 98, 97, 47, 79, 134, 40, 44, 87, 88, 90, 100, 106, 105]
and references therein) about unlearning in the standard Hopfield model,
however a comprehensive picture through statistical mechanics was not still
carried out systematically and rigorously: this will be the goal of this final
Chapter.

We will keep the paradigmatic Hopfield model as standard reference and
implement it by including reinforcement and remotion features in such a
way that they are able to work simultaneously during the network sleep

174
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(as inspired by real sleeping and dreaming mechanisms in mammal brains).
Strongly oversimplifying, a sleeping session can be split in two different
modes, i.e. rapid eye movement (REM) and slow wave (SW) sleeps. While
the former yields to erasure of unnecessary memories, the latter achieves
in consolidating of the important ones [14, 107, 123]. In the Literature on
Artificial Intelligence, reinforcement (of pure states) and remotion (of spuri-
ous states) are addressed in separate ways (see e.g. [66, 135, 73, 124]). In
this Chapter, we review our recent results reported in [50, 2], in which we
proposed a unified framework for synaptic plasticity accounting both for re-
inforcement and remotion. As we will show, the combination of these two
features leads to an enlargement of region (in the space of the parameters),
but most remarkably to the disappearance of the spin glass phase.

Before going further on the subject, let us now deepen the context of
our work. Since the Hopfield model threshold λc ∼ 0.14 is far away from
Gardner’s upper bound λc = 1, scientists tried to improve its retrieval perfor-
mances by implementing some extensions and variations on theme (e.g. keep-
ing the network out of equilibrium [38, 42] or allowing the network to process
multiple tasks simultaneously [9, 8, 7]). A crucial inspiration came with Crick
and Mitchinson’s paper [39], in which Authors argued that the REM phase
of sleep is associated to a reverse learning mechanism removing irrelevant in-
formation (in order to save memory and avoid overloading catastrophes), see
also [14, 107, 123] for empirical evidences and [47, 68, 18, 98, 97, 104, 135] for
theoretical investigations. Another interesting point in making a link between
AI and sleeping (and in particular REM phase) is that generally dreams are
not entirely uncorrelated with learned (i.e. experienced) informations, as well
as (as we discussed above) spurious attractors in the Hopfield model shows
unavoidably implies short-length correlations with pure memories.

A first step towards the implementation of sleeping in AI is due to Hop-
field himself (together with Feinstein and Palmer [66]). As we already dis-
cussed in this thesis, the key observation lies in the fact that Hopfield model
fails to retrieve stored information when the number of spurious states are ex-
ponentially more abundant than the number of pure states (regardless their
depth in the free energy landscape). This means that, making a quench from
T → ∞ to T = 0, the system will end more likely in configurations which
are uncorrelated with the stored patterns (i.e. spurious states). By sampling
a number of these final configurations, one can quantify the two-point cor-
relation functions 〈σiσj〉exp for each i and j. The recipe they proposed to
face this problem is to update the synaptic matrix according to an inverse
Hebbian learning, so that uncorrelated configurations are increase in energy
and become less stable. In mathematical terms, Hopfield’s proposal consists
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in the update algorithm

Jij → Jij −
ε

N
〈σiσj〉exp =

1

N

P∑

µ=1

ξµi ξ
µ
j −

ε

N
〈σiσj〉exp, (7.1)

with ε is a tunable (but small) parameter, the so-called unlearning strength,
and the subscript exp again means that we are dealing with quantity which
are averaged on an experimental sample. This rule should be re-iterated in
order to clean the minima landscape from unwanted attractors. In particular,
we stress that the minus sign in (7.1) is central, since it has to increase
the energetic value relative to such spurious configurations. Hopfield’s rule
is only one between the infinite possible algorithmic choice. Indeed, many
unlearning scenario have been already proposed in the Literature, all sharing
the same core idea. Among these rules, an interesting choice is due to Plakhov
and Semenov [104]. Their scheme consists in replacing the pure pairwise
correlations between spins with correlations between internal fields, namely

Jij → Jij − ε〈hihj〉exp. (7.2)

The interesting point (and the main advantage) w.r.t to Hopfield rule is that,
with a suitable choice of the unlearning strength, this algorithm is ensured to
converge (up to scaling factors) to the projector (or pseudo-inverse) matrix

Jij =
1

N

P∑

µ,ν=1

ξµi (C−1)µ,νξ
ν
j , (7.3)

where

Cµ,ν =
1

N

N∑

i=1

ξµi ξ
ν
i , (7.4)

is the 2-point correlation matrix between the patterns. Remarkably, the
model (7.3) naturally emerges when requiring that stored patterns are dy-
namically stable [80, 75], regardless if they are random and uncorrelated or
encode information of a structured dataset (for a nice discussion, see also
[11]). Notably, the model (7.3) shows a storage capacity reaches αc = 1.
From the point of view of unlearning à la Plakhov&Semenov, the statistical
mechanics of the continuous-time limit (i.e. ε ∼ dt) of (7.3), which is realized
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by the coupling matrix1

Jij(t) =
1

N

P∑

µ,ν=1

ξµi (I + tC)−1
µ,νξ

ν
j , (7.5)

where I is the identity matrix and t ∈ R+ is the sleeping time, was studied
by Dotskenko and coworkers [47, 46]. When realizing the phase diagram of
the model, it turns out that the maximal storage capacity increases as t gets
larger and larger, approaching the Gardner upper bound.2 However, in the
large t limit (for which the storage capacity is maximal), the coupling matrix
identically vanishes. This signals that unlearning scenario (7.2) also affects
pure memories, and in the infinite sleeping time limit, all stored information
is destroyed. Indeed, the retrieval region is stretched toward higher values
in α with respect to the Hopfield reference, but at the same time it is also
confined to smaller values of T , ultimately disappearing when t→∞.

In the rest of the Chapter, we will review our model, which is forced to
interpolate between Hopfield and [103, 75] model, and show how this is well-
defined and thermodynamical stable (meaning that retrieval region is still
present in the large sleeping time limit) with a critical capacity saturating
the Gardner upper bound. A note on methodologies is in order here. As
we usually did throughout this thesis, once introduced the model, we first
solve it by means of the replica trick technique, then we confirm our findings
by following the Guerra-Toninelli interpolation schemes. In particular, the
latter makes it possible to deal also with the analysis of order parameter
fluctuations, therefore giving a rigorous basis to our results.

Since the plan is now clear, we are now in position to introduce the model
according to the following:

Definition 7.1. Consider a network composed by N neurons {σi}i=1,...,N ,
with σi ∈ {−1,+1} ∀i, and P Boolean patterns ξµ, with µ = 1, . . . , P . For
each sleeping time t ∈ R+, the reinforcement&removal model is described by

1While quite marginal in AI, we stress that such a learning rule is non-local, since
the coupling between neurons i and j now depends on pattern entries related to all the
neurons in the system (and this is a criticality from the biological point of view). A local
algorithm which is known to converge towards the projector matrix is the called Adeline
learning rule (see [76, 135] for an overview.)

2Actually, the critical threshold found by [47] is approximately 1.07. This is not to
be meant as a violation of Garner’s bound: the overflow is due to the underlying replica-
symmetry approximation.



CHAPTER 7. AI: SLEEPING 178

the Hamiltonian1

HN,P (σ|ξ, t) = − 1

2N

N∑

i,j=1

P∑

µ,ν=1

ξµi ξ
ν
j

(
1 + t

I + tC

)

µ,ν

σiσj, (7.6)

where the P patterns are i.i.d. extracted according to the probability

P (ξµi = +1) = P (ξµi = −1) =
1

2
, ∀i = 1, . . . , N, ∀µ = 1, . . . , P,

and the correlation matrix is defined as

Cµ,ν ≡
1

N

N∑

i=1

ξµi ξ
ν
i .

