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With the aim of describing a general benchmark for several complex systems, we analyze,
by means of statistical mechanics, a sparse network with random competitive interac-
tions among dichotomic variables pasted on the nodes. The model is described by an
infinite series of order parameters (the multi-overlaps) and has two tunable degrees of
freedom: the noise level and the connectivity (the averaged number of links). We show
that there are no multiple transition lines, one for every order parameter, as a naive ap-
proach would suggest, but just one corresponding to ergodicity breaking. We explain this
scenario within a novel and simple mathematical technique via a driving mechanism such
that, as the first order parameter (the two replica overlap) becomes different from zero
due to a real second order phase transition (with properly associated diverging rescaled
fluctuations), it enforces all the other multi-overlaps toward positive values thanks to
the strong correlations which develop among themselves and the two replica overlap at
the critical line.

Keywords: Sparse networks; complex systems; spin glasses.

1. Introduction

Among several different complex systems [8], [21] and a large amount of tools for
their investigation [16], [19], statistical mechanics of disordered systems earned an
always increasing weight in the last two decades [1], [14].

In this paper, the complex networks we analyze by statistical mechanics can be
understood as follows: they are networks because we allow the variables to live
on the node of a non trivial graph (a Poissonian Erdos-Renyi graph [8]), the links
among the nodes being the interacting fields they exchange.

They are complex because, as opposite i.e. to the Ising model [3] (in which all the
variables share the same coupling constants) here the variables interact with equal
probability via a positive coupling or a negative one, giving rise to frustration [14]
and forming what is often called, in the language of statistical mechanics, a diluted
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spin glass [11], [20], while, its zero temperature limit is known, in the language
of the theoretical computer science counterpart, as a pairwise Random X-OR-SAT
[15] (strictly speaking random satisfability problems deal with p-spin models where
interactions happen in groups larger than couples [13]; this is not a minor point
as criticality in these systems is related to the p = 2 case, while for p ≥ 3 the
phase transition is discontinuous [4], [7], even though not first order in the sense of
Ehrenfest [12] as there is no latent heat [9]).

As these models are not Gaussian, they need not just a (functional) order pa-
rameter (i.e. q2) as their fully connected counterpart (i.e. the SK model [14]) but
the whole series of multi-overlaps (i.e. q2, q4, ..., q2n [11], [20]) and one may ask if
there are several transition lines for these multi-overlaps (one for every of them) or
they share the unique transition line at which ergodicity breaks (the critical line for
q2). In a previous recent work [6] we proved only mathematically, by bounds, the
latter scenario to be the correct one, but the physics behind was still rather obscure
and in particular no ideas concerning the nature of this transition were presented.

In this paper we show both mathematically (extending our previous results) and
physically (offering a picture for the nature of the transition) a complete scenario
as follows: At the boundaries of the ergodic region the fluctuations of the first order
parameter (i.e. q2) start diverging, accordingly to a well-defined second order phase
transition, while the fluctuations of all the others do not (suggesting the validity
of the several transition alternative); however, due to the strong correlations that
develop at the critical point among all the order parameters, this growth to a non
zero value for q2 drives all the others toward its direction, acting as an ‘ad hoc’
field in the space of these parameters. So the transition for the multi-overlaps
surprisingly is nor first order neither second order; it is a driven transition via a
self-generated coupling field which raises on the broken ergodicity line.

2. Equilibrium Thermodynamics of the Sparse Frustrated Network

Consider N nodes, indexed by Latin letters i, j, etc., with an Ising spin σi = ±1
attached to each of them. Let PαN be a Poisson random variable of mean αN ,
let {Jν} be independent identically distributed copies of a random variable J with
symmetric distribution. For the sake of simplicity (but without loss of generality) we
will assume J = ±1. We consider randomly chosen points, we therefore introduce
{iν}, {jν} as independent identically distributed random variables, with uniform
distribution over 1, . . . , N . The Hamiltonian of the model (a suitable version of the
Viana-Bray [20] one) is the following symmetric random variable

HN (σ, α;J ) = −
PαN
∑

ν=1

Jνσiν
σjν

, α ∈ R+ . (1)

The non-negative parameter α is called connectivity.
The Gibbs measure ω and the partition function ZN (β) are defined by

