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Interpolation techniques have become, in the past decades, a powerful
approach to describe several properties of spin glasses within a simple
mathematical framework. Intrinsically, for their construction, these
schemes were naturally implemented in the cavity field technique, or its
variants such as stochastic stability and random overlap structures.
However the first and most famous approach to mean field statistical
mechanics with quenched disorder is the replica trick. Among the models
where these methods have been used (namely, dealing with frustration and
complexity), probably the best known is the Sherrington–Kirkpatrick spin
glass. In this paper we apply the interpolation scheme to the original replica
trick framework and test it directly on the cited paradigmatic model.
Although the problem, at a mathematical level, has been deeply investi-
gated by Talagrand, it is still rich in information from a theoretical physics
perspective; in fact, by treating the number of replicas n2 (0, 1] as an
interpolating parameter (far from its original interpretation) the proof of
the attendant commutativity of the zero replica and the infinite volume
limits can be easily obtained. Further, within this perspective, we can
naturally think of n as a quenching temperature close to that introduced in
off-equilibrium approaches to gain some new insight into our understand-
ing of the off-equilibrium features encountered in equilibrium statistical
mechanics of spin glasses.

Keywords: cavity method; spin glasses; replica trick

1. Introduction

Born as a sideline in the condensed matter division of modern theoretical physics,
spin glasses soon became the ‘‘harmonic oscillators’’1 of the new paradigm of
complexity: hundreds – if not thousands – of papers developed from (and on) this
seminal model. Frustration, replica symmetry breaking, rough valleys of free energy,
slow relaxational dynamics, aging and rejuvenation (and much more) created the
mathematical and physical strands of a new approach to Nature, where the
protagonists are no longer the subjects themselves but mainly the ways they interact.
As a result, complex statistical mechanics is invading areas far beyond condensed
matter physics, ranging from biology (e.g. neurology [1–3] and immunology [4,5]) to
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human sciences (e.g. sociology [6,7] and economics [8,9]), and much more (see [10]
for instance).

Although a crucial role has surely been played by the underlying graph theory
(due to breakthroughs obtained even there, e.g. with the understanding of the small-
world [11] and scale-free networks [12]), we would like to confer on the Sherrington–
Kirkpatrick (SK) model (or its concrete variants on graphs, such as the Viana–Bray
model [13,14] to cite just one) a crucial role in this new science of complexity.

Among the methods developed for solving its thermodynamics [15,16], interpo-
lation techniques, even though not yet so strong in solving the problem in fully
autonomy, soon played a key role in – at least – describing several properties of this
system, working as a synergic alternative to the replica trick [17–19], which is actually
the first and most famous approach to mean field statistical mechanics with
quenched disorder. In fact, the interpolation scheme has been ‘‘naturally’’ imple-
mented in the cavity field technique [20–22], and its variants such as stochastic
stability [2,23,24] and random overlap structures [25,26].

In this paper we want to study this model by extending the interpolating scheme,
from the original cavity perspective to the replica trick, in a way close to the work of
Talagrand [27]. To allow this procedure we completely forget the original role played
by the ‘‘number’’ of replicas in the replica trick (tuned by a parameter n2 (0, 1]) and
think of it directly as a real interpolating parameter. Interestingly this can intuitively
be thought of as a quenching parameter coherently with its counterpart in glassy
dynamics (i.e. FDT violations [28,29]). First, once the mathematical strategy has
been introduced in complete generality, we use it to obtain a clear picture of the
infinite volume and the zero replica limits at the replica symmetric level (by means of
which the whole original SK theory is reproduced). Then, within the Parisi full
replica symmetry breaking scenario, coupled with the broken replica bounds [30],
other robustness properties dealing with the exchange of these two limits are
achieved as well.

The paper is structured as follows. In Section 2 we briefly introduce the model
(and the ideas behind the strategy of the replica trick) while in Section 3 we outline
the strategy we want to apply to the model. All the other sections are then left to the
implementation of the interpolation into this framework and for presenting the
consequent results.

