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Abstract

In this paper we derive recursively an expression for the free en-
ergy of the Sherrington-Kirkpatrick (SK) model in the framework of
Random Overlap Structures (ROSt) recently introduced by Aizenman
and coworkers. This expression is obtained in the optimal Boltzmann
ROSt via the infinite irreducible overlap correlation functions, which act
globally as a sort of order parameter of the theory. In the very promis-
ing ROSt approach to spin glasses it turns out that the Derrira-Ruelle
GREM acts an optimal ROSt and, in a sense, it contains Parisi theory
in itself. On the other side Guerra showed that the Boltzmann ROSt
shares the optimality property too, raising the interest for a compar-
ison between these structures, to understand if they can be the same
or they lead to the same free energy but are different (i.e. in the or-
ganization of the pure states in the low temperature regime). We find
that our expression is exactly the expansion obtained in the standard
cavity field approach for the SK model. As it has been already proven,
Aizenman-Contucci relations hold in the Boltzmann ROSt, and along
the same lines stemming from stochastic stability we show here that this
ROSt enjoys many features of the solution obtained via replica analysis.
We also show how the extension to all the quasi-stationary (generally
optimal) ROSt’s is conceived.
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1 Introduction

From its early days, statistical mechanics of spin glasses has been very challeng-
ing from both the physical and the mathematical point of view. It took several
years since the main model (the Sherrington-Kirkpatrick, or simply SK) was in-
troduced to compute the free energy, through the ingenious intuition of Parisi,
i.e. his choice of replica symmetry breaking (see [11] and references therein).
It took even longer to obtain a fully rigorous proof of Parisi formula [10, 12].
Recently, Aizenmann, Sims and Starr [1] introduced another approach, based
on their Random Overlap Structures (henceforth ROSt). This approach is the
proper way to implement the cavity method. Within this framework Parisi
theory comes in the GREM formulation of Derrida-Ruelle [4, 5] and it turns
out to be an extremal for the ROSt variational principle. On the other hand,
in [9], Guerra showed that the structures that yield the exact value of the free
energy (the optimal structures) must fulfill certain constraints and these struc-
tures will be called Boltzmann ROSt hereafter . In [7] it has been shown that
in these optimal structures (Boltzmann ROSt) the Aizenman-Contucci (AC)
constraints hold too. AC polynomials are constraints on the distribution of
the overlaps, and were known to be a consequence of stochastic stability, in full
agreement with Parisi theory. So a first step in the comparison between these
two optimal ROSt has been achieved. In this paper we perform an expansion
the free energy of the SK model within the Boltzmann ROSt, and find that
it is the same expansion obtained within the usual cavity method [6] again in
agreement with Parisi theory.

The paper is organized as follows. In section 2 we introduce the SK model
and the concept of ROSt to state the Extended Variational Principle [1]. In
section 3 we present the main results regarding the expansion of the free energy
in the Boltzmann ROSt. In section 4 we emphasize that the same results are
valid in any Quasi-Stationary ROSt, leaving section 5 for conclusions and
remarks.

2 Model and notations

The SK model describes a system of N binary spins o;,i € {1,... ,N}. A
configuration o of the system is then a map

o:{1,2,.,N}3i—o0;,€{-1,+1}.

The Hamiltonian of the model is defined to assign the following energy to a
given configuration o:

1,N

1
Hy(o; J) = TN Jijoioj
)

(]
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where the sum ranges over all the N(N —1)/2 different couples of indices (3, j),
and J;; are independ centered unit Gaussian random variables. The partition
function is defined as usual by

Zn(B;J) = exp(=BH(a;J)) ,
while the Boltzmann-Gibbs expectation of an observable A : 0 — R is

w(A) = ZNﬁ ZA o) exp(—=AH(5;J)) . (1)

The global average (over the thermal bath first and the noise in the coupling
then) is (-) = Ew(-), where E denotes the expectation with respect to all the
(quenched) Gaussian variables.

By Q we denote the product measure (replica measure) of the needed num-
ber of copies of w, which we will use when dealing with functions of several
configurations (replicas). Notice that while 2 is factorized by definition, (-) is
not, as we are just replicating configurations keeping for each the same disor-
der (i.e. Gaussian couplings). Taking the same disorder results in coupling the
various replicas and therefore [E destroys the factorization. Given two replicas
oM and ¢® we define the overlap between them as

N
(1) (2)
12 = N Z_: ;-

The pressure ay () and the free energy per spin fx(3) are defined as

av(8) = ~Bfn(0) = B Zx(5) - ¢

Let us now introduce an auxiliary system.

Definition 1 A Random Overlap Structure R is a triple (3, q,&) where
e Y. > v is a discrete space;
o £: X — R, is a system of random weights, such that Zyez &y < 00;

o G:X%—[0,1],]G] <1 is a positive definite Overlap Kernel (equal to 1
only on the diagonal of ¥?).

