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Proposal summary:

As adaptive immunity crucially depends on the transfer of information among its 
soldiers (e.g., via cell-cell interactions, signalling molecules and signal transduction 
pathways), and as information theory has been largely formalised by theoretical 
physicists in the past, I apply the know-how of theoretical physicists on challenging 
problems suggested by immunologists to build a multidisciplinary project that uses 
techniques stemmed from statistical mechanics of disordered systems (in particular 
tools developed in “neural networks”) to infer information processing during 
lymphocyte interactions.  The resulting formalisation will allow to analyse the 
behaviour of small clusters of interacting cells from a cybernetic perspective, that 
is, in terms of analogies with flip-flops, operational amplifiers, inverters and (bio)-
logic gates. The main goal of the present research  is the design and calibration of a 
“translator” from immunology to cybernetics, for signal transduction pathways 
involved in the adaptive response (i.e. cytokine receptors, MHC-I&II receptors, BCRs 
and TCRs, CD** receptors), whose practical outcomes consist in deepening the 
reprogramming protocols for the immune system (to be possibly exploited in 
therapies based on monoclonal antibodies) toward new approaches for treating 
impaired defence systems as, for instance, in the presence of autoimmune 
manifestations (e.g. rheumatoid arthritis).  
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(1) STATE OF THE ART

The last decade has experienced an upsurge of interest in the use of statistical mechanics for studying the 
adaptive immune system and, at present, various international groups are dealing with it (e.g. Kardar’s group 
at MIT [1] or Bialek & Callan’s ones at Princeton [2]). Remarkably, not only theoretical physicists, but even 
leading figures in the field of Medicine suggest the usage of statistical mechanics for immune system 
investigations. Quoting Germain (on CTL CD8+ activation), “as one dissects the immune system at finer and 
finer levels of resolution, there is actually a decreasing predictability in the behaviour of any particular unit 
of function”, furthermore, "no individual cell requires two signals (...) rather, the probability that many cells 
will divide more often is increased by costimulation" [3]: understanding these probabilistic structures and 
cell’s averaged behaviour is exactly the goal of statistical mechanics.

Indeed the application of this methodology to immunology has been suggested by notable scientists in the 
past (see e.g. the seminal work by Parisi [4]), however, only recently a renewal interest for such an approach 
is concretely manifested. This is because main obstacles towards a quantitative theory of lymphocyte 
networks (e.g., replica symmetry breaking and finite connectivity of underlying structures) have finally been 
overcome with the introduction of new mathematical techniques; see e.g., the seminal works by Guerra [5] 
and by Coolen [6], and also some recent papers that I wrote with Guerra [7,8] and with Coolen [9,10], where 
these techniques are applied to networks of the immune system for the first time.	



 In fact, in the past three years, thanks to a grant (about half a 
million euros), that I got as Principal Investigator from the
Italian Minister of University and Research (Firb Grant 
“Statistical mechanics of under percolated lymphocyte 
networks”, Nr. RBFR08EKEV), we modelled the behaviour of 
real lymphocyte networks in terms of “spontaneous/emergent 
properties” (see the selected papers at the end of the proposal,  
summarized in [18-22], and Fig. 1). This framework, despite 
constituting a minimal theory is able to reproduce several
emerging phenomena  (i.e. not present when analysing single 
cells but resulting from their interactions) of real immune 
systems as the low-dose tolerance, antibody cascades, “bell-
shaped” response, anergy in self-directed B cells, cognitive 
capabilities as learning, storage and decision making, strong 
lymphocytosis implying transient autoimmunity and defence 
from several pathogens simultaneously. It is worth noticing that 
in this reformulation of lymphocyte network theory (that, not as 
a minor point, is in agreement with existing data), there is never 
a giant component (as postulated in the past): the ‘network’ 
where B and T clones are nodes and links are played by the 
chemical messages they exchange (i.e. cytokines, 
immunoglobulins, etc.) is split into several disconnected small 
clusters (see Fig. 2). This paves the way for a deeper 
understanding of information processing in these single cliques 

making up the whole immune system.	