Remark 7.1. Note that the interpretation of t as the sleep extent is clear:
for t = 0 the system reduces to the standard Hopfield model, while for t→∞
the system approaches the pseudo-inverse matrix model.

Remark 7.2. The “temporal variable” t within an (equilibrium) statistical
mechanical theory may look weird. However, it should be noticed that the
time-scale for a sleeping session is much longer than that characterizing neu-
ronal dynamics. This is also reasonable from a biological perspective, since
neural dynamics takes place with frequencies of the order of O(102) Hz (i.e.
the typical spiking time, considering also the absolute refractory period of a
biological neuron).

Once the Hamiltonian is introduced, we can define the basic thermody-
namical quantities, namely

Definition 7.2. The partition function of the reinforcement&removal model
(7.6) is

ZN(β, t) =
∑

σ

e−βHN,P (σ|ξ,t) =

=
∑

σ

exp
{ β

2N

N∑

i,j=1

P∑

µ,ν=1

ξµi ξ
ν
j

(
1 + t

I + tC

)

µ,ν

σiσj

}
.

(7.7)

The associated infinite volume limit of the intensive free energy is defined as

f(β, λ, t) = − lim
N→∞

1

βN
E logZN(σ|ξ, t). (7.8)

Again, we shall denote with ω(·) and 〈·〉 the (t-dependent) Boltzmann-
Gibbs averages (where the last one can be intended also on the replicated
system).

1A note on the notation: the denominator 1/(I+ tC) is intended as the inverse matrix
(I + tC)−1.
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7.1 The replica trick

We now directly move to the replica trick resolution of the system under
the assumption of replica symmetry. Using the standard approach, we write
the large N free-energy as

f(β, λ, t) = − lim
N→∞

1

βN
E′ logZN(σ|ξ, t) = − lim

n→0
N→∞

E′ZN(σ|ξ, t)n − 1

βnN
. (7.9)

As we did for the standard Hopfield model, we will assume that the only
candidate for retrieval is the pattern ξ1, while ξµ for µ ≥ 2 contribute to the
slow noise. Therefore, also in this case E′ is the average over the P − 1 not-
retrieved patterns. The replicated partition function can be put in Gaussian
form as

E′ZN(σ|ξ, t)n = EC
∑

σ(1)

. . .
∑

σ(n)

∫ (∏

µa

dµ(z(a)
µ )
)(∏

ia

dµ(φ
(a)
i )
)
·

· exp
(√ β

N
(t+ 1)

∑

µia

z(a)
µ ξµi σ

(a)
i + i

√
t

N

∑

µia

z(a)
µ ξµi φ

(a)
i

)
,

(7.10)

where P(zaµ) = P(φai ) = N(0, 1) and C is a (ξ-dependent) normalization
constant coming from the double Gaussian integration (its contribution to
the free energy is trivial since it is constant, so we will omit it). The only
difference of our model w.r.t. to the system studied in [47] is that here we
have β(1 + t) (instead of β). As we will see, this factor is crucial to keep
stable the thermodynamics of the system, since the critical temperature at
zero load λ = 0 is kept fixed at βc = 1 as t is tuned. Before to go further, we
have to define the order parameters.

Definition 7.3. Besides the usual Mattis overlap

mµ =
1

N

∑

i

ξµi σi, (7.11)

we introduce the generalized overlaps

Qab =
1

N

∑

i

(
σ

(a)
i + i

√
t

β(1 + t)
φ

(a)
i

)(
σ

(b)
i + i

√
t

β(1 + t)
φ

(b)
i

)
. (7.12)

Remark 7.3. Such a definition of the overlap could be weird, since it mea-
sure the overlaps complex linear combinations of different variables typolo-
gies. However, as we will see such a trick allows to strongly simplify the
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computations, and a fortiori we will see that its thermodynamic value is
indeed real, thus making everything well-defined.

The replica trick computations for such a model follow the same procedure
as the usual Hopfield model, but - because of their complexity - we will only
give the intermediate result (however, the interested reader could consult our
original work [50]). The expression for the replicated partition function is
therefore

E′ZN(σ|ξ, t)n =

∫
dµ(m,Q,P ) exp(−NA[m,Q,P ]), (7.13)

where

A[m,Q,P ] =

=
β

2(1 + t)

∑

a

(m
(a)
1 )2 +

λβ2

2

∑

ab

PabQab +
λ

2
log det [I− β(1 + t)Q]

− E log
∑

σ

∫ (∏

a

dµ(φ(a))
)

exp
[
β
∑

a

m
(a)
1 ξ1

(
σ(a) + i

√
t

β(1+t)
φ(a)
)

+
λβ2

2

∑

ab

Pab

(
σ(a) + i

√
t

β(1+t)
φ(a)
)(
σ(b) + i

√
t

β(1+t)
φ(b)
)]
.

(7.14)

Here, λ is the storage load, mα
1 is the Mattis overlap (of the α-th replica)

associated to the pattern ξ1 to be retrieved and P is the conjugated overlap
matrix (entering because of the Fourier representation of Q Dirac deltas).
The previous problem has the form of Laplace integral, so it can be evaluated
with saddle point method. In this limit, of course, the intensive free energy
of the model is finally realized as

f(β, λ, t) = lim
n→0

A[m,Q,P ]. (7.15)

At this point, we cannot go further without imposing some structure of the
overlap matrices. Then, as in the Hopfield case, we will adopt the RS Ansatz

m
(a)
1 = m ∀a, (7.16a)

Qab = Qδab + q(1− δab), (7.16b)

Pab = Pδab + p(1− δab). (7.16c)

We stress that the diagonal overlap P should not be confused with the num-
ber of stored patterns (which is indeed implicit in the definition of the storage
capacity λ).
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Remark 7.4. Here, we would like to stress two points. First of all, since
the generalized overlap involves combinations of different variables, it is not
ensured that diagonal entries in Q will be equal to 1, so we have to introduce
the diagonal generalized overlap Q. Furthermore, a priori it is not ensured
that the diagonal conjugate one can be consistently set to zero. Ultimately,
we have to deal with five different order parameters.

After straightforward computations, we can finally state the next

Proposition 1. The infinite volume limit of the replica-symmetric free en-
ergy for the model (7.6), expressed in terms of the order parameters m and
q, reads as

fRS(β, λ, t) =

=
m2

2(1 + t)

(
1 +

t

∆

)
+

(1 + t)(∆− 1)

2t
Q+

λβ

2
p(Q− q)

+
λ

2β

(
log[1− β(1 + t)(Q− q)]− qβ(1 + t)

1− β(1 + t)(Q− q)

)
+

(1 + t)(1−∆)

2t∆

+
log ∆

2β
+

λpt

2(1 + t)∆
− 1

β

∫ +∞

−∞
dµ(z) log 2 cosh

[ β
∆

(m+
√
λpz)

]
.