The randomness in the weights ¢ is independent of the randomness of the
quenched variables from the original system with spins ¢. We equip a ROSt
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with two families of independent and centered Gaussians h; and H with co-
variances

E[@z’(’ﬂﬁj(”/}] = 04jdyy (3)
EHMHN®)] = &y - (4)
Given a ROSt R we define the trial pressure as
N 7 . .
GN(R) _ %Elm ZJW g'y eXp(_ﬁ Zi:l flz(’y)a» '
5, & exp(—Ay/ 5 (7))

The following theorem [1] can be easily proven by interpolation

Theorem 1 (Extended Variational Principle) Infimizing for each N sep-
arately the trial function Gn(R) defined in (5) over the whole ROSt space, the
resulting sequence tends to the limiting pressure —Bf () of the SK model as
N tends to infinity

a(f) = lim ay(f) = lim inf GN(R) .

—00 N—oo

A ROSt R is said to be optimal if limy_,. Gy(R) = « for any inverse tem-
perature 5. An optimal ROSt is the so-called Boltzmann ROSt R g, defined
as follows. Take ¥ = {—1,1}* and denote by 7 the points of 3. We clearly
have in mind an auxiliary spin system (and that is why we use 7 as opposed
to the previous 7 to denote its points). In fact, we also choose

1 M 1 1,M
LT o N SENLE o W
M k=1 M k,l

which satisfy (3)-(4) with G, = - >, 777, and J and J are families of i.i.d.
random variables independent of the original couplings J, with whom they
share the same distribution. The variables h_are called cavity fields. Let us
also choose

& = exp(—LHy (7)) .

If we call Rg(M) the structure defined above, we will formally write
Rp(M) — Rp as M — oo, and we call Rp the Boltzmann ROSt. The
reason why such a ROSt is optimal is purely thermodynamical, and equivalent
to the existence of the thermodynamic limit of the free energy per spin. A
detailed proof of this fact can be found in [1]; here we just mention the main
point:

a(B) = lim ClimGn(Rp(M)) = Gy(Rp) = G(Rp)

N—oo M

where C lim is the limit in the Cesaro sense. Notice that the Boltzmann ROSt
does not depend on N, after the M-limit.
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3 Free energy expansion in Rp

The expression we want to consider for the expansion is:

a(B) = %EIHQ(QNﬂCOSh(Bﬁi)) — %Elmﬁ(exp ( -8 gH)) (6)

which is the trial pressure G(Rp), defined in (5), computed at the (optimal)
Boltzmann ROSt Rpg, defined in the previous section.
Let us start from the first term in the right hand side of (6). If we define

ci = QCOSh(ﬁiLi) = Zexp(—ﬁiziai) ,
then
1 N 1
NEan ; exp(—ﬁg hio;) = NElH Qer -+ -en) (7)

does not depend on N [9, 8], if we consider the infinite Boltzmann ROSt, where
M — oo. Assume we replace the § in front of the cavity fields h_(but not in
the state Q) with a parameter v/¢, and define, upon rescaling,

U(t) = EanZexp \/% Zﬁiai . (8)

We want to study the flux (in ¢) of equation (8), to obtain for it an integrable
expansion. Notice that obviously

iElnmzNﬁcosh(ﬁﬂ)):i lim W(t)
N : ‘ '

t—»N,@2

The t-flux of the cavity function V¥ is given by

oV (t) = %(1 —{qi2G12)1) 9)

which is easily seen by means of a standard use of Gaussian integration by
parts. The subscript in (-); = E{); means that such an average includes in
the Boltzmannfaktor the t-dependent exponential appearing in (8). Now the
way to proceed is simple: we have to expand the t-derivative of W(#) until a
closed-form expression is obtained, then we can give place to an order by order
expansion of the (modified) denominator of the Boltzmann ROSt (that is the
first term of (6), i.e. the function N~14(t) evaluated at ¢ = N3?). So we are
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expanding in powers of ¢ (or equivalently in powers of the overlap ¢, because
there is a one to one correspondence between powers of ¢ or 3% and powers of
q; in fact, in what follows we will refer to the fifth order thinking of ¢° or 3'9).

The techniques employed in the expansion are illustrated in [7] and [6],
so here we skip the long but straightforward iteration, and proceed with the
extension of the results of [7] to our case. We are hence about to exhibit
the fifth one, which is known to play a crucial role in the theory of replica
symmetry breaking.