!
(2) RESEARCH AIMS

The scope of this project is building a robust, quantitative theory 
for decoding information processing in lymphocyte’s dialogues 
(ranging from their interactions to their consequent internal 
signalling cascades): a very innovative theory for decoding and 
reprogramming adaptive responses in the immune system.   
This, in turn, will provide a theoretical basis where framing the 
analysis of monoclonal antibody (mAbs)  administrations 
(thought of as network’s clique perturbations), toward a safe use 
of these novel biologics. 
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Fig. 1. Upper panel: Agreement 
between our “under-percolated 
theory” (squares) and experimental 
data (circles) on mice performed via 
ELISA technology. Note that a theory 
where lymphocyte networks are over-
percolated (triangles) does not match 
the data. Lower panel: the bipartite 
structure underlying B (coloured 
circles) and T cells (white circles), 
interacting via both stimulating 
(green links) and inhibiting (black 
links) cytokines. See [17] for more 
details.



(3) DETAILED PROJECT AND METHODOLOGY!
As immune networks are under-percolated (see Fig. 2), beyond the general analysis of the network as a 
whole, the analysis of each clique (isolated ensemble of interacting cells) is crucial. To analyse a “small 
loopy circuit” a convenient approach is cybernetics, that is, using Kolmogorov’s definition “the science 
concerned with the study of systems of any nature which are capable of receiving, storing and processing 
information so as to use it for control”.	

!
Note that this translation into cybernetic terms (i.e. electronic equivalences encoding logical expression, that 
ultimately perform information processing) is quite natural for the immune system as, for instance, the so-
called “two signal model” [11] is nothing but an “AND” boolean (bio)-logic gate, where the first input signal 
is given by antigen stimulation (upon BCR or TCR) and the “consensus to expand” -the second input- is 
given by an helper via diffusive stimulating cytokines and CD40 binding. If both inputs are “true”, the 
outcome is “true” as well and clonal expansion starts, otherwise quiescence or even anergy are retained.	

!
However, the idea of reading with cybernetic glasses small ensembles of interacting lymphocytes has a 
much broader interest, as I explain hereafter. “Signal transduction” occurs whenever an extracellular 
signalling  molecule (e.g. an antigen brought to the BCR by an APC or seen by a TCR via an interaction with 
MHC) activates a specific receptor located on the cell surface –oligomeric BCR or TCR in these examples. 
Thus, all the immune dynamics are based on signal transduction pathways and lymphocyte’s membranes are 
dense of receptors for this scope (i.e. antigen receptors –namely BCRs and TCRs- antigen presenting 
molecules –that is MHC class I and class II- the families of co-receptors CD4, CD8, CD19, etc.). In turn, 
these receptors trigger a biochemical chain of events inside the cell, involving well studied signalling 
molecules (see Fig. 3 and Tab. 1), ultimately creating a response: this is a marvellous input-output relation on 
which an arsenal of cybernetic methods for extracting information it conveys has already  been developed in 
theoretical physics (e.g. Wiener-Kintchin relations, Convolution Theorem, Signal and Cable Theories, etc. 
[12]) but never applied on the present subject. Indeed while extensive data storage on these biochemical 
phenomena has been achieved, their full understanding seems still lacking: quoting Cohen, “now the 
question is how to turn information into comprehension” [13]. !
In this context, the present project would not require further experiments but rather a careful and patient 
work of data mining and elaboration [14] (see the “equivalence example” in Fig. 3).  To make things clear, at 
this point, I introduce the basic phenomenological equivalences between biological processing and 
information processing in silico (that I recently developed [15, 18]): more complex cascades (as those of 
interest sketched in Fig. 3) will then be analysed “piece by piece” reducing the general problem of signal 
transduction (and more generally of lymphocyte's interaction) into a time-ordered ensemble of intermediary 
steps, for each of which the equivalences shown in Figs. 4 and 5 apply. In fact, on the one hand in 

biochemical kinetics (that we use to 
quantify immunological dialogues) we 
deal with concentration of substrate and 
ligands and they are related by the 
saturation curve (whatever the type, e.g. 
Michaelis-Menten, Hill, Adair, MWC or 
Koshland like); on the other hand, in 
electronics, we compare input voltage 
versus output voltage and they are related 
by the transfer function (whatever the 

operator, e.g. amplifier, 
inverter, flash, flip-flops, 
etc.). Remarkably, the 
two phenomenologies 
c a n fi n a l l y b e 
analogously formalised 
(due to [15]) in  a unique 
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The whole network