ω(ϕ) =
1

Z

∑

σ

exp(−βH(σ))ϕ(σ), ZN (β) =
∑

σ

exp(−βHN (σ)) ,

where ϕ : {−1, +1}N → R and β is the noise level in the network.
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When dealing with more than one configuration, the product Gibbs measure is
denoted by Ω, and various configuration taken from each product space are called
“replicas”. E is the expectation with respect to all the (quenched) variables, i.e. all
the random variables except the spins, collectively denoted by J and we preserve
the symbol 〈.〉 for EΩ(.). Sometimes we will deal with a perturbed Boltzmann
measure, whose perturbation is triggered by a tunable parameter t and we stress
the dependence on such a perturbation with a subscript t on the averages 〈.〉 → 〈.〉t.

The (quenched) free energy density fN is defined by

AN (β, α) = −βfN(β, α) =
1

N
E ln ZN (β, α) .

The whole physical behavior of the model is encoded by the even multi-overlaps
q1···2n [6], which are functions of several configurations σ(1), σ(2), . . . and defined by

q1···2n =
1

N

N
∑

i=1

σ
(1)
i · · ·σ(2n)

i .

For the sake of simplicity, often we will denote by θ = θ(β) the expression
tanh(βJ) = tanh(β).

Looking for order parameter responses, in these networks, one usually perturbs
the system with a random field so to have

H̃N (σ, h) = HN (σ) +

N
∑

i=1

hi(t)σi , (2)

where the tilde stands for the perturbed Hamiltonian, hi are the random fields
acting on the spins and t ∈ [0, 1] a tuning of the amplitude of the perturbation,
eventually sent to zero afterwards (of course h(0) = 0).

In our approach, due to the randomness of the coupling J and the gauge in-
variance of the model (the transformation σ → σε, with ε ± 1 which leaves the
Hamiltonian unaffected being ε2 = 1) we can think at the random perturbation as

a term hi ∼
∑P2ᾱt

ν J̃νσiν
then, by applying the gauge σiν

→ σiν
σN+1, ∀iν , we can

turn the perturbation into a cavity field, mirroring an unperturbed system made
by N + 1 spins (whose properties are the same of the N -spin system, for large N).

Notice that, thanks to the additivity property of the Poisson variables, we can
also write, in distribution,

HN+1(σ; α) ∼ HN (σ; ᾱ) + hτσ1 , ᾱ = α
N

N + 1
, hτ = −

P2ᾱ
∑

ν=1

J̃νσkν
. (3)

Let us define further a cavity function ΨN,t(α, β) as the following quantity:

ΨN,t(α, β) = E ln ω
(

eβ
∑ P2ᾱt

ν=1
J̃νσiν

)

. (4)

Note that the cavity function takes into account the perturbation applied to the
original Hamiltonian; it plays a fundamental role in the expansion of the free energy
as it is immediately clear by the next theorem [2], [6]:
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Theorem 1. The following relation among free energy, its connectivity increment

and cavity function holds in the N → ∞ limit:

AN (α, β) + α∂αAN (α, β) = ln 2 + ΨN,t=1(α, β) . (5)

The next two straightforward propositions express explicitly the two term by which
the free energy can be decomposed thanks to eq. (5).

• The incremental contribution to the free energy by the connectivity is [6]

α∂αA(α, β) = 2α

∞
∑

1

1

2n
θ2n(1 − 〈q2

2n〉) . (6)

• The cavity function can be represented by the integral of the series of all the
fillable multi-overlaps weighted by the powers of θ [6]:

ΨN,t(β, α) =

∫ t

0

2ᾱ

∞
∑

n=1

1

2n
θ2n(βJ)(1 − 〈q2n〉′t)dt′ . (7)

The next two propositions help us in understanding how to deal with these two
expressions:

• Robustness states that all the multi-overlaps which are “filled” , i.e. they
have each replica appearing an even number of times (like 〈q2

12〉, 〈q2
1234〉,

〈q12q34q1234〉) are not affected by the perturbation.