(7.17)

where ∆ = 1+λβt(1+ t)−1(P −p). The associated self-consistency equations
are therefore

m =
1 + t

∆ + t

∫ +∞

−∞
dµ(z) tanh

[ β
∆

(m+
√
λpz)

]
, (7.18a)

p =
q(1 + t)2

[1− β(1 + t)(Q− q)]2
, (7.18b)

∆ = 1 +
λt

1− β(1 + t)(Q− q)
, (7.18c)

q = Q+
t

β(1 + t)∆
− 1

∆2

∫ +∞

−∞
dµ(z) cosh−2

[ β
∆

(m+
√
λpz)

]
, (7.18d)

Q∆2 = 1− t∆

β(1 + t)
+

λpt2

(1 + t)2
− m2t(t+ 2∆)

(1 + t)2
(7.18e)

− 2λβpt

(1 + t)∆

∫ +∞

−∞
dµ(z) cosh−2

[ β
∆

(m+
√
λpz)

]
. (7.18f)

Remark 7.5. Notice that, in the limit t → 0, both the free energy (7.17)
and the self-consistency equations (7.18) reduces to the Amit-Gutfreund-
Sompolinsky ones [13], as they should.
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7.1.1 Remotion or Reinforcement: a separate analysis

Before turning on the solutions of the self-consistency equations and the
realization of the phase diagram, in this Section we would like to justify
why our model account both for reinforcement and remotion. In particular,
in the generalized kernel appearing in 7.6, the denominator (the term ∝
(1 + tC)−1) yields to the remotion of unwanted mixture states, while the
numerator (i.e., the term ∝ 1 + t) reinforces the memories. To this aim, we
separate the whole Hamiltonian (7.6) in two different models by considering
separately the numerator (reinforcement) and the denominator (remotion)
in the generalized kernel:

H
(1)
N = −1

2

∑

µ

∑

ij

ξµi ξ
µ
j (1 + t)σiσj, (7.19a)

H
(2)
N = −1

2

∑

µν

∑

ij

ξµi ξ
ν
j (I + tC)−1

µ,νσiσj. (7.19b)

Let us analyze these two models separately:

• For the former (which, in our claim, is the responsible of reinforcement
effect), it is formally equivalent to the Hopfield model, but with a
rescaled thermal noise β̃ = β(1 + t). As a consequence, the zero-
capacity critical temperature is precisely T̃c = β̃−1

c = 1, which implies
Tc = (1 + t). See Figure 7.1 (left panel).

• The latter model is precisely (7.5), whose statistical mechanics has been
carried out in [47] (in the standard replica-symmetric regime)Remarkably,
the λ = 0 critical temperature for breaking the retrieval functionality
of the model is Tc = (1 + t)−1. See Figure 7.1 (right panel).

By comparing both the critical temperatures, it is reasonable to expect that,
in the full model (7.6), the λ = 0 critical temperature could be fixed at
Tc = 1, therefore saving the whole retrieval region. As we will show, this
turns out to be true.

With these ideas in mind, it is also reasonable to expect that - in the full
model (7.6) - the mashing effect of unlearning can be compensated by the
rescaling of the thermal noise, therefore giving an optimal balance between
the Reinforcement and the Removal features. The evaluation of the phase
diagram for our model is presented in the next Section.
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Figure 7.1: Reinforcing and unlearning models. Left: the plot shows the
retrieval regions for the reinforcing model H(1) for t = 0 (Hopfield), 0.1, 0.2,
0.5 and 1. The critical temperature in the zero-capacity limit is Tc = (1 + t)
and this trivial shift in the critical temperature is the solely novelty of this
model. Right: the plot shows the retrieval regions for the Dotsenko model as
also discussed in [47]. The critical temperature grows with t, by the critical
temperature in the zero-capacity limit decreases as Tc = (1 + t)−1, so that
the retrieval regions are mashed on the horizontal axes.

7.2 Guerra’s interpolating scheme

In this Section, we will re-derive the above results from the point of
view of Guerra’s interpolation scheme, therefore giving a rigorous basis to
our findings. In order to simplify our computations, we will express the
Hamiltonian in a convenient form with the following

Definition 7.4. The Hamiltonian in the Gaussian representation (7.10) of
(7.6) can be written in the form

HN,P (σ, z|ξ) =
a√
N

N∑

i=1

P∑

µ=1

zµξ
µ
i ki, (7.20)

where the multi-spin ki stands for the complex linear combination σi + bφi,
with

a =
√
β(t+ 1), b = i

√
t

β(t+ 1)
. (7.21)

Remark 7.6. We stress again that, for the sake of mathematical conve-
nience, as deepened when inspecting the hybrid Hopfield network, we take
solely the pattern candidate for retrieval (i.e. the signal) to be Boolean, while
all the remaining ones (acting as slow noise on the retrieval) are chosen as
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Gaussian. Although neural networks, in general, do not exhibit the univer-
sality properties of spin glasses [54], this is no longer true if we confine our
focus solely to the structure of the slow noise generated by patterns.1

Here, we are interested in the expression of the intensive pressure α(β, λ)
in the high-storage regime P = λN in the thermodynamic limit. To do this,
we have to introduce the following order parameters.

Definition 7.5. The natural order parameters for the neural network model
(7.6) are the overlaps Qab and Pab between the ks and the zs variables of the
replicated system. In mathematical terms:

Qab =
1

N

N∑

i=1

k
(a)
i k

(b)
i , (7.22)

Pab =
1

P

∑

µ≥2

z(a)
µ z(b)

µ , (7.23)

m1 =
1

N

N∑

i=1

ξ1
i ki. (7.24)

Remark 7.7. We stress that, in the definition of the overlaps, we tacitly
assume that only the first pattern ξ1 is the candidate to be retrieved. There-
fore, in the practical computations, we separate again between the signal and
noise terms. This justify the definition of the overlap P in order to include
only zµ variables with µ ≥ 2.

Remark 7.8. In the replica symmetric (RS) regime, order parameters do
not fluctuate in the thermodynamic limit2, i.e.

qab
RS→ Qδab + q(1− δab), (7.25)

pab
RS→ Pδab + p(1− δab), (7.26)

m1
RS→ m, (7.27)

In order to set up the Guerra’s interpolation framework, we need to intro-
duce the generalized intensive pressure. This is the content of the following

1As extensively discussed in [23, 22], by varying the nature of the neurons as well as
of the pattern entries, for instance ranging from Boolean (Ising) to standard Gaussians,
the retrieval performances of the network vary sensibly and, in some limits, are entirely
lost: in this sense neural networks do not share universality with standard spin-glasses.

2This request is of course consistent with the replica-symmetric ansatz when approach-
ing the problem via the replica trick [37, 50].
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Definition 7.6. Given the interpolating parameter s ∈ [0, 1], the auxiliary
fields (which are i.i.d Gaussian variables) {ηi}i∈(1,...,N), {λµ}µ∈(2,...,P ) and the
tunable scalars C1, C2, C3, C4, C5 (to be set a posteriori), the generalized
intensive pressure is

αN(s) =
1

N
E log

∑

σ

∫
dµ (z, φ) exp

[√
s
a√
N

∑

i,µ≥2

zµξ
µ
i ki

+
√
s
a√
N

∑

i

z1ξ
1
i ki +

√
1− s

(
C1

N∑

i

ηiki + C2

∑

µ≥2

λµzµ

)

+
1− s

2

(
C3

∑

µ≥2

z2
µ + C4

∑

i

k2
i + C5a

∑

i

ξ1
i ki

)]
.

(7.28)

The quenched average E is performed over non-recalled patterns (contribut-
ing to the noise) and the auxiliary fields.

Remark 7.9. As usual, the s = 1 choice recovers the original model, namely
α(β, λ, t) = limN→∞ αN(s = 1), while for s→ 0 it is a more tractable a one-
body problem.

Also in this case, we denote with ωs(·) and Ωs(·) the Boltzmann-Gibbs
averages (respectively of the system and of its replicated version) implicitly
defined by the above intensive pressure, and 〈·〉 = EΩs(·).

Proposition 7.1. The infinite volume limit of the quenched pressure related
to the model (7.6) can be obtained by using the Fundamental Theorem of
Calculus as

α(β, λ, t) ≡ lim
N→∞

αN(s = 1) = lim
N→∞

(
αN(s = 0) +

∫ 1

0

ds∂sαN(s)
)
. (7.29)

Let us start with the computation of the derivative (by:

dαN(s)

ds
=

1

2N
E
[ a√

sN

∑

i,µ≥2

ξµi ωs(zµki)−
1√

1− s

(
C1

∑

i

ηiωs(ki)

+ C2

∑

µ≥2

λµωs(zµ)
)

+
a√
sN

∑

i

ξ1
i ωs(z1ki)− C3

∑

µ≥2

Ωs(z
2
µ)

− C4

∑

i

ωs(k
2
i )− C5a

∑

i

ωs(ξ
1
i ki)

]
.

