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Abstract. In this paper we continue our investigation on the high storage
regime of a neural network with Gaussian patterns. Through an exact mapping
between its partition function and one of a bipartite spin glass (whose parties
consist of Ising and Gaussian spins respectively), we give a complete control of
the whole annealed region. The strategy explored is based on an interpolation
between the bipartite system and two independent spin glasses built respectively
by dichotomic and Gaussian spins: critical line, behavior of the principal
thermodynamic observables and their fluctuations as well as overlap fluctuations
are obtained and discussed. Then, we move further, extending such an equivalence
beyond the critical line, to explore the broken ergodicity phase under the
assumption of replica symmetry and show that the quenched free energy of this
(analogical) Hopfield model can be described as a linear combination of the two
quenched spin glass free energies even in the replica symmetric framework.
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Introduction

Neural networks, thought of as the harmonic oscillators of artificial intelligence, are
nowadays being used in a huge number of different fields of science, ranging from practical
application in data mining [12, 36] to theoretical speculation in systems biology [2,
21], crossing fields as disparate as computer science [32], quantitative sociology [8] and
economics [18].

As a consequence, as applications develop, the need for mathematical methods
(bringing them under rigorous control) and a simple mathematical framework (acting
as a benchmark for future speculation) increases and motivates the present paper.

Moreover, although the Hopfield model has been extensively studied since it was
introduced in [31], both from a physical [5, 6, 13, 20, 23] and a more mathematical [4],
[14]-[16], [34, 35, 39, 40] point of view, from the rigorous perspective many points about
its properties remain unsolved, which also prompts further efforts in developing new
mathematical techniques and different physical perspectives.

In the past, we gave an extensive treatment of an analogical neural network [9, 10],
namely a mean-field structure with NV dichotomic neurons (spins) interconnected through
Hebbian couplings [5, 20] whose p patterns are stored according to a standard Gaussian
N[0, 1]: in [9] we studied its thermodynamical properties, paying attention to the annealed
approximation (but we were unable, at that time, to gain a complete control of the whole
annealed region), while in [10] we investigated the properties of the replica symmetric
approximation.
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Within our approach, the equilibrium statistical mechanics of the neural network is
shown to be equivalent to that of a bipartite spin glass whose parts consist of the original
N neurons (belonging to the first party, hence made of by dichotomic variables) and p
Gaussians that give rise to the second part (hence consisting of continuous variables):
as the theory of the mean-field Ising spin glass (namely the Sherrington—Kirkpatrick
model [33]) has been intensively developed in the past decades (see for instance [3, 7,
26, 29]), while the same did not happen for the Gaussian counterpart, we investigated in
detail the structure of the latter too, deepening the understanding of its properties in [11].

Furthermore, to complete a streamlined description of the state of the art on
this theme, we stress that results on the analogical Hopfield model, stemming from a
mathematical perspective far from our connection with bipartite spin glasses, have also
been obtained in [14]-[16].

Turning to the applied side, despite the fact that in neural networks (in their original
artificial intelligence framework) the interest in continuous patterns is reduced or moved
to rotators (e.g. Kuramoto oscillators [1]), as digital processing by Ising spins works as
a better approximation for the standard integrate and fire models of neurons [17], in
several other fields of science (as, for instance, in chemical kinetics [21, 22] or theoretical
immunology [2]) continuous values of patterns can instead be preferred [13, 19] and
a rigorous mathematical control of completely continuous models (namely with both
continuous patterns and neurons) belongs to our strategy of research.

For the moment, we limit ourselves to presenting a clear scenario for the hybrid model
made of continuous patterns and dichotomic variables, namely the analogical neural
network: in section 1 we introduce the model and all the statistical-mechanics-related
concepts. Then, in section 2, we expose our new strategy of interpolation which allows
a complete control both of the ergodic region (confirming the annealed approximation,
which is investigated in great detail) and of the replica symmetric scenario, which is then
deepened in section 3.

Section 4 contains our conclusions.

