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Proposal summary:

As adaptive immunity crucially depends on the transfer of information among its
soldiers (e.g., via cell-cell interactions, signalling molecules and signal transduction
pathways), and as information theory has been largely formalised by theoretical
physicists in the past, | apply the know-how of theoretical physicists on challenging
problems suggested by immunologists to build a multidisciplinary project that uses
techniques stemmed from statistical mechanics of disordered systems (in particular
tools developed in “neural networks”) to infer information processing during
lymphocyte interactions. The resulting formalisation will allow to analyse the
behaviour of small clusters of interacting cells from a cybernetic perspective, that
is, in terms of analogies with flip-flops, operational amplifiers, inverters and (bio)-
logic gates. The main goal of the present research is the design and calibration of a
“translator” from immunology to cybernetics, for signal transduction pathways
involved in the adaptive response (i.e. cytokine receptors, MHC-I1&Il receptors, BCRs
and TCRs, CD** receptors), whose practical outcomes consist in deepening the
reprogramming protocols for the immune system (to be possibly exploited in
therapies based on monoclonal antibodies) toward new approaches for treating
impaired defence systems as, for instance, in the presence of autoimmune
manifestations (e.g. rheumatoid arthritis).
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(1) STATE OF THE ART

The last decade has experienced an upsurge of interest in the use of statistical mechanics for studying the
adaptive immune system and, at present, various international groups are dealing with it (e.g. Kardar’s group
at MIT [1] or Bialek & Callan’s ones at Princeton [2]). Remarkably, not only theoretical physicists, but even
leading figures in the field of Medicine suggest the usage of statistical mechanics for immune system
investigations. Quoting Germain (on CTL CD8+ activation), “as one dissects the immune system at finer and
finer levels of resolution, there is actually a decreasing predictability in the behaviour of any particular unit
of function”, furthermore, "no individual cell requires two signals (...) rather, the probability that many cells
will divide more often is increased by costimulation" [3]: understanding these probabilistic structures and
cell’s averaged behaviour is exactly the goal of statistical mechanics.

Indeed the application of this methodology to immunology has been suggested by notable scientists in the
past (see e.g. the seminal work by Parisi [4]), however, only recently a renewal interest for such an approach
is concretely manifested. This is because main obstacles towards a quantitative theory of lymphocyte
networks (e.g., replica symmetry breaking and finite connectivity of underlying structures) have finally been
overcome with the introduction of new mathematical techniques; see e.g., the seminal works by Guerra [5]
and by Coolen [6], and also some recent papers that I wrote with Guerra [7,8] and with Coolen [9,10], where
these techniques are applied to networks of the immune system for the first time.

In fact, in the past three years, thanks to a grant (about half a
million euros), that I got as Principal Investigator from the
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emerging phenomena (i.e. not present when analysing single
cells but resulting from their interactions) of real immune
systems as the low-dose tolerance, antibody cascades, “bell-
shaped” response, anergy in self-directed B cells, cognitive
capabilities as learning, storage and decision making, strong
lymphocytosis implying transient autoimmunity and defence
from several pathogens simultaneously. It is worth noticing that
in this reformulation of lymphocyte network theory (that, not as
a minor point, is in agreement with existing data), there is never
a giant component (as postulated in the past): the ‘network’
where B and T clones are nodes and links are played by the
chemical messages they exchange (i.e. cytokines,
immunoglobulins, etc.) is split into several disconnected small
clusters (see Fig. 2). This paves the way for a deeper
understanding of information processing in these single cliques
making up the whole immune system.

Fig. 1. Upper panel: Agreement
between our “under-percolated

theory” (squares) and experimental
data (circles) on mice performed via
ELISA technology. Note that a theory
where lymphocyte networks are over-
percolated (triangles) does not match
the data. Lower panel: the bipartite
structure underlying B (coloured
circles) and T cells (white circles),
interacting via both stimulating
(green links) and inhibiting (black
links) cytokines. See [17] for more
details.
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(2) RESEARCH AIMS

The scope of this project is building a robust, quantitative theory
for decoding information processing in lymphocyte’s dialogues
(ranging from their interactions to their consequent internal
signalling cascades): a very innovative theory for decoding and
reprogramming adaptive responses in the immune system.

This, in turn, will provide a theoretical basis where framing the
analysis of monoclonal antibody (mAbs) administrations
(thought of as network’s clique perturbations), toward a safe use
of these novel biologics.



(3) DETAILED PROJECT AND METHODOLOGY

As immune networks are under-percolated (see Fig. 2), beyond the general analysis of the network as a
whole, the analysis of each clique (isolated ensemble of interacting cells) is crucial. To analyse a “small
loopy circuit” a convenient approach is cybernetics, that is, using Kolmogorov’s definition “the science
concerned with the study of systems of any nature which are capable of receiving, storing and processing
information so as to use it for control”.

Note that this translation into cybernetic terms (i.e. electronic equivalences encoding logical expression, that
ultimately perform information processing) is quite natural for the immune system as, for instance, the so-
called “two signal model” [11] is nothing but an “AND” boolean (bio)-logic gate, where the first input signal
is given by antigen stimulation (upon BCR or TCR) and the “consensus to expand” -the second input- is
given by an helper via diffusive stimulating cytokines and CD40 binding. If both inputs are “true”, the
outcome is “true” as well and clonal expansion starts, otherwise quiescence or even anergy are retained.