(7.30)
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We can proceed further by using Wick’s Theorem on z1 and the auxiliary
fields, we have

dαN(s)

ds
=

1

2N
E
[a2

N

∑

i,µ≥2

(
ωs(z

2
µk

2
i )− ωs(zµki)2

)
+
a2

N
ωs(
(∑

i

ξ1
i ki
)2

)

− C2
1

∑

i

(
ωs(k

2
i )− ωs(ki)2

)
− C2

2

∑

µ≥2

(
ωs(z

2
µ)− ωs(zµ)2

)

− C3

∑

µ≥2

ωs(z
2
µ)− C4

∑

i

ωs(k
2
i )− C5a

∑

i

ωs(ξ
1
i ki)

]
.

(7.31)

We can now directly introduce the order parameters (7.24) (after considering
the replicated system) in order to get

dαN
ds

=
1

2
E
[
a2λΩs(Q11P11) + a2Ωs(m

2
1)− a2λΩs(Q12P12)− C2

1Ωs(Q11)

+ C2
1Ωs(Q12)− C2

2λΩs(P11) + C2
2λΩs(P12)− λC3Ωs(P11)

− C4Ωs(Q11)− aC5Ωs(m1)
]
.

(7.32)

Now, fixing the scalars C1,..,5 as

C2
1 = a2λp, C2

2 = a2q, C3 = a2(Q− q),
C4 = a2λ(P − p), C5 = 2ma,

(7.33)

we can recast the streaming ∂sαN(s) in the form

dαN
ds

=
1

2
E
[
a2λΩs((q11 −Q)(p11 − P )) + a2Ωs((m1 −m)2)

− a2λΩs((q12 − q)(p12 − p))
]

+
λa2

2
(qp−QP )− a2

2
m2.

(7.34)

Remark 7.10. Requiring replica symmetry, the evaluation of the s-integral
in Eq. (7.29) is trivial, since the r.h.s. of Eq. (7.34) reduces to

∂sαN(s) =
λa2

2
(qp−QP )− a2

2
m2 (7.35)

that does not depend on s any longer.

For the one-body contribution, we have

αN(s = 0) =
1

N
E log

∑

σ

∫
dµ (z, φ) exp

[
C1

∑

i

ηiki +
C4

2

∑

i

k2
i

+
C5a

2

∑

i

ξ1
i ki + C2

∑

µ≥2

λµzµ +
C3

2

∑

µ≥2

z2
µ

]
.

(7.36)
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The computation of the one-body contribution is straightforward (but some-
what cumbersome), so we only give the final result:

αN(s = 0) = −λ
2

log(1− C3)− 1

2
log(1− C4b

2) +
λ

2

C2
2

1− C3

+
C4

2

+ b2C
2
1 + C2

4 +
C2

5a
2

4

1− C4b2
+ E log 2 cosh

[C1η + C5a
2

1− C4b2

]
.

(7.37)

Then, putting everything together, recalling the choice for the parameters
C1, ..., C5 as prescribed in the relations 7.33and performing the trivial rescal-
ing of the overlaps as

P → β2

a2
P, p→ β2

a2
p, m→ β

a2
m, (7.38)

after some trivial manipulation we arrive at the following

Theorem 7.1. The thermodynamic limit of the intensive pressure in the
replica symmetric regime of neural network model defined in Eq. (7.6) is

αRS(β, λ, t) = − βm2

2(1 + t)

(
1 +

t

∆

)
− (1 + t)(∆− 1)

2t
βQ− λβ2

2
p(Q− q)

− λ

2

(
log[1− β(1 + t)(Q− q)] +

qβ(1 + t)

1− β(1 + t)(Q− q)

)

− (1 + t)(1−∆)β

2t∆
− log ∆

2
− λβpt

2(1 + t)∆

+

∫ +∞

−∞
dµ(η) log 2 cosh

[ β
∆

(m+
√
λpη)

]
,

(7.39)

where again ∆ = 1 + λβt(t+ 1)−1(P − p).

Remark 7.11. By a direct comparison, we see that this expression of the
intensive pressure α(β, λ, t) = −βf(β, λ, t) leads to the same intensive free
energy (7.17), therefore leading to the same self-consistency equations, com-
muting Proposition 1 into Theorem 7.1.

7.2.1 Analysis of the overlap fluctuations and ergodic-
ity breaking

Before turning on the numerical resolution of the self-consistency equa-
tions (7.18), we would like to conclude the theoretical analysis of the modelin
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order to determine the critical behaviour of the system and the ergodicity
breaking. To address this point, we study the behaviour of the overlap fluc-
tuations, which we suitably center around their thermodynamic values and
properly rescale (in order to allow them to diverge when the system ap-
proaches the critical line). This is possible since they are meromorphic func-
tions, and their poles identify the evolution of the critical surface βc(λ, t) (if
any).

To this aim, we will use the generalized Guerra’s interpolation scheme
(see Eq. (7.28)) and using a sum rule (perfectly analogous to the one for
the intensive pressure in the thermodynamic limit, see Eq. (7.29)). In this
way, we are able to evaluate the evolution of the order parameter correla-
tors from s = 0 (where their evaluation is simple) and propagate it up to
s = 1. Therefore, for the correlation function of a generic thermodynamical
observable O, we need to evaluate the Cauchy condition 〈O(s = 0)〉 and the
derivative ∂s〈O(s)〉. In contrast with the case of the intensive free energy,
where we imposed replica symmetry, here we impose ergodic behaviour (since
we want to trace the ergodicity breaking critical line). In other words, we as-
sume that the system is approaching this boundary from the high fast-noise
limit (where the expectation values of the overlaps can be consistently set
to zero in order to simplify the computations). The first step is therefore to
introduce the centered and rescaled overlaps, as stated in the next

Definition 7.7. The centered and rescaled overlap fluctuations θlm and ρlm
are introduced as

θlm =
√
N
[
Qlm − δlmQ− (1− δlm)q

]
(7.40)

ρlm =
√
P
[
Plm − δlmP − (1− δlm)p

]
. (7.41)

Remark 7.12. Of course, in this analysis the signal is absent, thus there
is no need to introduce a rescaled Mattis order parameter. Here, we only
consider the boundary between the ergodic region and the spin-glass phase.

In the next definition, we will introduce a generalized r-replicated pres-
sure. In order to make notation more compact, we will denote the r-replicated
system variables simply with the subscript R.

Definition 7.8. Given an observable O (which is a smooth function of neu-
rons of the r-replicated system) and a source fields J , the r−replicated in-
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terpolating pressure Ar
J(s) is

Ar
J(s) = E log

∑

σR

∫
dµ (zR, φR) exp

[√
s
a√
N

r∑

l=1

∑

i,µ

z(l)
µ ξ

µ
i k

(l)
i + JÔ

+
√

1− s
(
C1

r∑

l=1

∑

i

ηik
(l)
i + C2

r∑

l=1

∑

µ

λµz
(l)
µ

)

+
1− s

2

(
C3

r∑

l=1

∑

µ

(z(l)
µ )2 + C4

r∑

l=1

∑

i

(k
(l)
i )2

)]
.

(7.42)

where C1,2,3,4 are the same given in the previous section (see Eq. (7.33)).

Remark 7.13. Of course, here there is no C5, since the signal term is absent.