The cavity fields in 8 clearly act paramegnetically on the spins, the sum over
which can therefore easily be performed explicitly. So proceeding we obtain
expressions for the g-overlap correlation functions, and namely, the ones we
find at the fifth order are:

E 1
(¢F2q34015035) = NE w(oi0;)w(ojop)w(oioy)w? (o10m) = L
ijklm
I 1
(02023034024) = NG w(0;0;0401)w(0;0;)w(0Kom)w(omor) = L
ijklm
_ E 1
(12023031945015) = N5 ; w(oi0j)w(ojo)w(opo)w(o10m)w(0mo;) = N
17klm
E 1+3(N -1
(Qagasia) = NG Z w(oi0;0k01)w(0;0 0,0 )w(00%) = %
ijklm

From now on, as the g-overlaps have been calculated explicitly, we can use a
graphical formalism [6, 7]: we use points to identify replicas and lines for the
overlaps between them. So for example:

(= =g (O =@, (D) = (@)
and so on. We have thus from (7)-(8)

t

N
E . 1 i
~ In Q2 Ucosh(ﬂhi)) =5 lim 0 [1— (qraGuo)e]dt’ .

Therefore proceeding like in [7] we have the expansion at the fifth order of (6)

- Oy + 220 O<Y2 o).

3
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Let us now focus on the second term of the trial pressure G(R ), computed
at the Boltzmann ROSt, defined in the previous section. Let us normalize this
quantity by dividing by Zy and let us weight H with an independent variable
(', as opposed to 3 appearing in w. The following equation has been proven

in [7]:
NEII]QGXP( ﬁ\/7H ) ﬁﬂ( <{:})) (10)

Putting together both the results we get:

Proposition 1 The free energy expansion of the Boltzmann Random QOwverlap
Structure 1is:

o(B) =2+ 21+ (1 - O+ 2y L 500 -

1 3 6
8 {:} 8 10 10
%(G) - %(D) e S 1255 <O> + 2§ yO<) 1 0(5).

[terating the method we can have the pressure expansion (and obviously the
free energy expansion following eq.(5)) at every desired order in the Boltzmann
ROSt. It is very important to notice that, at least at these first orders com-
puted here, the expansio is the same we obtained in [6], where it was obtained
outside the framework of the Random Overlap Structures and of the Borken
Replica Symmetry ansatz [11].

4 Extension to all Quasi-Stationary ROSt’s

For sake of simplicity, all the explicit calculation we performed took into ac-
count the Boltzmann structure only. But the whole content actually does
not depend on the explicit form of the Hamiltonians, it merely relies on the
Gaussian nature of the random variables and their moments, independently
of the space they are defined in. In other words, as long as we consider cen-
tered Gaussian variables, the whole treatment depends only on their covari-
ances. That is why changing the ROSt does not change the results, except the
overlaps in the various expressions will be those of the considered ROSt (e.g.
the ultrametric Parisi trial overlaps), provided some properties are preserved
(Quasi-Stationarity). See [3, 9] for details.

Let us focus for instance on the internal energy part, which is simpler, and
notice that the stochastic stability in (10) is preserved in any Quasi-Stationary
ROSt. Our proofs never makes use of the explicit form of the Hamiltonians
but are determined purely by the covariances of these Hamiltonians. So the
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validity of the results coincides with the validity of Lemma 10. The ROSt’s
for which such a lemma holds are called Quasi-Stationary (see [3, 5, 9]), in
this case with respect to the Cavity Step (see [9, 3]). The entropy part is fully
analogous, thanks to [9]. Notice that the left hand side of (10) is zero for 5/ = 0
independently of the particular ROSt. Hence by the fundamental theorem of
calculus the same left hand side coincides with the integral from zero to ' of
its derivative (with respect to (). But the form of such a derivative is just
determined by the covariance of H (this is at the heart of [1]), which is always
defined to be an overlap. Therefore a simple Gaussian integration by parts, as
illustrated in [1], leads to the right hand side of (10). These are the intuitive
reasons that heuristically explain why our expansion is the same in any Quasi-
Stationary ROSt, no matter what the overlap looks like in a generic abstract
space. Surely if the chosen ROSt is Quasi-Stationary, but not optimal, there
will be no overlap locking and the trial overlap will have very little to share
with the true ones of the model. Moreover (10) will not in general provide the
internal energy of the model (but this can be the case in some optimal ROSt’s
too, like the Parisi one).

5 Conclusions and Outlook

In the paper we shown how to expand via all the overlap correlation functions
the free energy of the Boltzmann (and all the quasi-stationary) ROSt as an
alternative approach in the understanding thermodynamics of the SK model.
Not surprisingly our expansion coincide with the expansion of the SK model
itself obtained in the cavity field framework.

Restricting to the SK, after the main development of the ROSt [1], a first step
further has been taken in [9] where some invariance of these structures have
been obtained and in [7] where some restriction to the free overlap fluctuation
have been proved. Our present result can be considered as another step on the
same line in their investigation. A further step should bring the Ghirlanda-
Guerra identities, and then hopefully a proof of ultrametricity.
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