Furthermore, an appendix is added, in which the fluctuation theory of the order
parameters of the model is discussed, and it is shown that the critical line found in this
work characterizes a second-order phase transition.

1. The model, basic definitions and properties

1.1. The analogical Hopfield model

We introduce a large network of N two-state neurons (1,...,N) 3 i — o; = +1, which
are thought of as quiescent when their value is —1 or spiking when their value is +1.
They interact throughout a synaptic matrix J;; defined according to the Hebb rule for
learning [30, 31]

p
Jig = &rel. (1)
pn=1
Each random variable £# = {&/', ..., £\ } represents a learned pattern: while in the standard

literature these patterns are usually chosen at random independently with values +1 taken
with equal probability 1/2, we chose them as taking real values with a unit Gaussian

doi:10.1088/1742-5468,/2012/07/P0O7009 3
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probability distribution, i.e.

oy = L e
() = o= P )
The analysis of the network assumes that the system has already stored p patterns (no
learning is investigated here), and we will be interested in the case in which this number
asymptotically increases linearly with respect to the system size (high storage level), so
that p/N — « as N — oo, where a > 0 is a parameter of the theory denoting the storage
level.
The Hamiltonian of the model has a mean-field structure and involves interactions
between any pair of sites according to the definition

1

1.2. Morphism in the bipartite model

By splitting the summations va = 2219 -z N(SZ] in the Hamiltonian (3), we can
introduce and write the partition functlon Z Np(ﬁ €) in the following form

D N
Zu(0€) = 3 exp (2 ¥ > Zf“f“m 5N 93 Z(fﬁ’)Q)
u=1 i

u=1 ij
= Zny(B;€)o P B R 60 (4)

where 3 > 0 is the inverse temperature, and denotes here the level of noise in the network.
We have defined

1561~ S (5325 et ). ®
p=1 1j
Notice that the last term on the rhs of equation (4) does not depend on the particular
state of the network, hence the control of the last term can be easily obtained [9] and
simply adds a factor a3/2 to the free energy.
Consequently we focus just on Z((3;&). Let us apply the Hubbard-Stratonovich
lemma [24] to linearize with respect to the bilinear quenched memories carried by the
&

We can write

Zua:0 =3 [ (H e 2))exp (\/ﬁ/NZfé‘oizH) (6)

For a generic function F of the neurons, we define the Boltzmann state wg(F') at a given
level of noise (3 as the average

ws(F) = w(F) = (Zn,(6;€))” ZF —BHN(38) (7)

and often we will drop the subscript # for the sake of simplicity. The s-replicated

Boltzmann state is defined as the product state Q = w! x w? x --- x w*, in which all

doi:10.1088/1742-5468/2012/07 /P07009 4
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the single Boltzmann states are at the same noise level 57! and share an identical sample
of quenched memories . For the sake of clarity, given a function F' of the neurons of the
s replicas and using the symbol a € [1,...,s] to label replicas, such an average can be
written as

Q(F(at,...,0%) - ZZ ZF ) exp BZHN O . (8)
Z

Np 51 52

The average over the quenched memories will be denoted by E and for a generic function
of these memories F'(§) can be written as

/(HH et ) S RGLTG )

pn=11i=1

with E[¢] = 0 and E[(£/)?] = 1.

Hereafter we will often denote the average over the Gaussian spins as du(z). We use
the symbol () to mean (-) = EQ(-).

We recall that in the thermodynamic limit it is assumed that

a being a given real number, which acts as free parameter of the theory.

1.3. The thermodynamical observables

The main quantities of interest are the intensive pressure, defined as

. . ) 1
]\}linoo AN,p(ﬂ? 5) = _ﬁ ]\}Enoo fN,p(ﬂa 5) = ]\}linoo N In ZN,p(ﬁ; 5)7 (10)
the quenched intensive pressure, defined as
. . . . .1
Adim Ay, (8) = —F lim fy,(6) = lim =ElnZy,(5;€), (11)
and the annealed intensive pressure, defined as
.t . F .1
Aim Ayy(6) = =6 lim fy,(0) = lim = InEZy,(5;€). (12)
According to thermodynamics, here fi,(3,&) = unp(8,&)—08  sn (8, €) is the free energy
density, uy (5, £) is the internal energy density and sy, (3, £) is the intensive entropy (the
star and the bar denote the quenched and the annealed evaluations as well).