More sharply in the N → ∞ limit, the average 〈·〉t of filled monomials is
not affected by the presence of the perturbation modulated by t, that is, for
instance,

∫ ᾱ2

ᾱ1

〈q12q23q13〉tdᾱ =

∫ ᾱ2

ᾱ1

〈q12q23q13〉dᾱ ,

∀[ᾱ1, ᾱ2]. We call this property of filled monomials “robustness” [5].

• Saturability states that, once called “fillable” the other multi-overlap mono-
mials, in the t → 1, N → ∞ limits, fillable monomials become filled (i.e.
limN→∞ limt→1〈q2〉t = 〈q2

2〉, limN→∞ limt→1〈q12q34〉t = 〈q12q34q1234〉).
More sharply, let q1···2n be a fillable monomial of the multi-overlaps, such that
q1···2nQ1···2n is filled. Then

lim
N→∞

〈q1···2n〉t=1 = 〈q1···2nQ1···2n〉 .

We refer to this property as ”saturability” [5].

To obtain a stochastically stable and gauge invariant iterative expression for the
free energy, we have to expand the cavity function via filled monomials: Neglecting
orders higher than (2αθ2)2 we get

ΨN,t(α, β) =

∫ t

0

dt′2α

(

θ2

2
(1 − 〈q12〉t′) +

θ4

4
(1 − 〈q1234〉t′) + · · ·

)

, (8)
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which can be filled by expanding its internal multi-overlap monomials (i.e. 〈q12〉t =
2αθ2t〈q2

12〉 + O(t2), 〈q1234〉t = 2αθ4t〈q2
1234〉 + O(t2)) and than trivially integrated

back thanks to robustness.
We can now use Eq. (5) to write down our free energy expansion of the model.

Presenting just the first orders, and remembering that we call τ = 2αθ2, we have

A(α, β) = ln 2 +

(

1

2α

)0(
τ

2
− τ

4
(1 − τθ0)〈q2

12〉 +
τ3

3
〈q12q23q13〉 + · · ·

)

+

(

1

2α

)2(
τ

4
− τ

8
(1 − τθ2)〈q2

1234〉 +
3τ3

4
〈q1234q12q34〉 + · · ·

)

+ · · · . (9)

Note that in the high connectivity limit [11] the expression (9) approaches the well
known expression for the free energy of the SK model [2], [14].

3. Order Parameter Fluctuations and Uniqueness of Critical Line

The multi-overlaps among any 2n configurations is typically small in the ergodic
region defined by 2α tanh2(β) = 1 and their fluctuation can be studied on the

√
N

scale by defining

η2n =
√

Nq2n =
1√
N

N
∑

i

σ1
i ...σ2n

i . (10)

Then it is possible to show that these rescaled multi-overlaps behave, in this region,
like independent centered Gaussian variables, in the infinite volume limit, and the
following theorem holds [11]:

Theorem 2. In the annealed region 2α tanh2(β) < 1 the variables η2n converge to

centered Gaussian process with covariances

〈ηa1,...,a2n
〉 =

1

(1 − 2αE tanh2n(βJ))
, (11)

〈ηa1,...,a2n
ηb1,...,b2n

〉 = 0 if ∃i : ai 6= bi (12)

and, when the boundary of the annealed region is approached, only the variance of
η2 diverges.

This theorem for the fluctuations of q2 and for finding its critical line is straight-
forward within our method so we sketch the proof:

Sketched Proof. At first we expand the 2-replica overlap

〈q12〉t = 2αθ2〈q2
12〉 − 4α2θ4〈q12q23〉t + O(q3) . (13)

Then, by simple polynomial integrations, we can evaluate the overlap expansion in
terms of filled monomials.

〈q12〉t = 2αθ2〈q2
12〉t − 4α2θ4

∫ t

0

dt′
∫ t′

0

dt′′〈q12q23q13〉 + O(q6) . (14)
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Now, by applying “saturability”, we get 〈q12〉t = 〈q2
12〉, consequently, forgetting

O(q4) terms and multiplying by N , we have

〈η2
2〉 =

2(2αθ2)2

(1 − (2αθ2))
〈η12η23η13〉 . (15)

We see that at the r.h.s. the overlap order is 3 while at the l.h.s. is 2: By a Central
Limit Theorem argument we see that the only diverging point, for the rescaled
overlap fluctuations is 2αθ2 = 1, where the r.h.s. denominator explodes. �

To try and show our physical picture, let us start by the following theorem:

Theorem 3. Given two integer numbers c, d such that cd = 2n and m ∈ N the

following families of bounds hold generically and also at finite N :

〈qm
2n〉 ≥ 〈qm

1..cq
m
c+1..2c...q

m
c(d−1)+1..2n〉 ≥ 〈qm

1..c〉d . (16)

Sketched Proof. Always using q2 and q4 as examples, we prove the theorem for
c = d = 2 and m = 1. Its generalization is straightforward.