2. The Sherrington–Kirkpatrick mean field spin glass

2.1. The model and its related definitions

The generic configuration of the Sherrington–Kirkpatrick model [17,18] is deter-
mined by the N Ising variables �i¼�1, i¼ 1, 2, . . . ,N. The Hamiltonian of the
model, in some external magnetic field h, is

HNð�, h; J Þ ¼ �
1ffiffiffiffi
N
p

X
1�i5j�N

Jij�i�j � h
X

1�i�N

�i: ð1Þ

The first term in (1) is a long-range random two-body interaction, while the second
term represents the interaction of the spins with the magnetic field h. The external
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quenched disorder is given by the N(N� 1)/2 independent and identically distributed
(i.i.d.) random variables (r.v.) Jij, defined for each pair of sites. For the sake of
simplicity, denoting the average over this disorder by E, we assume each Jij to be a
centered unit Gaussian with averages

EðJijÞ ¼ 0, EðJ2ijÞ ¼ 1:

For a given inverse temperature2 �, we introduce the disorder dependent partition
function ZN(�, h; J), the quenched average of the free energy per site fN(�, h), the
associated averaged normalized log-partition function �N(�, h), and the disorder
dependent Boltzmann–Gibbs state !, according to the definitions

ZNð�, h; J Þ ¼
X
�

expð��HNð�, h; J ÞÞ, ð2Þ

��fNð�, hÞ ¼ N�1E lnZNð�, hÞ ¼ �Nð�, hÞ, ð3Þ

!ðAÞ ¼ ZNð�, h; J Þ�1
X
�

Að�Þ expð��HNð�, h; J ÞÞ, ð4Þ

where A is a generic smooth function of �.
Let us now introduce the important concept of replicas. We consider a generic

number n of independent copies of the system, characterized by the spin
configurations �(1), . . . , �(n), distributed according to the product state

� ¼ !ð1Þ � !ð2Þ � � � � � !ðnÞ,

where each !(�) acts on the corresponding �ð�Þi variables, and all are subject to the
same sample J of the external disorder.

The overlap between two replicas a, b is defined according to

qabð�
ðaÞ, �ðbÞÞ ¼

1

N

X
1�i�N

�ðaÞi �
ðbÞ
i , ð5Þ

and satisfies the obvious bounds �1� qab� 1.
For a generic smooth function A of the spin configurations on the n replicas, we

define the average hAi as

hAi ¼ E�A �ð1Þ, �ð2Þ, . . . , �ðnÞ
� �

, ð6Þ

where the Boltzmann–Gibbs average � acts on the replicated � variables and E

denotes, as usual, the average with respect to the quenched disorder J.

2.2. The replica trick in a nutshell

The replica trick consists of evaluating the logarithm of the partition function
through its power expansion, namely

logZ ¼ lim
n!0

Zn � 1

n
) hlogZi ¼ lim

n!0

hZni � 1

n
¼ lim

n!0

1

n
loghZni, ð7Þ

80 A. Barra et al.
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such that the (intensive) free energy can be written as

fNð�, hÞ ¼ lim
n!0

fNðn,�, hÞ, ð8Þ

where fN(n,�, h) is defined through

��fNðn,�, hÞ ¼ �Nðn,�, hÞ ¼
1

Nn
loghZni: ð9Þ

By assuming the validity of the following commutativity of the n, N limits

lim
N!1

lim
n!0

�Nðn,�, hÞ ¼ lim
n!0

lim
N!1

�Nðn,�, hÞ ð10Þ

both Sherrington and Kirkpatrick (at the replica symmetric level [17,18]) and Parisi