A single clique
Fig. 2. Left: snapshot of the 
i m m u n e n e t w o r k u n d e r 
investigation (yellow circles 
represent cells and blue links 
cytokine they are exchanging).  
The graph is split into several 
disconnected clusters. Right: a 
magnification of a single cluster.



frame via statistical mechanics where we deal with order parameters and external fields and they are linked 
in the self-consistency (see Fig. 4). This bridge allows switching from a representation to another, namely to 
“translate” biochemical pathways into electronic circuits (whose comprehension is handily). Finally, the 
mirror between reaction kinetics and information processing, can be further extended at the level of logical 
gates (for instance, in Fig. 5, I show the YES, NOT, OR, NOR, AND, NAND gates only  for simplicity).!
Therefore, we now have very sophisticated tools to extract, from the biochemical processes underlying the 
lymphocyte responses, the information flux exchanged by cell themselves: the reward lies in a quantitative 
scaffold that will pave the strand for a comprehension of information processing during lymphocyte 
interactions. The final stage of the project will be devoted to the calibration of the theory by exploiting 
preliminary results on mAbs technology.	

!
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molecules. See also: Antibodies; Antigen Recognition by
Lymphocytes

Nonreceptor-type protein tyrosine kinases

Src family kinases are essential for signal transduction in
bothBandTcells. InB cells, Lyn,Blk andFynareactivated

and can phosphorylate the ITAMs of Iga/b. In T cells, Lck
and Fyn are the kinases that phosphorylate ITAMs on the
CD3 and z chains. The phosphorylated ITAMs then
recruit kinases of the Syk/Zap-70 family. These kinases
(Syk inB cells andZap-70 inT cells) bind tophosphorylated
ITAMs via an interaction between phosphotyrosine on the
ITAMs and Src homology 2 (SH2) domains on Syk/Zap-
70. Upon binding to the ITAMs syk/Zap-70 are phos-
phorylated bySrc family kinases andbecome activated. Syk
and Zap-70 have multiple substrates within the cell, but
critical for the ability of these kinases to promote down-
stream signals is the ability to phosphorylate key adapter
molecules. In B cells, the B-cell linker protein (BLNK)
adapter is a crucial substrate for Syk, and in T cells the
transmembrane adapter linker for activation of T cells
(LAT) is a very important substrate for Zap-70.
Signals through another PTK, Btk, play a crucial role in

B-cell development. Mutations in the gene encoding Btk
result inX-linked agammaglobulinaemia (XLA) in humans
and X-linked immunodeficiency (Xid) in mice. The former
is characterizedbyablock in earlyB-cell development at the
pro-B to pre-B transition, with increased numbers of pro-B
cells and insufficient expansion and proliferation of pre-B
cells. In Xid, early B-cell development appears not to be
severely impaired, but numbers of mature B cells are
decreased and the response to T-independent type II anti-
gens is impaired. Btk is activated through phosphorylation
by Src family PTKs upon crosslinking of the BCR, and its
activity is negatively regulated by protein kinase C such as
PKCbI/II. A critical step in Btk activation is its transloca-
tion from the cytosol to the inner leaflet of the plasma
membrane where Btk binds to membrane phosphatidyli-
nositol-3,4,5-trisphosphate through its pleckstrin homol-
ogy (PH) domain. Targeting of PKCbI/II revealed a critical
role for the Btk–PKCbI/II interaction, which indicates the
regulatory role of PKCbI/II in the activation and translo-
cation of Btk. Once activated, Btk phosphorylates
phospholipase gamma 2 (PLCg2) and is critical for its
function. See also: Immunodeficiency, Primary: Affecting
the Adaptive Immune System
Btk is part of a family of kinases known as the Tec

kinases. In T cells, different Tec kinases play a similar role
in signal transduction. The PTKs itk and rlk are part
of the Tec family, and these molecules are activated
after antigen recognition in T cells both by Src family
kinases and association with phosphatidylinositol-3,4,5-
trisphosphate. Similar to B cells, in T cells Tec family
kinases are important for phosphorylation and activation
of PLCg1.