By construction, the derivative of the r-replicated pressure with respect
to the external source fields J are

〈O(s)〉s =
∂Ar

J(s)

∂J

∣∣∣∣
J=0

, ∂s〈O(s)〉s =
∂(∂sA

r
J)

∂J

∣∣∣∣
J=0

. (7.43)

In order to evaluate the fluctuations of O, we need to evaluate first ∂sA
r
J .

By standard computations, we get

∂sA
r
J =

1

2

√
λβ(1 + t)

r∑

l,m=1

[
〈gl,m〉s − 〈gl,m+r〉s

]
, gl,m = θl,mρl,m. (7.44)

Then, using (7.43) and performing the same rescaling we did in the previous
section, namely

(P, p)→ β2

a2
(P, p), (7.45)

it can be proved the following

Proposition 7.2. Given O as a smooth function of r replica overlaps (q1, . . . , qr)
and (p1, . . . , pr) , the following streaming equation holds:

dτ 〈O〉s =
1

2

r∑

a,b

〈O · ga,b〉s − r
r∑

a=1

〈O · ga,r+1〉s

+
r(r + 1)

2
〈O · gr+1,r+2〉s −

r

2
〈O · gr+1,r+1〉s,

(7.46)

where dτ is the derivative

dτ =
1

β(1 + t)
√
α

d

ds
. (7.47)
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To study the overlap fluctuations we must consider the following corre-
lation functions (it is useful to introduce and link them to capital letters in
order to simplify their visualization):

〈θ2
12〉s = A(s), 〈θ12θ13〉s = B(s), 〈θ12θ34〉s = C(s),

〈θ12ρ12〉s = D(s), 〈θ12ρ13〉s = E(s), 〈θ12ρ34〉s = F (s),

〈ρ2
12〉s = G(s), 〈ρ12ρ13〉s = H(s), 〈ρ12ρ34〉s = I(s),

〈θ2
11〉s = J(s), 〈θ11ρ11〉s = K(s), 〈ρ2

11〉s = L(s),

〈θ11θ12〉s = M(s), 〈θ11ρ12〉s = N(s), 〈ρ11θ12〉s = O(s),

〈ρ11ρ12〉s = P (s), 〈θ11ρ22〉s = Q(s), 〈θ11θ22〉s = R(s).

〈ρ11ρ22〉s = S(s),

(7.48)

Since we intend to approach the critical line for ergodicity breaking from
above [26]), we can treat θa,b, ρa,b as Gaussian variables with zero mean (so
that we can apply Wick-Isserlis theorem in the averages). Analogously, we
can also treat both the ki and zµ as zero mean random variables (i.e. all av-
erages of uncoupled fields vanish). It can be easily shown that this procedure
considerably simplifies the evaluation of the critical lineThus, we have only
to deal with the quantities

〈θ2
12〉s = A(s), 〈θ12ρ12〉s = D(s), 〈ρ2

12〉s = G(s),

〈θ2
11〉s = J(s), 〈θ11ρ11〉s = K(s), 〈ρ2

11〉s = L(s),

〈θ11ρ22〉s = Q(s), 〈θ11θ22〉s = R(s), 〈ρ11ρ22〉s = S(s).

(7.49)

By using Eq. (7.46) to the above quantities, we get the differential equations

dτA = 2AD, (7.50)

dτD = D2 + AG, (7.51)

dτG = 2GD. (7.52)

Moreover, we can reduce the number of differential equations by suitably
combining A and G, since we can easily see that

dτ log
A

G
= 0 =⇒ A(τ) = r2G(τ), r2 =

A(0)

G(0)
. (7.53)

Then, the problem is reduced to the two coupled differential equations

dτD = D2 + r2G2, (7.54)

dτG = 2GD. (7.55)
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Finally, introducing the quantity Y (τ) = D(τ) + rG(τ), we end with

dτY = Y 2, (7.56)

whose solution is trivially

Y (τ) =
Y0

1− τY0

, Y0 = D(0) +
√
A(0)G(0). (7.57)

The remaining part of the problem is therefore to evaluate the correlations
at s = 0, namely the Cauchy conditions in Eq. (7.57). To do this, we
introduce a one-body generating function for the momenta of z, k obtained
by setting s = 0 and r = 1 in Eq. (7.42), and including source fields (ji, Jµ)
which couples respectively to (ki, zµ). Again, since we are approaching the
critical line from the ergodic region, we can consistently set m, p, q = 0 in
the coefficients (7.33). The result is the generating function

F (j, J) = log
∑

σ

∫
dµ (z, φ) exp

[∑

i

jiki +
∑

µ

Jµzµ +
a2Q

2

∑

µ

z2
µ

+
1−∆

2b2

∑

i

k2
i

]
.

(7.58)

This quantity is very easy to handle with. Moreover, showing only the rele-
vant terms in j and J , we have

F (j, J) =
b2∆ + 1

2∆2

∑

i

j2
i +

1

2(1− a2Q)

∑

µ

J2
µ +O(j3). (7.59)

Then, by simply using the definitions (7.49), we can evaluate all the observ-
able at s = 0 simply as derivatives of F (j, J). Therefore, we arrive at the
results

D(0) =
√
NP

(
∂jF

)2(
∂JF

)2
∣∣∣
j,J=0

= 0,

A(0) =
(
∂2
jF
)2
∣∣∣
j,J=0

=
[β(1 + t)− t∆
β(1 + t)∆2

]2

= Q2,

G(0) =
(
∂2
JF
)2
∣∣∣
j,J=0

= (1− β(1 + t)Q)−2.

(7.60)

Putting these findings in (7.57), we get

Y (τ) =
Q

1− β(1 + t)Q− τQ
. (7.61)
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Finally, evaluating Y (τ) for τ = β(1 + t)
√
λs, s = 1, we have the result

Y (s = 1) =
Q

1− β(1 + t)Q(1 +
√
λ)
, (7.62)

where

Q∆2 = 1− t∆

β(1 + t)
,

∆ = 1 +
λt

1− β(1 + t)Q
.

(7.63)

are the relevant self-consistency equations in the ergodic region. Since we are
interested in determining the critical temperature for ergodicity breaking,
which is characterized by the fact that fluctuations (in this case Y ) grow
arbitrarily large, we can find the conditions for which the denominator in
Eq. (7.62) is zero. When doing this, we reach the result which is resumed in
the following

Theorem 7.2. The ergodic region of the model defined by the cost function
(7.6) is delimited (i.e. β < βc) by the following critical surface in the (β, λ, t)
space of the model parameters:

βc =
1

1 + t

[ ∆2

1 +
√
λ

+ t∆
]

with ∆ = 1 +
√
λ(1 +

√
λ)t. (7.64)

Remark 7.14. At vanishing sleep extent t = 0, where the model recovers the
original Hopfield’s scenario, the critical surface correctly collapses over the
Amit-Gutfreund-Sompolinsky critical line βc = (1 +

√
λ)−1. In the opposite

limit t → ∞, the ergodic region collapses on the axis T = 0. This have
a profound implications, since both the ergodic region (together with the
retrieval one, as we will see in a moment) - as sleeping time flows - phagocytes
the spin-glass phase.1 This means that spurious states are entirely suppressed
with a proper rest, allowing the network to achieve a perfect retrieval, as
suggested in the pioneering study by Kanter and Sompolinsky [75].

1We stress that the ergodic line does not affect the retrieval region, they simply fade
one into the other. This is due to the fact the critical surface is calculated assuming an
ergodic regime (hence, it does not takes into account the signal) and, more importantly,
the retrieval region is delimited by a first order phase transition. Therefore, the retrieval
breaking critical line (which is of first order) is not detected by a second order inspection
as that needed for criticality.
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7.3 Analysis of the replica symmetric solu-

tion

Once derived the self-consistency equations (7.18) for the model (7.6) and
analysed the critical behaviour of the system (by inspecting its ergodicity
breaking character), we now turn on the complete solutions of the model, in
order to finally depict the phase diagram as the sleeping time flows.