According to the exploited bipartite nature of the Hopfield model, we introduce two
other order parameters: the first is the overlap between the replicated neurons, defined as

= — Z ol —1,+1], (13)

and the second the overlap between the replicated Gaussian variables z, defined as
1 - a b
Pab = 52,2“2” € (—o0, +00). (14)

doi:10.1088/1742-5468,/2012/07/P0O7009 5
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These overlaps play a considerable role in the theory as they can express thermodynamical
quantities.

2. A detailed description of the annealed region

2.1. The interpolation scheme for the annealing

In this section we present the main idea of the work, used here to get a complete control
of the high-temperature region: we interpolate between the neural network (described in
terms of a bipartite spin glass) and a system consisting of two separate spin glasses, one
dichotomic and one Gaussian. Note that, by the Jensen inequality, namely

EIn ZNJ,(ﬁ) <In EZN,p(ﬁ)a

we can write

. 1 . PINT &z

where we emphasize that the integral inside equation (15) exists only for 3 < 1.

The N — oo limit then offers immediately limy oA}, (8) < In2—aln(1—3)/2. The
next step is to use interpolation to prove the validity of the Jensen bound in the whole
region defined by the line 3. = 1/(1 + y/«), which defines the boundary of the validity of
the annealed approximation, in complete agreement with the well known picture of Amit,
Gutfreund and Sompolinsky [5, 6].

To understand which is the proper interpolating structure, let us note that the
exponent of the Boltzmann factor yields a family of random variables indexed by the
configurations (o, z). For a given realization of the noise, H(o,2[§) = \/B8/N>_, & u0i2,
is a randomly centered variable with variance

E(H<U: Z’&) (U z ’5 Z UzU Z/LZ = BPQUJ/pzz
i
The presence of the product ¢,/p... in the variance suggests the correct interpolating
structure among this bipartite network and two other independent spin glasses, namely
a Sherrington—Kirkpatrick model with variance ¢, and another spin glass model with

Gaussian spin and variance p?_,. It is in fact clear that a proper interpolating structure
can be held by

t) = %Elnz / H du(z,) exp (\/E\/gZﬁJizu)

x(ﬁp<¢Tr¥Qz¢§Za@+wﬁ¢§K@Q)

xem(u—w(@gz—i%@Q), (16)

where we have set
1
= — Z JijO'Z‘O'j
N =

doi:10.1088/1742-5468,/2012/07/P0O7009 6
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and
1 _
= — Z JijZiZj

and the average E is taken with respect to all the i.i.d. normal random variables &;;, Ji;, J;;.
The interpolation is performed such that for t = 1 the interpolating structure ¢(t = 1)
returns the free energy of the bipartite model, namely of the neural network, while for ¢t =0
it coincides with a factorization in an SK spin glass and a (suitably regularized) Gaussian
one [11]; By, B2, which will be then fixed as opportune noise levels, for the moment are
simply free parameters.

As in [10, 28], the plan is now to evaluate the flow under a changing ¢ of the
interpolating structure in order to get a positive defined sum rule by tuning opportunely
01, Bo; hence, if we generalize the states as (-); = E€);, where the subscript ¢ accounts for
the extended interpolating structure defined in (16), we can write

1
at 7 57P((P=2)e = {doopzar)t) — 153(1 — {@20r)e)
Bp

PLog, o 2 Pl oo o
X7 A - ! NT A zz 1
N462(<pzz>t <pzz >t) + N4ﬂ2 <pzz>t 9 N<p > ( 7)
then, calling & = p/N even at finite size N (with a little language abuse), we can write

don(t I¢]

exl) _ BE L b it — 20800 m (18)
If we now impose on 31, 3 the constraint 8i0, = /af, we get a perfect square in the
brackets of the flow under a changing ¢, and calling S;(c, 8) = ((B1Gvor — VO B2p.2r)?)¢ the

source term, we can write

d 1
oz A s ). (19)

We can then integrate back between [0, 1] to get the following inequality

1 p VBINY & iz,
1) = N]Eln;/g dp (z,)e "

1
il 2 B/ N/2K (o)
> N]Eln et

51 __Eln / H A (2, ) VPR D) o= B30/ 0p-t o0/ (20)

under the constraint (313 = /af3.