However, the idea of reading with cybernetic glasses small ensembles of interacting lymphocytes has a
much broader interest, as I explain hereafter. “Signal transduction” occurs whenever an extracellular
signalling molecule (e.g. an antigen brought to the BCR by an APC or seen by a TCR via an interaction with
MHC) activates a specific receptor located on the cell surface —oligomeric BCR or TCR in these examples.
Thus, all the immune dynamics are based on signal transduction pathways and lymphocyte’s membranes are
dense of receptors for this scope (i.e. antigen receptors —namely BCRs and TCRs- antigen presenting
molecules —that is MHC class I and class II- the families of co-receptors CD4, CD8, CD19, etc.). In turn,
these receptors trigger a biochemical chain of events inside the cell, involving well studied signalling
molecules (see Fig. 3 and Tab. 1), ultimately creating a response: this is a marvellous input-output relation on
which an arsenal of cybernetic methods for extracting information it conveys has already been developed in
theoretical physics (e.g. Wiener-Kintchin relations, Convolution Theorem, Signal and Cable Theories, etc.
[12]) but never applied on the present subject. Indeed while extensive data storage on these biochemical
phenomena has been achieved, their full understanding seems still lacking: quoting Cohen, “now the
question is how to turn information into comprehension” [13].

In this context, the present project would not require further experiments but rather a careful and patient
work of data mining and elaboration [14] (see the “equivalence example” in Fig. 3). To make things clear, at
this point, I introduce the basic phenomenological equivalences between biological processing and
information processing in silico (that I recently developed [15, 18]): more complex cascades (as those of
interest sketched in Fig. 3) will then be analysed “piece by piece” reducing the general problem of signal
transduction (and more generally of lymphocyte's interaction) into a time-ordered ensemble of intermediary
steps, for each of which the equivalences shown in Figs. 4 and 5 apply. In fact, on the one hand in
biochemical kinetics (that we use to
quantify immunological dialogues) we
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Fig. 3. The signalling pathways following BCR (leftmost panel) and TCR (rightmost panel) stimulation
[16]. Example of electronic circuit (middle panel).

frame via statistical mechanics where we deal with order parameters and external fields and they are linked
in the self-consistency (see Fig. 4). This bridge allows switching from a representation to another, namely to
“translate” biochemical pathways into electronic circuits (whose comprehension is handily). Finally, the
mirror between reaction kinetics and information processing, can be further extended at the level of logical
gates (for instance, in Fig. 5, I show the YES, NOT, OR, NOR, AND, NAND gates only for simplicity).
Therefore, we now have very sophisticated tools to extract, from the biochemical processes underlying the
lymphocyte responses, the information flux exchanged by cell themselves: the reward lies in a quantitative
scaffold that will pave the strand for a comprehension of information processing during lymphocyte
interactions. The final stage of the project will be devoted to the calibration of the theory by exploiting
preliminary results on mAbs technology.

Fig. 4. The first row presents pictures of three molecules exhibiting cooperativity [positive (a), ultra-
sensitive (b), and negative (c)]. The related saturation curves (binding isotherms) are shown in the
second row (panels d, e and f, respectively), where symbols stand for experimental data and lines
are best fits performed through the analytical expression | obtained from statistical mechanics (see
[15] for details). In the third row we sketch the cybernetic counterparts, [operational amplifier (g),
analog-to-digital converter (h), and flip-flop panel (i)]. The (theoretical) transfer functions
corresponding to the circuits are shown in the fourth row (panels I, m and n, respectively).
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As a last remark, let us focus in more details on the underlying dinamical aspects of these reaction kinetics:
so far we discussed mainly "static quantities" as, once fixed the quantity of substrate given to a reaction, the
resulting saturation value is its "thermodynamic value". However, as mentioned earlier, completely novel
information can be inferred during off-equilibrium dynamics. Accessing to dynamical quantities is of
prohibitive difficulty in vivo -and quite hard also in vitro (depending on the reaction)- mainly for the fine
tuning on the external field necessary in order to have well detectable responses, but, once the formal bridge
has been developed, they are easily accessible in silico (i.e. via numerics) as we briefly explain hereafter.

We related 1:1 equilibrium saturation plots with self-consistencies in Statistical Mechanics and transfer
function in Electronics; remarkably their (simplest) dynamical extension (that can be obtained easily
via Langevin and/or Fokker-Planck stochastic equations in Statistical Mechanics) also do extend properly to
tackle the dynamics of these biochemical and electronic counterparts, resulting respectively into the so called
"chemical master equations" for the former and into stochastic ODEs that generalize classical Kirchhoff laws
for the latter (these are not-standard RLC filters due to the crucial presence of active elements, i.e.
transistors). Once these equations will be made available on computing machines, there are two main routes
to pave to extract information from them: one dealing with standard operational approaches (Fourier and
Laplace frequency analyses) -that will give us information of the involved timescales and energy spectra-
and one dealing with entropy production and energy loss that can be performed by investigating the resulting
hysteresis areas that generalize the self-consistencies in off-equilibrium regimes. Their investigation will
reveal dynamical properties that have never been analyzed so far, possibly significantly extending our know-
how on these biochemical reaction patterns.
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