7.3.1 Zero-temperature (noise-less) critical capacity

A preliminary, but interesting, analysis to do is the determination of the
critical capacity at T = 0 as the sleeping time t is tuned. This is central
for checking the retrieval capacities of the model (7.6). To this aim, it is
convenient to introduce the parameter c ≡ β(Q − q), which satisfies the
equation

c =
β

∆2

∫ +∞

−∞
dµ(z) cosh−2

[ β
∆

(m+
√
λpz)

]
− t

(1 + t)∆
. (7.65)

By using the self-consistency equations, it is easy to check that c is finite
and, consequently, q → Q as T → 0. Since the hyperbolic tangent in (7.18a)
tends to the error function, after some rearrangement, we can express the
T = 0 limit of self-consistency equations as

m =
1 + t

∆ + t
erf

(
m√
2λp

)
,

p =
Q(1 + t)2

[1− (1 + t)c]2
,

∆ = 1 +
λt

1− (1 + t)c
,

c =
1

∆

√
2

πλp
exp

(
−m

2

2λp

)
− t

∆(1 + t)
,

Q∆2 = 1 +
λpt2

(1 + t)2
− m2t(t+ 2∆)

(1 + t)2
− 2λt

1 + t

√
2

πλp
exp

(
−m

2

2λp

)
.

In this limit, it is possible to eliminate the parameter Q from the self-
consistency equations, therefore proving the following

Proposition 7.3. The T = 0 limit of the self-consistency equations can be
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Figure 7.2: Zero-temperature analysis of the critical capacity. Left
panel: numerical solutions for µ of the self-consistency equations in the zero
temperature limit (7.67) for several unlearning times: t = 1, 3, . . . , 29. Right
panel: temporal dependence of the critical capacity at zero temperature.
The blue dots represent the storage capacity above which the only possible
solution has µ = 0. The red curve is the fit given by y = x/(x + a), with
a = 2.84 ± 0.01 obtained by first normalizing data in [0, 1], namely λc →
[λc −min(λc)]/[max(λc)−min(λc)].

resumed as

µ =
Π√
2

1 + t

∆ + t
erf

(
µ√
λ

)
, (7.67a)

∆ = 1 +
λt

1− (1 + t)c
, (7.67b)

c =
Π

∆

√
2

πλ
exp

(
−µ

2

λ

)
− t

∆(t+ 1)
, (7.67c)

∆2[1− (1 + t)c]2 = Π2(1 + t)2 + λt2 − 2µ2t(t+ 2∆) (7.67d)

− 2λt(1 + t)Π

√
2

πλ
exp

(
−µ

2

λ

)
, (7.67e)

where µ = m(2p)−1/2, Π = p−1/2.

Despite their intricate character, these self-consistency equations can be
easily solved numerically. What we are interested in is the function λc(t)
above which the only possible solutions have µ = 0 (which means m = 0,
meaning that the system is no longer working in the retrieval mode). In the
left plot of Fig. 7.2, we report such solutions for various sleep extent t. The
end points of each curve separate the λ axis in the regions with respectively
µ 6= 0 and µ = 0, therefore identifying the critical capacity for each fixed t
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value. Then, in the right plot of Fig. 7.2, we report the critical capacity λc
as a function of the sleep extent t.

To conclude this Section, we notice that the t → 0 limit precisely re-
covers Hopfield model critical capacity λc(t = 0) ∼ 0.138. In the opposite
limit t→∞, we reach the upper bound λc ∼ 1.07 (in agreement with [47]).
Interestingly, the critical capacity displays a log-sigmoidal growth in t, sug-
gesting that the time scale for unlearning t is intrinsically logarithmic. Also
for relatively small values of t we can reach a critical threshold λc close to
1 (for instance, λc(t = 1) ≈ 0.4 and λc(t = 5) ≈ 0.8). Further increasing t,
the improvement turns out to be slower, meaning that we should wait more
time to get appreciable results.

7.3.2 Replica symmetric phase diagram

Once we checked that the critical capacity (at T = 0) grows as the sleeping
time flows (therefore proving that dreaming effectively improves the retrieval
performances of Hopfield model) we are finally interested in solve the self-
consistency equations of model (7.6) in order to depict the phase diagram
in the parameter space (β, λ, t). In particular, we are also interested in
the asymptotic limit t → ∞, where the model effectively should approach
(by previous consideration) a stable behaviour. An example of solution for
the order parameters and the free energy as functions of the thermal noise
T = β−1 at various storage capacity λ (= 0, 0.05, 0.2, 0.5) and for large t
(= 1000, which is far from the fast increase in the storage capacity, meaning
that all of the sleeping effects are indeed present) is depicted in Fig. 7.3.

We solved the self-consistency equations (7.18) for various values of the
sleeping time t, then we performed the following separate analysis.

• Spin glass versus mixed retrieval regions. In this part of the analysis,
we look for the transition between the retrieval phase and the spin glass
region, in order to determine the critical curve Tc(λ) beyond which the
solution has m = 0. The situation we find is formally similar to the
original Hopfield model: in the low storage regime, the replica sym-
metric free energy is continuous everywhere and differentiable almost
everywhere (except for the critical point Tc = 1, where a second-order
phase transition takes place). For higher values of the capacity λ > 0,
the phase transition is of the first kind taking place at the critical tem-
perature Tc(λ). The upper left plot in Fig. 7.3 shows an example of
this Mattis overlap behaviour. Then, collecting the points (λ, T ) for
various values of t where this phase transition takes place, we are able
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Figure 7.3: Retrieval state solution for the order parameters and
free energy at t = 1000. First row: on the left, the plot shows the Mattis
magnetization m as a function of the temperature for various storage capacity
values (λ = 0, 0.05, 0.2 and 0.5, going from the right to the left). The
vertical dotted lines indicates the jump discontinuity identifying the critical
temperature Tc(α) separating the retrieval region from the spin-glass phase.
On the right, the plot shows the solutions of the non-diagonal overlap q
(normalized to the zero-temperature value q0 = q(T = 0)), for the same
capacity values. The solution is computed for pure states (i.e. T < Tc(α)).
Second row: on the left, the plot shows the solution for the diagonal overlap
−Q in the retrieval region for λ = 0, 0.05, 0.2 and 0.5. Finally, on the right
the plot shows the free energy as a function of the temperature for various
storage capacity values (λ = 0.05, 0.2 and 0.5, going from the bottom to the
top) for both the retrieval (blue solid lines) and spin-glass (i.e. m = 0, black
dashed lines) states.

to determine how retrieval region evolves in function of the sleep extent
t. Such results have been collected in Figure 7.4 for t = 0 (the Hopfield
scenario, denoted by the black dashed curve) 0.1, 1, 1000 (blue lines,
respectively from the left to the right). In agreement with our previous
results for T = 0, it clearly emerges that the critical storage capacity
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Figure 7.4: Critical line for the transition between retrieval and spin-
glass phases for various values of the unlearning time. From the left
to the right: t = 0 (Hopfield, black dashed line), 0.1, 1 and 1000. The inner
plot on the top-right corner shows the tail of the critical curve for t = 1000.

λ effectively increases with the sleeping session, with the zero-capacity
critical temperature Tc(λ = 0) being stable to 1.1 Thus, the whole
retrieval region gets enlarged as the sleeping time t flows.