Note that K (o) in the above expression defines the SK model, while the last term
defines the regularized Gaussian spin glass deeply investigated in [11].

Now the advantages of this interpolation scheme become evident: as we have extremely
satisfactory descriptions of the two independent models, namely the SK and the Gaussian
spin glass, by these properties we can infer the behavior of the neural network (again
thought of as the bipartite spin glass). In particular, we know that the free energies
of each single part spin glass approach their annealed expression in the region where

doi:10.1088/1742-5468,/2012/07/P0O7009 7
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£1 < 1[38] and 5+ 2 <1 [11]. Within this region, at the rhs of equation (20) we get, in
the thermodynamic limit, exactly In2 — («/2) In(1 — ().
Furthermore, if a and 3 respect the constraint 5(1++/a) < 1, then finding (3, 32 such
that the conditions (A), (B), (C) hold, being
Bif2 = Vap (A), B <1 (B), B+ 6 <1(C),

is certainly possible. In particular, using the SK critical behavior for the sake of simplicity,
hence posing 1 = 1, and setting 3y = /a3, conditions (A) and (B) are automatically
satisfied and, for the latter, being 3y = /af, we get

B+ 0=p+Vap=p(1+Va) <1,

such that also condition (C) is verified. We can then state the following.

Theorem 1. In the «, 3 plane there exist a critical line, defined by
1

Va

the annealed approximation of the free energy holds

(\/ /G/Nzgf‘a'zzu) o
A}Enoo—Ean/Hdu z,)e i =1In2—_n(1-9). (22)

Be(a) =

1
such that for § < [.(«)

(21)

Remark 1. We stress that the Borel-Cantelli lemma allows one straightforwardly to
determine the correct annealed regions for the SK model [38] and, through a careful
check of convergence of the integral defining the partition function, the same holds for the
Gaussian case too [11]; however, the direct application of the Borel-Cantelli argument on
the neural network gives a weaker result, as shown for instance in [9]. The interpolation
scheme allows one to exploit and transfer the results for the SK and Gaussian models to
the neural network, and enlarges the area of validity of the annealed expression for the
free energy to the whole expected region, obtained e.g. via the replica method [5].

2.2. The control of the annealed region

As a consequence, we can now extend the previous results exposed in [9] to the whole
annealed region: summarizing, we get the following.

Theorem 2. There ezists [B.(«), defined by equation (21 ), such that for B < [.(a) we

have the following limits for the intensive free emerqy, internal energy and entropy, as
N — o0 and p/N — a >0 :

= B lim frp(35€) = lim N7'In Zy,(5;€)

= In2—(a/2)In(1 - B) — (af/2), (23)
i uy,(8:€) = = lim N™1051n Zy,(5; €)

= —ap/(2(1- ), (24)
Jim sy, (6;€) = lim N7H(In Zyp(6:€) — 80510 Znp(55€))

= In2—(a/2)In(1 - ) - (aB")/(2(1 - §)) — (aB/2), (25)

doi:10.1088/1742-5468,/2012/07/P0O7009 8
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&-almost surely. The same limits hold for the quenched averages, so that in particular

lim N7'ElnZy,(3;€) =1n2 — > In(1 — 8) — ab

N—oo ’ 2 2
where, in all these formulas, the last term, namely —«afB/2, arises due to the diagonal
contribution of the complete partition function (4 ).