Exploiting the factorization of the Boltzmann state at fixed J one has

〈q1234〉 = E
1

N

∑

i

ω4(σi) ≥ E(
1

N

∑

i

ω2(σi))
2 = Eω2(q12) ≥ (Eω(q12))

2 = 〈q12〉2 ,

where we have used E[a2] ≥ E
2[a] for any real-valued random variable, first for a =

ω4(σi) and with the expectation taken over the uniform distribution on i = 1, ..., N
and then for a = ω(q12) with the expectation over P (J). �

The conclusion is that it is not possible to have several spin glass transitions in
any model: as soon as 〈q12〉 becomes nonzero, also 〈q1234〉 must be, and so on.

The mechanism we provide is again ultimately based on saturability. In fact at
the critical point the fillable multi-overlap 〈q12q34〉, applying saturability, gets

lim
N→∞

lim
t→1

〈q12q34〉t = 〈q12q34q1234〉 , (17)

which couples the first multi-overlap q2 and the second multi-overlap q4 together,
generating the correlation which drives the transition for 〈q1234〉. Saturability can
be applied as we are at the boundary of the ergodicity breaking (the last point in
which it still holds due to a real second order phase transition of q2).

So remembering once more that we are taking just the first two multi-overlaps
but the scheme applies to all them and, for the sake of the clearness consequently
forgetting all the higher order not necessary terms, we can write the free energy,
that we call f(q2, q4) stressing the dependence by the two multi-overlaps as

f(q2, q4) =

(

θ −
(

1

2α

)
1

2

)

q2
2 +

(

θ −
(

1

2α

)
1

4

)

q2
4 − 3τ3

4
q2
2q4 (18)

and we want to know how the minima of f(q2, q4) evolve with θ (at fixed α, or
viceversa). If a bifurcation analysis of the saddle point equations from the origin is
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performed, one would find two transition lines, θq2
= (1/2α)1/2 and θq4

= (1/2α)1/4.
However, when looking at the actual minima it is possible to see just the first
transition. After that the two minima are away from the origin and so the second
“potential transition line” at θq4

= ( 1
2α )

1

4 never appears: when approaching this
line the system is already in a completely different part of its phase space. We stress
that above 2αθ2 = 1, where the quadratic expansion of f(q2, q4) around the origin
determines the Gaussian fluctuations, q2 and q4 are uncorrelated, than, below this
line, the third-order term produces an interaction (q12q34q1234) and so, as soon as
q2 becomes non zero, it also drives q4 to a non zero value. It is also straightforward
to check that near 2αθ2 the minima scale as q2 ∼ (2αθ2 − 1)1/2, q4 ∼ (2αθ2) ∼ q2

2

accordingly with the proved scaling for random spins at criticality [6].

4. Summary

In this paper we analyzed the genesis of the phase transition in frustrated sparse
networks, by matching a rigorous approach (essentially based on modern cavity
interpolation [2]) with a theoretical picture (essentially provided via replica trick
[20]). Overall a clear scenario for the transition in these systems has been achieved:
at the onset of ergodicity breaking the first order parameter (i.e. q2) undergoes a
second-order phase transition; due to the correlations among this parameter and all
the others (i.e. q4), it drives the latter to a positive value too. The positivity of the
values assumed by these parameters (another prescription of Parisi theory [14]) is
a straightforward application of the saturability property on themselves. This has
interesting consequences, ranging from disordered statistical mechanics to computer
science as well as random matrix theory. On the same line, we stress that in recent
years, even on the last subject [17], an increasing formalization (avoiding replicas),
from Girko’s framework [10], has been achieved [18].
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