• Mixed versus pure retrieval regions. In this region, the pure states are
global minima for the free energy. In order to identify the associated
boundary, we solve the self-consistency equations (with fixed λ and
T ) for both retrieval (m 6= 0) and spin-glass (m = 0) solutions and
compare the their free-energies. The lower right plot in Fig. 7.3 shows
the behaviour of free energy at t = 1000 for both these solutions for
various storage capacity λ = 0.05, 0.2, 0.5. Here, the solid blue lines
correspond to retrieval solutions, while the black dashed ones are the
spin glass solution counterparts. The intersection point between the
corresponding curves identifies the critical temperature TR(α) below
which the pure states (globally) minimize the free-energy. The resulting
boundary (together with the retrieval breaking critical line for t =
1000) is depicted in Fig. Thus, also the pure retrieval regions gets
considerably enlarged while the network is sleeping. 7.5.

Once that the retrieval region (and the retrieval breaking transition line)
is completely determined by solving the self-consistency equations, we can

1Actually, as we already remarked the asymptotic value of the critical capacity is
λc ∼ 1.07, in agreement with [47]. This is due to the replica symmetry assumption.
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Figure 7.5: Phase diagram in the large unlearning time limit (t =
1000). The two curves trace the boundary of the maximal retrieval regions
where patterns are global free energy minima (inner boundary) or local free
energy minima (outer boundary). The inner plot on the top-right corner
shows the tails of both the critical curves. We stress that, as already pointed
out in [46], the extension of the retrieval region in the low-temperature regime
up to λc ∼ 1.07 is just a chimera of the replica symmetric approximation,
while in the true RSB phase λc → 1, according to Gardner’s theory [52].

join all of our results (i.e. with ergodicity breaking critical line) and specify
how the phase diagram evolves as the sleep extent t flows. The results are
depicted in Fig. (7.6). The phase diagram is depicted for different choices of
t: from left to right, t = 0, 0.1, 1, 1000. The remarkable aspect of the model
is that, as t grows, the retrieval region (blue) and the ergodic region (yellow)
get wider and wider, at the cost of the spin-glass region (red). For sufficiently
long sleep extent, the latter progressively shrinks and collapse as t→∞. We
also stress that the ergodicity breaking critical line changes its concavity.

7.4 Numerical results

We would like to conclude this Chapter with a numerical analysis con-
cerning some aspects of the model (7.6). In particular, we will check that our
replica symmetric ansatz is reasonable, by comparing the theoretical predic-
tions with Monte Carlo (MC) simulations (where no assumptions are made).
Then, we want to analyze the field distributions hi and the robustness of the
attraction basins of the pure minima.
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Figure 7.6: Phase diagram evolution with the sleeping time. The
phase diagram of the model (7.6) is depicted for different values of t (from
left to right, t = 0, 0.1, 1, 1000). As the sleeping extent grows, the retrieval
region (blue) and the ergodic region (yellow) get wider invading the spin-glass
region (red), which progressively shrinks up to collapse as t→∞.

7.4.1 Checking the Replica Symmetric assumption

In order to check the goodness of the replica symmetric solution of our
model, we performed extensive Monte Carlo simulations mimicking the evo-
lution of a finite-size network made of N neurons and P patterns. More
precisely, for a given realization of the patterns ξµi , T = β−1 and sleeping
time t, we prepared the system near a randomly extracted pure state and let
it evolve with sequential Glauber dynamics. Once the equilibrium state is
reached,1 we measure the thermal average of the Mattis overlap m1. We per-
formed these simulations for M realizations of the patterns for each different
choice of the (N,P, β, t) parameters. A sample of results is shown in Fig. 7.7.
We notice that, as t increases, the Mattis magnetization m1 corresponding to
the retrieved pattern vanishes at large values of T and λ. Remarkably, these
results are also quantitatively consistent with those presented in Fig. 7.4.
This check strongly corroborates the analytical findings. Further, in Fig.
7.8, we also report a finite size scaling of the MC for some values of t and λ
and compare them to the theoretical predictions. Finite-size effects tend to
overestimate the magnetization at temperatures just above the critical one.
However, they are strongly downsized as the sleeping time flows.

7.4.2 Fields distributions in retrieved states

The next step, as standard in numerical approach to neural networks
model, is to study the probability distribution of the internal fields in re-

1This can be checked by evaluating the stability of observables and the width of their
fluctuations
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Figure 7.7: Results from Monte Carlo simulations. These panels re-
port the results from Monte Carlo simulations for different choices of the
parameters (P, β, t) and fixing N = 5000 and M = 10. From the left to the
right, λ = 0.0, 0.08, 0.32. Also, we considered t = 0, 0.1, 1, 10, 100, which are
depicted in different colors.
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Figure 7.8: Finite size scaling. Average values for the Mattis magneti-
zation m corresponding to the retrieved pattern ξ1 obtained from numer-
ical simulations with λ = 0.08 and M = 10. We consider different sizes
(N = 500, 1000, 5000), and compare them to the theoretical solution of Eq.
(7.18) in the thermodynamic limit (black curves). Each panel correspond to
a different choice of t (t = 0, 1, 1000).

trieval states. To do this, we again perform extensive MC simulations at
fixed network size N and for various sleep extents t (= 0, 1, 2). Since we
want to examine the effects of reinforcement and remotion in the retrieval
regime, we have to work with a storage capacity for which retrieval is cer-
tainly feasible (namely where pure states dominate the free energy landscape)
for each t. Our choice of the parameters is N = 1000 and P = 50, with a
ratio P/N well below the theoretical (Hopfield) critical threshold. We start
the simulations from random initial configurations and simple check that the
dynamics ends in a retrieval state. The dynamics is performed with standard
Glauber dynamics

σi(τ + 1) = sign[hi(τ)], (7.68)
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Figure 7.9: Internal fields probability densities for various unlearn-
ing time. On the left, the plot shows the numerical results (histograms)
of the Monte Carlo simulations for the internal fields configuration and the
comparison with best-fitting Gaussian distributions (smooth curves). The
values of the unlearning time here considered are t = 0 (standard Hopfield
case, in light blue), t = 1 (dark blue) and t = 2 (light gray). The statistics
used in numerical simulations consists in 20 different stochastic evolutions
(with different random initial conditions) and 20 different realizations of the
stored patterns. On the right, the plot shows the standard deviation of the
(best-fitting) Gaussian distribution of the internal fields configuration as a
function of the unlearning time obtained by the previously described MC
simulations. The results are again average on 20 different stochastic evolu-
tions (with different random initial conditions) and 20 different realizations
of the stored patterns for each unlearning time choice. The fit returns a
power-law scaling as σ(t) ∼ 0.224 · t−0.998.

where now the internal fields are computed as

hi =
1

N

N∑

j=1

∑

µν

ξµi ξ
ν
j (1 + t)(1 + tC)−1

µν σj. (7.69)

From the internal field configurations, we estimated numerically the prob-
ability density function P(h) (represented by histograms in the left plot of
Fig. 7.9) and compared it to a standard Gaussian distribution. Remark-
ably, the fields distribution P(h) become more narrow as the sleeping time
flows. Indeed, the standard deviation σP(h) scales as a power law in t, i.e.
σP(h) ∼ 1/t, resulting from the fit in the right plot of Fig. 7.9 (the red curve).
Thus, sleeping regularizes the internal field distributions, as can be seen by
inspecting the plots in Fig. 7.9.
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Figure 7.10: Analysis of attraction basins. The plots shows the retrieval
frequency as a function of the spin-flip probability for t = 0, 0.1, 1 and 1000
(from the left to the right). These results are obtained with 200 different
stochastic evolutions for each of the 200 pattern realizations.