Theorem 3. There ezists [B.(«), defined by equation (21 ), such that for B < [.(a) we
have the following convergence in distribution

In Zn(6:€) = MEZw,,(05€) — C(8) +xS(8) (26)
where x is a unit Gaussian in N[0,1] and

C(B) = —4Iny/1/(1 - 2320), (27)

S(8) = (Iny/1/(1 - 0282))'/2, (28)

with o = (1 — 3)7L.

3. Extension to the replica symmetric solution

Once the correct interpolating structure is understood, and spurred by the observation
that the replica symmetric expression for the quenched free energy of the three models,
namely the analogical neural network, the SK spin glass and the Gaussian one, are well
known and investigated (for instance in [28, 7, 25, 9, 11]) we want to push further the
equivalence among neural network and spin glasses, giving a complete picture also of the
replica symmetric approximation.

To this task, let us recall that the replica symmetric approximation of the quenched
free energy of the analogical neural network A3 (a,3) is given by the following
expression [9]

AR (e, B) = In2 + / dys (2) In cosh(z\/aBp) + S In (#)

2 (1-29)
%ﬁl—ﬁgl—qf%ﬁ(l_@’ 2

where the order parameters denoted with a bar (to mean their RS approximation) are
given by

+

1= [ dn(tanti(=/aBp) (30)
p=0q/(1-p5(1—-7q)) (31)
Let us introduce further (3, and (5 as

_ ap
pr = T—31—gq) (32)

fo=1-p(1-4q), (33)
doi:10.1088/1742-5468/2012,/07 /POT009 9
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such that (1, = v/a3. We need also the RS approximation A%%.(3;) of the quenched free
energy of the SK model, at the noise level 3;, namely

AZ(B) =2+ [ du(2) ncosh(Bvasis) + 31— asi ), (3)

where

sk = /d,u (2)tanh®(B12v/ sk )- (35)

By a direct comparison among the overlap expressions (30) and (35) we immediately
conclude that we must have

ﬁ%q_SK = Oéﬁﬁ?
which indeed holds as it can be verified easily, bearing in mind the expression (31) and
(32) for p and .
As a last ingredient we need to introduce also the replica symmetric expression
AES (B, 3) of the Gaussian spin glass at a noise level 3y as [11]

Gauss
Al (B2, 8) = 5Ino + 5 03pc0” + 15508, (36)

where
Pe= (82— (1—0))/063, (37)
o> =1/(1 = 3+ *pa). (38)

Note that the definition of the overlap between continuous variables encoded by
equation (31) is in perfect agreement with the same overlap defined within the framework
of equation (37), because, being s = 1 — 3(1 — ), we can write

o - (1=p) 1-p1-9-(1=p5) _ 5q

PGauss = ) = 2 = N2 (39)

% (1-501-9) (1-501-9)

As a consequence, through a direct verification by comparison (that we omit as it is long
and straightforward), we can state the final theorem of the paper.

Theorem 4. Fized, at noise level 3, 1 and B2 as in (32) and (33), the replica
symmetric approximation of the quenched free energy of the analogical neural network
can be linearly decomposed in terms of the replica symmetric approzimation of the
Sherrington—Kirkpatrick quenched free energy, at noise level 31, and the replica symmetric

approzimation of the quenched free energy of the Gaussian spin glass, at noise level (s,
such that

ANN(B) = AGR (B1) — 157 + aAGauss (02, B), (40)
and the inequality (20) becomes an identity for the RS behavior.

Remark 2. We stress that the above theorem is in agreement with the sum rule (19) of
section 2 as, in the replica symmetric approximation, ¢,,» = ¢ and p.., = p, hence

Vapq Bq
(1-p(1-7))? (1-p6(1-q))*

doi:10.1088/1742-5468/2012/07 /P07009 10
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Remark 3. Approaching the high-temperature region we have § — 0 and p — 0, and
clearly f — 1/(1 4+ y/a). As a consequence we have

Bo=1-0(1-q) —1-1/1+Va), (42)
__ Ves
h=Tsa—g (43)

then 6 + (o — 1, such that also the single party counterparts approaches their critical
points.