(within the full RSB scenario [31–33]) gave a clear picture of the thermodynamics,

which can be streamlined as follows. At the replica symmetric level (i.e. by assuming

replica equivalence, namely qab¼ q for a 6¼ b, 1 otherwise) we get

�SKð�Þ ¼ min
q
f�ð�, h, qÞg, ð11Þ

where the trial function �(�, h, q) is defined as

�ð�, h, qÞ ¼ log 2þ

Z
d�ðzÞ log cosh �ð

ffiffiffi
q
p

zþ hÞ
� �

þ
�2

4
ð1� qÞ2: ð12Þ

The self-consistency relation for q reads off as

qSK ¼

Z
d�ðzÞ tanh2 �ð

ffiffiffiffiffiffiffiffi
qSK
p

zþ hÞ
� �

: ð13Þ

At the broken replica level we can write

lim
N!1

1

N
E logZNð�, J, hÞ ¼ �ð�, hÞ ¼ ��f ð�, hÞ ¼ �Pð�, hÞ, ð14Þ

where �P(�, h), the fully broken replica solution, is defined as follows. Let us consider

the functional

�Pð�, h, xÞ ¼ log 2þ f ð0, y;x,�Þ jy¼h �
�2

2

Z 1

0

qxðqÞdq, ð15Þ

where f(q, y; x,�)� f(q, y) is a solution of the equation

@qfþ
1

2
@2y fþ

1

2
xðqÞð@y f Þ

2
¼ 0, ð16Þ

with boundary f(1, y)¼ log cosh(�y). Then

�Pð�, hÞ ¼ inf
x2X

�Pð�, h, xÞ, ð17Þ

where X is the convex space of the piecewise constant functions as introduced for

instance in [30].
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3. The interpolating framework for the replica trick

In this section we present our strategy of investigation; namely we prove some

theorems and propositions whose implications will be exploited in subsequent

sections. For the sake of clarity we will omit some straightforward demonstrations.
We want to think of the mapping between the one-replica and zero-replica as an

interpolation scheme, by the introduction of an auxiliary interpolating function,

which we call the n-quenched free energy, which (non-trivially) bridges the system

between n¼ 1 and n¼ 0, as

’Nðn,�, hÞ ¼
1

Nn
logEðZn

Nð�, J, hÞÞ, ð18Þ

where, for the sake of clarity Zn
Nð�, J, hÞ � ðZNð�, J, hÞÞ

n. This is the same object as

that studied in [27] that here we want to analyze from a slightly different perspective.

It is then worth stressing the next

Theorem 3.1: The following relation, between the n-quenched free energy and the free

energy, holds

lim
n!0

’Nðn,�, hÞ ¼ �Nð�, hÞ; ð19Þ

furthermore

’Nðn,�, hÞ � �Nð�, hÞ ð20Þ

for any n.

Proof: We can expand the n-quenched free energy in a Taylor series in n2 [0, 1]

to get

logEðZn
Nð�, J, hÞÞ ¼ 0þ EðlogZNð�, J, hÞÞnþ oðn2Þ )

lim
n!0þ

’Nðn,�, hÞ ¼ lim
n!0

1

Nn
ðEðlogZNð�, J, hÞÞnþ oðn2ÞÞ ¼ �Nð�, hÞ:

ð21Þ

The Jensen inequality ensures the second statement of the theorem. œ

Proposition 3.2: Through Theorem 3.1 we immediately obtain

lim
N!1

lim
n!0

’Nðn,�, hÞ ¼ �ð�, hÞ: ð22Þ

We now want to deepen the properties of ’N(n,�, h) following the strategy

outlined in [34]:

Proposition 3.3: Let i2Q¼ {1, . . . ,N}. Introduce positive weights 8i!wi2R
þ. Let

8i!Ui be a family of Gaussian random variables such that E(Ui)¼ 0 and E(UiUj)¼Sij,

where Sij is a positive definite symmetric matrix.