7.4.3 Retrieval frequency for noisy inputs

Finally, it is also instructive to investigate the evolution of attraction
basins of pure attractors. To do this, we proceed in a way similar to what we
did for the relativistic Hopfield model. The first difference is that, here, we
prepare the network in one of the pure states (say ξ1), then introduce some
noise p (meaning that each spin is flipped with probability p) and consider
this configuration as initial condition for the network dynamics. The second
difference is that the MC simulations are performed at zero thermal noise
T = 0. Thus, we let the system evolve toward the equilibrium and measure
the retrieval frequency f (i.e. the fractions of MC evolutions ending in a pure
state) as a function of the noise p in the input. Also in this case, the network
parameters are fixed to N = 1000 and P = 50. The results are plotted in
Fig. 7.10. It clearly emerges that, as time t flows, dreaming has the effect
of enlarging the attraction basins of pure memories. This is in agreement
with the observation that - increasing the sleep extent - the retrieval region
becomes larger (w.r.t. the Hopfield reference).



Conclusions

In this Section, we summarize the journey taken along this thesis. Recall-
ing that our aim is to offer an extensive survey of the statistical mechanical
approach to neural networks and machine learning, we first introduced a set
of tools, namely the variational extremization procedures based on the Ther-
modynamical Principles (even in their statistical inference interpretation)
and those related the Mechanical Principles (thanks to the mechanical anal-
ogy). Next, we used these tools to address the two limiting physical scenar-
ios of interest for Artificial Intelligence: the mean-field ferromagnet (i.e. the
Curie-Weiss model, CW) and the mean field spin glass (i.e. the Sherrington-
Kirkpatrick model, SK). Then, we introduced the Hopfield model, that is
a classical model used to mimic associative memory, and we showed that it
recovers the CW and the SK models in the limit of, respectively, just one and
too many stored patterns.1 One step forward, the Hopfield model is studied
in details: we discussed its original version with Boolean patterns, its real-
valued extension (whose pattern entries are sampled from i.i.d. Gaussians)
in which no retrieval region is present, and an hybrid version, accounting
the storage of mixed information (namely whose pattern entries can be both
analog or digital), the latter sharing the same phase diagram of the stan-
dard Hopfield model. This observation is crucial, especially under the anal-
ogy between the archetype for statistical learning - namely, the Restricted
Boltzmann Machine - and the Hopfield model; in fact, as we showed, the
two models share the same Gibbs probability distribution, thus suggesting
a unified picture where learnt features from training in Boltzmann learning
become retrievable patterns in Hopfield network. Such an analogy, however,
requires that the bulk of patterns have to be real-valued such that stochastic
gradient descent (and its variation) can be applied during the training of
the network (thus ultimately motivating the interest for the hybrid neural
network). It is important to remark that, in such an equivalence between
Hopfield networks and Boltzmann machines, it emerges that the capacity

1Note that these extrema, in machine learning, mirror in turn the two extrema of
under-fitting and over-fitting regimes.
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for the former (i.e. λ = limN→∞ P/N) mirrors the ratio between the sizes
of the hidden layer (i.e. P ) over the visible layer (i.e. N), thus we have
found a direct connection between the transition from retrieval to spin glass
region in machine retrieval and the transition from a good statistical infer-
ence toward an overfitting regime in machine learning. This clearly implies
that networks with the possible largest critical capacity are also those less
prone to overfitting, and this motivates our next investigations to improve
the Hopfield’s critical capacity (that, we recall, is λc ∼ 0.14, quite far from
the maximal capacity for symmetric networks, i.e. λc = 1, as achieved by
our extension). The main reason for a small critical capacity in the Hopfield
paradigm is that the underlying Hebbian learning yields to a proliferation of
spurious mixtures (that occupy huge volumes in the free energy landscape
that, if removed, would allow free room for further pure pattern storage).
Therefore, we started to exploit unlearning techniques, trying to get rid off
these spurious states. Remarkably, for a thesis in Theoretical Physics, it is
mandatory to note that we have been entirely driven by the mechanical anal-
ogy toward the first working generalization of the Hopfield network, namely
its relativistic expression (but we will discuss later on the methodologies).

The mechanical analogy acted as a first guide, but - for technical rea-
sons - it was not mature enough to tackle the high-storage regime of as-
sociative neural networks, hence we generalized the model offering a totally
novel perspective: we proposed a daily routine for associative neural networks
where the network Hebbian-learns during the awake state (thus behaving as
a standard Hopfield model), then, during its sleep state, optimizing informa-
tion storage, it consolidates pure patterns and removes spurious ones. This
procedure forces the synaptic matrix to collapse to the projector one (ulti-
mately approaching the Kanter-Sompolinksy model). This procedure keeps
the learning Hebbian-like but, by taking advantage of a (properly stylized)
sleep phase, still reaches the maximal critical capacity (for symmetric inter-
actions).

Finally, as a last point of investigation, we find that, as long as the net-
work is awake, ergodicity is bounded by the Amit-Gutfreund-Sompolinsky
critical line (as it should), but sleeping destroys spin-glass states by extend-
ing both the retrieval and the ergodic region: after an entire sleeping session
the solely surviving regions are retrieval and ergodic ones. Clearly, this al-
lows the network to achieve the perfect retrieval regime (where the number
of storable patterns exactly equals the number of neurons the network is
built of). Summarizing all these findings, it is our opinion that we should
enlarge the initial definition of cognition that we gave, splitting it between
learning and retrieval, in order to account - as a true cognitive phase - also
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sleeping. Indeed, the latter, as we modeled it in the last Chapter, suggest a
new bridge between a perfectly working machine retrieval model and a new
tripartite Restricted Boltzmann Machine (see Fig. 7.11), whose inferential
features constitute a very appealing open problem which we intend to ad-
dress in our future works.
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Figure 7.11: Stylized representation of the generalized Hopfield network (left)
and its dual generalized (restricted) Boltzmann machine (right), namely the
three-partite spin-glass under study: in machine learning jargon these parties
are called layers and, here, they are respectively the visible, hidden and spec-
tral layers. Note further that, as it should, when the network has not slept
yet, the above duality reduces to the standard picture of Hopfield networks
and restricted Boltzmann machines, see Chapter 5 and [3, 21, 41].

Moving on the techniques, we paid particular care when trying to present
the exposition with some mathematical rigour. As the concepts behind
the various models considered and the techniques used for their investiga-
tion are several and some of them somehow tricky, we tried to preserve the
same narrative scheme whenever possible. All the models are at first intro-
duced (i.e. they are all defined via their cost function, or Hamiltonian) and
equipped with their related statistical mechanical package of definitions and
tools (among whose, of primary importance the free energy - or pressure -
whose analysis allows to paint the phase diagram of these models). Then,
when possible, we systematically proved the existence of the infinite vol-
ume limit for this crucial function,1 then we moved to search for its explicit

1Unfortunately, this has been possible for several but not all the models discussed
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expression in terms of the natural order parameters related to the models
always with the same approaches: at first an heuristic one (typically the
replica trick), then with the one-parameter Guerra’s interpolation technique
and also with two-parameters Guerra’s interpolation technique, namely with
the mechanical analogy (by which we use the Hamilton-Jacobi scheme to
solve for the free energy of these models, the latter playing as a mechani-
cal action). Such an analogy has been the mathematical guide to overcome
the actual state of the art regarding optimization storage in AI and, at the
same time, it tacitly suggested a powerful physical extension of the standard
paradigm, that turned out to be extremely fruitful.

Clearly the journey in the AI world is far from being over (nor it has
been exhaustive in the thesis obviously): for instance, there is still a long
way toward the comprehension of the learning skills of these dreaming neural
networks (a missing point that is entirely to be investigated). We hope we will
have the possibility to keep on working in the Academia in order to address
this point and that Theoretical Physics will keep on leading the rigorous
foundations of AI.

in the thesis. The high storage regime of associative neural network still escapes such a
strong control.
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