Coherently, inside the annealed region we get ¢ = 0, then with the expressions for 3, (35
we can write 5 + # = 1, that is the boundary of the annealed region for the Gaussian
spin glass, while £, = v/af/(1 — () because § < 1/(1 + \/a), we get $; < 1, namely the
annealed region of the SK model.

4. Conclusions and outlook

Neural networks are becoming the paradigm of a wide family of complex systems with
cognitive capabilities, such as memory and learning both in the living world and outside.

As a consequence, a solid control of these networks is fundamental: in this paper we
provided a clear analysis of the analogical neural network, thought of as a bipartite spin
glass, made up of two different types of spin: one ensemble of dichotomic variables, as
in the celebrated Sherrington—Kirkpatrick model, and one ensemble made of Gaussian
distributed variables.

Exploiting this analogy, we developed a new interpolation scheme for the bipartite
spin glass that mirrors the neural network and two independent glassy systems. Through
this novel technique, we have then shown how to get a complete control of the annealed
region of the neural network: the critical line has been obtained, together with an explicit
behavior of all the main thermodynamical quantities: free energy, internal energy, entropy
and overlaps (namely the order parameters of the theory).

As one step forward, we extended our interpolation scheme beyond the ergodic
region, under the assumption of replica symmetry: we showed that the replica symmetric
approximation of the quenched free energy of the analogical Hopfield model (at noise level
() can be expressed in terms of the replica symmetric expressions of the quenched free
energies of the SK model (at noise level 31) and of the Gaussian model (at noise level f3,),
and we obtained the equations linking (3, 31, 32, obtaining then a complete control also
within this framework.

All that opens very interesting perspectives. The structure of the neural network as
a linear combination of spin glasses is very rich: in fact we know that, while the SK
model shows a full RSB structure [26], the Gaussian counterpart is simply RS [11].
Thus one could expect in our analogical neural network a competition of these two
effects: a rather new feature in the complex systems scenario, which has to be deeply
investigated.

Clearly we would deepen this topic, for example within a fully broken replica symmetry
scenario, on which we plan to report soon.

doi:10.1088/1742-5468/2012/07/P07009 11
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Furthermore, the analogical model shares many features with the original Hopfield
model (which is even harder from a mathematical point of view) for which one could
study in what measure this structure is preserved.

Future outlooks should cover also the completely analogical model in order to develop
mathematical techniques beyond the standard ones required in artificial intelligence and
closer to those of system biology.
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Appendix. Fluctuation theory for the order parameters

We develop in this appendix a fluctuation theory of the order parameters to see that
the ergodicity breaking is accomplished through a second-order phase transition (i.e. the
overlap fluctuations, properly rescaled over the volume, do diverge on the line .(«), hence
defining a critical phenomenon).

To satisfy this task we proceed as follows: at first we introduce a different interpolating
structure with respect to the one discussed above (developed and discussed in [10]) to
bridge the neural network with two single party one-body models where spins are subjected
to random fields in a way close to stochastic stability [37] or cavity perspective [27]. Then
we evaluate the flow with respect to the interpolating parameter so as to be able to
calculate variations of generic observables as overlap correlation functions.

Then we define the centered and rescaled overlaps and introduce their correlation
matrix. Each element of this matrix is then evaluated at ¢ = 0 and propagated to t =1
via its flow: this procedure encodes naturally for a system of coupled linear differential
equations that, once solved, gives the expressions of the overlap fluctuations. The latter
are found to diverge on the critical line f.(«) already outlined and this will close our
inspection of the annealed regime.

Let us start the plan by introducing the next interpolating structure.

In a pure stochastic stability fashion [10], we need to introduce also two classes of
i.i.d. M0, 1] variables, namely N variables n; and p variables 77,, whose average is still
encoded into the E operator and by which we define the following interpolating quenched

pressure ¢y (05, 1)

Pnp(B,t) = %ElogZ/H dpe (2,) exp (\/5\/%252‘0@)

X exp (a\/l — tz mai> exp <b\/1 — tZﬁuZu)

X exp (c@ Zzi) : (A.1)

m
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where

We stress that ¢ € [0, 1] interpolates between ¢t = 0, where the interpolating quenched
pressure becomes made of non-interacting systems (a series of one-body problem) whose
integration is straightforward (as well as the evaluation of the overlap correlation functions
it produces), and the opposite limit, t = 1, which recovers the correct quenched free energy.
Then we can evaluate the flow with respect to the Boltzmann factor encoded in the
structure (A.1), as stated in the next proposition.