For the functional ’ðn, tÞ ¼ n�1 logEðZn
t Þ, where Zt ¼

P
i wi expð

ffiffi
t
p

UiÞ, the

following relation holds

d

dt
’ðn, tÞ ¼

1

2
hSiiin þ

ðn� 1Þ

2
hSijin, ð23Þ
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where we have introduced the following

Definition 3.4: hAin ¼ EðZn
t EðZ

n
t Þ
�1�ðAÞÞ is a deformed state on the 2-product

Boltzmann state, namely

�ðAÞ ¼
XN
i,j

ðZ�1t wi exp
ffiffi
t
p

UiÞðZ
�1
t !j exp

ffiffi
t
p

UjÞA,

where A is an observable on Q�Q,

!ðAÞ ¼
XN
i

ðZ�1t wi exp
ffiffi
t
p

UiÞA,

with A2A(Q).

The following generalization, considering two families of random variables, can

be easily obtained.

Proposition 3.5: Let i2Q¼ {1, . . . ,N} be a probability space and 8i!wi2R
þ

be a probability weight and 8i!Ui a family of random Gaussian

variables such that E(Ui)¼ 0 and E(UiUj)¼Sij, where Sij is a positive definite

symmetric matrix.

Let 8i! ~Ui be another family of random Gaussian variables such that E( ~Ui)¼ 0

and Eð ~Ui
~UjÞ ¼ ~Sij, where Sij is a positive definite symmetric matrix. Let us further

consider the functional ’ðn, tÞ ¼ n�1 logEðZn
t Þ (where Zt ¼

P
i wi exp ð

ffiffi
t
p

Uiþffiffiffiffiffiffiffiffiffiffi
1� t
p

~UiÞ). Then the following relation holds

d

dt
’ðn, tÞ ¼

1

2
hSii � ~Siiin þ

ðn� 1Þ

2
hSij � ~Sijin: ð24Þ

We can then formulate the following

Theorem 3.6: If 8(i, j)2Q�Q, Sii ¼ ~Sii and Sij � ~Sij, the following relation holds

’ðn, 1Þ � ’ðn, 0Þ, 8n 2 ð0, 1	:

Proof: Integrating the functional between 0 and 1 we get ’ðn, 1Þ � ’ðn, 0Þ ¼
1
2 ðn� 1Þ

R 1
0 dthSij � ~Sijin, whose right-hand side is� 0 for n2 (0, 1].

Obviously the following relation tacitely holds: limn!0h�in¼h�i. œ

Focusing on the Sherrington–Kirkpatrick model, as introduced earlier, and by

using the results of the previous section, we still think at the n-variation as an

interpolation and we can state the following

Theorem 3.7: Let us consider the functional  Nðn,�, hÞ ¼ n�1 logEðZn
Nð�, J, hÞÞ ¼

N’Nðn,�, hÞ. Then  N(n,�, h) is super-additive in N, 8n2 (0, 1]. Furthermore

lim
N!1

’Nðn,�, hÞ ¼ sup
N
’Nðn,�, hÞ ¼ ’ðn,�, hÞ, for any n:

We omit the proof as it is analogous to the one given in [35].
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Corollary 3.8: Remembering that for super-additive (and bounded) functions we can

write

lim
N!1

�Nð�, hÞ ¼ sup
N
�Nð�, hÞ ¼ �ð�, hÞ, ð25Þ

we get a lower bound for ’(n,�, h) as ’(n,�, h)��(�, h) and supN ’N(n,�, h)�
supN�N(�, h).

4. Replica symmetric interpolation

For the upper bound we have to tackle the replica symmetric approximation by using

a linearization strategy as follows.3 We introduce and define an interpolating

partition function with t2 [0, 1] as

Zt ¼
X
f�g

expð�eHðt, �ÞÞ exp �h
XN
i

�i

 !
, ð26Þ

where, labeling with K(�) standard N (0, 1) indexed by the configurations � and

characterized by the covariance EðKð�ÞKð�0ÞÞ ¼ q2��0 we defined

eHðt, �Þ ¼ ffiffi
t
p

ffiffiffiffi
N

2

r
Kð�Þ þ

ffiffiffiffiffiffiffiffiffiffi
1� t
p ffiffiffi

q
p X

i

Ji�i, ð27Þ

where q will play the role of the replica-symmetric overlap, and Ji are random

Gaussians i.i.d. N [0, 1] independent also of K(�) and such that

E �
ffiffiffi
q
p X

i

Ji�i

 !
�

ffiffiffi
q
p X

j

Jj�j

 ! !
¼ �2Nqq��0 : ð28Þ

Lemma 4.1: Let us consider the functional ’ðtÞ ¼ ðNnÞ�1 logEðZn
t Þ. We have that