Control of cell morphology

Several proteins are involved in TCR and BCR signalling
as adapter proteins. These molecules have SH2, Src ho-
mology 3 (SH3), proline-rich and PH domains that allow
them to bind to molecules associated with the antigen-
receptor signalling complex, and also bring in additional
molecules important for signal transduction. Two adapter
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Fig. 3. The signalling pathways following BCR (leftmost panel) and TCR (rightmost panel) stimulation 
[16]. Example of electronic circuit (middle panel).

Fig. 4. The first row presents pictures of three molecules exhibiting cooperativity [positive (a), ultra-
sensitive (b), and negative  (c)]. The related saturation curves (binding isotherms) are shown in the 
second row (panels d, e and f, respectively), where symbols stand for experimental data and lines 
are best fits performed through the analytical expression I obtained from statistical mechanics (see 
[15] for details). In the third row we sketch the cybernetic counterparts, [operational amplifier (g),  
analog-to-digital converter (h), and flip-flop panel (i)]. The (theoretical) transfer functions 
corresponding to the circuits are shown in the fourth row (panels l, m and n, respectively). 



As a last remark, let us focus in more details on the underlying dinamical aspects of these reaction kinetics: 
so far we discussed mainly "static quantities" as, once fixed the quantity of substrate given to a reaction, the 
resulting saturation value is its "thermodynamic value". However, as mentioned earlier, completely novel 
information can be inferred during off-equilibrium dynamics. Accessing to dynamical quantities is of 
prohibitive difficulty in vivo -and quite hard also in vitro (depending on the reaction)- mainly for the fine 
tuning on the external field necessary in order to have well detectable responses, but, once the formal bridge 
has been developed, they are easily accessible in silico (i.e. via numerics) as we briefly explain hereafter. 
We related 1:1 equilibrium saturation plots with self-consistencies in Statistical Mechanics and transfer 
function in Electronics; remarkably their (simplest) dynamical extension (that can be obtained easily 
via Langevin and/or Fokker-Planck stochastic equations in Statistical Mechanics) also do extend properly to 
tackle the dynamics of these biochemical and electronic counterparts, resulting respectively into the so called 
"chemical master equations" for the former and into stochastic ODEs that generalize classical Kirchhoff laws 
for the latter (these are not-standard RLC filters due to the crucial presence of active elements, i.e. 
transistors). Once these equations will be made available on computing machines, there are two main routes 
to pave to extract information from them: one dealing with standard operational approaches (Fourier and 
Laplace frequency analyses) -that will give us information of the involved timescales and energy spectra- 
and one dealing with entropy production and energy loss that can be performed by investigating the resulting 
hysteresis areas that generalize the self-consistencies in off-equilibrium regimes. Their investigation will 
reveal dynamical properties that have never been analyzed so far, possibly significantly extending our know-
how on these biochemical reaction patterns. !!!

  !!!!!!!!!!!!!!!!!!!!!
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Fig. 5. This table recapitulates 
the analogy between allosteric 
k i n e t i c s a n d i n f o r m a t i o n 
processing: the first column 
collects the logical gates, the 
second one shows their ideal 
behaviour, while the third and 
the fourth columns display the 
activity probability for the 
pertinent allosteric reactions, 
while the last column clearly 
states if, in terms of statistical 
m e c h a n i c s , w e h a v e 
cooperativity and, for positive 
answers, if the latter is real 
c o o p e r a t i v i t y o r i n d i r e c t 
regulation only. It is to remar 
that the four logical operators  
we have shown here form a 
logic bases hence, from first 
pr inciples, they could be 
a r r a n g e d ( i . e . i n c h a i n -
cascades) to perform complex 
operations as desired. !

Fig. 6: This picture shows a real 
biological stochastic AND gate 
realized by us in [18] where the 
s t a t i s t i c a l m e c h a n i c a l 
formulat ion of stochast ic 
calculus via these gates has 
been developed.
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