Proposition A. Given O as a smooth function of s replica overlaps (qi,...,qs) and
(p1,-..,Dps), the following streaming equation holds:

d S
(00 =5V ( 300 Curmaa)
a,b
- Z(O ) fa,s+177a,s+l>t + 5(5 - 1) <O ) fs+1,s+2775+1,5+2>t) ’ (AQ)
a=1

We skip the proof as it is long but simple and works by a direct evaluation, which is
pretty standard in the disordered system literature (see for example [28, 7]).
The rescaled overlaps &2 and 7,2 are defined accordingly as

€12 = VN(q12 — Q), (A.3)
M2 = VK (p12 — p). (A.4)

In order to control the overlap fluctuations, namely (€2,)—1, (€1om19) =1, (N35)i=1, - - -
noting that the streaming equation pastes two replicas to the ones already involved (s = 2
so far), we need to study nine correlation functions. It is then useful to introduce them
and link them to capital letters so to simplify their notation:

(&) = At), (§12613)e = B(1), (&12€34)1 = C(1), (A.5)

(E12ma)e = D(1), (E1oms)e = E(t), (E1omza)e = F(t), (A.6)

(ama)e = G(t), (mams)e = H(t), (mamsa)e = 1(t). (A.7)
We introduce the operator dot as

O— 1 dO

Bya dt’
which simplifies calculations and shifts the propagation of the flow from ¢t = 1 to t = 3y/a.

Assuming a Gaussian behavior, as in the strategy outlined in [28], we can write the overall
flow of the overlap correlation functions in the form of the following differential system

A=2AD — 8BE + 6CF,

B =2AF +2BD — ABE — 6BF — 6EC + 12CF,
C =2AF +2CD + 8BE — 16BF — 16CE + 20CF,
D = AG — ABH + 3CI + D? — 4E? + 3F?,

E = AH + BG —2BH — 3BI —3CH + 6CI + 2ED — 2E* — GEF + 6F?,
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F =AI + CG+4BH —8BI —8CH + 10CI + 2DF + 4E? — 16EF + 10F?2,

G =2GD —8HE +6IF,
H=2GE +2HD — 4HE — 6HF — 6IFE + 12IF,
I =2GF +2DI +8HE — 16HF — 161E + 20IF.

Although it may appear complex, it is relatively easy to solve this system, once the initial
conditions at ¢ = 0 are known (information then can be obtained straightforwardly as
at t = 0 everything factorizes the theory being one-body). Our general analysis covers
also the case where external fields are involved. For the sake of brevity, we omit the full
analysis here.

Here, as we are interested in finding where ergodicity becomes broken, we start
propagating ¢t € 0 — 1 from the annealed region, where § = 0 and p = 0, which simplifies
further the problem.

In fact, it is immediate to check that, for the only terms that we need to consider,
A,D,G (the other being strictly zero on the whole t € [0,1]), the starting points are
A(0) =1,D(0) = 0,G(0) = (1 — 8)~2 and their evolution is ruled by

A=2AD, (A.8)
D = AG + D?, (A.9)
G =2GD. (A.10)

The solution of this differential system is long but straightforward, so we skip the proof
and directly state the next theorem.

Theorem A. In the ergodic region the behavior of the overlap fluctuations is reqular and
described by the following equations

oy (1-p)
(&12) = 1= 07— Fa’ (A.11)
_ B/
(§12ma) = 1= 572 (A.12)
1

(mia) = (1= 02— Ba’ (A.13)

diverging on the critical line B.(«), defined by equation (21 ), hence defining a second-
order phase transition.
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