’ð1Þ ¼
1

Nn
logEðZn

1Þ ¼ ’Nðn,�, hÞ ð29Þ

’ð0Þ ¼ log 2þ
1

n
log

Z
d�ðzÞ coshn �ð

ffiffiffi
q
p

zþ hÞ
� �

: ð30Þ

We are ready to state the next

Theorem 4.2: 8n2 (0, 1] we have

’Nðn,�, hÞ � log 2þ
1

n
log

Z
d�ðzÞ coshn �ð

ffiffiffi
q
p

zþ hÞ
� �

þ
�2

4
ð1� 2q� ðn� 1Þq2Þ

ð31Þ

uniformly in N.
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Proof: By applying Proposition 3.5 we get

d

dt
’ðtÞ ¼

�2

4
�
�2

2
qþ
ðn� 1Þ�2

4
hq2��0 � 2qq��0 in:

Then, completing with q2 the square on the right-hand side, and integrating back in

0, 1 we get the thesis. œ

In complete analogy with the original SK theory we can define

�ðn,�, h, qÞ ¼ log 2þ
1

n
log

Z
d�ðzÞ coshn �ð

ffiffiffi
q
p

zþ hÞ
� �

þ
�2

4
ð1� 2q� ðn� 1Þq2Þ,

�RSðn,�, hÞ ¼ min
q
ð�ðn,�, h, qÞÞ: ð32Þ

Then we immediately get the next

Theorem 4.3: 8n2 (0, 1], ’N(n, �, h)��SK(n, �, h) uniformly in N.

It is worth noting that the stationarity of q becomes

@

@q
�ðn,�, h, qÞ ¼ 0) qn ¼

R
d�ðzÞ coshn � tanh2 �R

d�ðzÞ coshn �
¼ htanh2 �in ð33Þ

where we have emphasized the n-dependence of q via qn, we have used

� ¼ �ð
ffiffiffiffiffi
qn
p

zþ hÞ for the sake of clarity, d� as a standard Gaussian measure and

the averages as

hF in ¼ E
Zn

EðZnÞ
F

� �
¼

R
d�ðzÞ coshn �FR
d�ðzÞ coshn �

:

This ensures the validity of the next

Theorem 4.4: For all values of n2 (0, 1] we have

�SKðn,�, hÞ � �SKð�, hÞ, lim
n!0

�SKðn,�, hÞ ¼ �SKð�, hÞ,

qn � qSK, lim
n!0

qn ¼ qSK:

Furthermore it is possible to show easily that, under specific conditions,

Equation (33) defines a contraction, implicitly accounting for the high-temperature

regime.4 For this task we rewrite the latter as

q ¼ �2q

R
d� expð� �2

2�2q
Þ coshn � tanh2 �R

d� expð� �2

2�2q
Þ coshnð�Þð� � n�2q tanh �Þ�

, ð34Þ

such that 8q2R!kqk� jqj.
Let us introduce the operator K: q!K(q) defined via the original replica

symmetric self-consistency relation and use for its norm kKk� supq(kK(q)k/kqk).
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So we can state that

Theorem 4.5: 9(n,�) :K is a contraction in R and these are related by

�cðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ n
p �1

. Coherently with the previous results, criticality is recovered at

�c¼ 1 when n! 0.

Proof: By definition

kKk ¼ sup
q

�2jqj

jqj

j
R
d� expð� �2

2�2q
Þ coshn � tanh2 �j

j
R
d� expð� �2

2�2q
Þ coshnð�Þð� � n�2q tanh �Þ�j

( )
:

By using the reversed triangular relation we get jtanh �j � j�j) j�� n�2q tanh �j �
j(j�j � n�2qjtanh �j)j � j�jj1� n�2qj such that

kKk � sup
q

�2

j1� n�2qj

� �
; q 2 ½0, 1	 ) kKk �

�2

j1� n�2j
: ð35Þ

So if �2� j1� n�2j, K is a contraction and q¼ 0 is the only solution of the self-

consistency relation. œ

5. Broken replica interpolation

To find an easy way to deal with the RSB scenario within an interpolating

framework, we now rearrange the scaffolding introduced in [30,34] as follows.

Beyond the structures outlines in Propositions 3.3 and 3.5, we introduce K2N

as an RSB-level counter such that, concretely, 8(a, i) with a¼ 1, . . . ,K and

i¼ 1, . . . ,N we use a family Ba
i of i.i.d. N [0, 1], independent even of the Ui and

such that

EðBa
i B

b
j Þ ¼ �ab

eSaij: ð36Þ

We introduce the averages with respect to the variables BK
i ,B

K�1
i , . . . ,B1

i ,Ui with the

notation

Eað�Þ ¼

Z
d�ðBa

i Þð�Þ 8a ¼ 1, . . . ,K, E0ð�Þ ¼

Z
d�ðUiÞð�Þ, Eð�Þ ¼ E0E1, . . . ,EKð�Þ,

and, 8n2 (0, 1], a family of order parameters (m1, . . . ,mK)n with n5ma5 1

8a¼ 1, . . . ,K, and – recursively – the following r.v.

ZKðtÞ ¼
X
i

wi exp
ffiffi
t
p

Ui þ
ffiffiffiffiffiffiffiffiffiffi
1� t
p XK

a¼1

Ba
i

 !
, Zma

a�1 ¼ EaðZ
ma
a Þ, fa ¼

Zma
a

EaðZ
ma
a Þ

in perfect analogy with the path outlined in [30]. We are then ready to state the

following
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Proposition 5.1: Let us consider the functional ’ðn, tÞ ¼ n�1 logE0ðZ
n
0Þ. The following

relation holds

d

dt
’ðn, tÞ ¼

1

2
hSii � bSK

ii i
n

K þ
1

2

XK
a¼0

ðmaþ1 �maÞnhSij � bSa
iji

n

a
ð37Þ

where bS0
ij ¼ 0, bSa

ij ¼
Pa

b¼1
eSb
ij.

5.1. Upper bound and Parisi solution

We can apply Proposition 5.1 to the interpolant ZK�Zt�ZN(�, t, x), where

ZNð�, t, xÞ ¼
X

�1,...,�N

exp �

ffiffiffiffi
N

2

r
Kð�Þ þ �

ffiffiffiffiffiffiffiffiffiffi
1� t
p XK

a¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qa � qa�1
p

Jai �i

 !
e�h
P

i
�i

and the Jai are defined as the Ba
i (see Equation 36 and above) and xn mirrors the

broken replica steps, namely we introduce a convex space �n whose elements are the

xn(q) piecewise functions xn: q! [n, 1] such that xn(q)¼ma(n) for qa�15 q� qa
8a¼ 1, . . . ,K, with the prescription q0¼ 0, qK¼ 1. Note that in this sense we wrote

ZN(�, t, x) even though there is no explicit dependence on x on the right-hand side
We then consider the functional

’ðn, tÞ ¼ ðNnÞ�1 logE0ðZ
n
0Þ ð38Þ

and introduce the following:

Lemma 5.2:

’ðn, 1Þ ¼ ’Nðn,�, hÞ, ’ðn, 0Þ ¼ log 2þ f ð0, h; xn,�Þ,

where f satisfies the Parisi equation with xn as introduced in Section 2.

Consequently the following theorem holds

Theorem 5.3: 8n2 (0, 1] the functional n-quenched free energy ’(n, t) defined in

Equation (38) respects the bound

’ðn, 1Þ ¼ ’Nðn,�, hÞ � log 2þ f ð0, h;xn,�Þ �
�2

4
1�

XK
a¼0

ðmaþ1 �maÞnq
2
a

 !
uniformly in N.

Proof: We can use Proposition 5.1, keeping in mind the relations

E �2
N

2
Kð�ÞKð�0Þ

� �
¼ �2

N

2
q212 ¼ Sij,

E �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qa � qa�1
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qb � qb�1
p X

i

Jai �i
X
j

Jaj �j

 !
¼ �2Nðqa � qa�1Þq12 ¼ eSa

ij: ð39Þ
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to get

d

dt
’ðn, tÞ ¼ �

�2

4
�
�2

4

XK
a¼0

ðmaþ1 �maÞnhq
2
12 � 2qaq12i

n

a:

Completing with q2 the square on the right-hand side we obtain

d

dt
’ðn, tÞ ¼ �

�2

4
1�

XK
a¼0

ðmaþ1 �maÞnq
2
a

 !
�
�2

4

XK
a¼0

ðmaþ1 �maÞnhðq12 � qaÞ
2
i
n

a:

Lastly, it is enough to remember that

ðmaþ1 �maÞn � 0 8a ¼ 0, . . . ,K) ’ðn, 1Þ � ’ðn, 0Þ �
�2

4
1�

XK
a¼0

ðmaþ1 �maÞnq
2
a

 !
,

to get the thesis. œ

We can then define

�Pð�, h, xnÞ ¼ log 2þ n
�2

4
þ f ð0, y;xn,�Þjy¼h �

�2

2

Z 1

0

qxnðqÞdq, ð40Þ

and write furthermore that

1

2
1�

XK
a¼0

ðmaþ1 �maÞnq
2
a

 !
¼

Z 1

0

qxnðqÞdq�
n

2

to state the next

Theorem 5.4: The following bounds hold

lim
N!1

’Nðn,�, hÞ ¼ ’ðn,�, hÞ � �Pð�, h,xnÞ ) ’ðn,�, hÞ � inf
xn
�Pð�, h, xnÞ,

lim
n!0

’ðn,�, hÞ � lim
n!0

inf
xn
�Pð�, h, xnÞ ¼ �Pð�, hÞ,

ð41Þ

and clearly limn!0�P(�, h, xn)¼�P(�, h, x).

6. The commutativity of n! 0 and N!1
Let us now extend the interpolation to tackle two i.i.d. copies of the original

Hamiltonian H1, H2 as

HNð�, tÞ ¼
ffiffi
t
p

H1ð�Þ þ
ffiffiffiffiffiffiffiffiffiffi
1� t
p

H2ð�Þ, ð42Þ

where we have omitted the N-dependence in H1, H2 for the sake of clarity.
We can define the corresponding partition function as

Zð�, tÞ ¼
X
�

e��Hð�,tÞ, ð43Þ
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and define the interpolating functional as

 ðn, tÞ ¼
1

n
logE1ðexpðnE2ðlogZð�, tÞÞÞÞ ð44Þ

where E1,2 averages respectively over the disorders of H1,2.
It is straightforward to check that

 ðn, 1Þ ¼
1

n
logE1ðexpðn logZð�, t ¼ 1ÞÞÞ �

1

n
logEðexpðn logZð�ÞÞÞ, ð45Þ

 ðn, 0Þ ¼ E2ðlogZð�, t ¼ 0ÞÞ � EðlogZð�ÞÞ, ð46Þ

where Z(�) is the partition function of the original Hamiltonian.

Proposition 6.1: After introducing

Gðn, tÞ ¼ expðnE2ðlogZð�, tÞÞÞ, ð47Þ

and the t-dependent Boltzmann weights as p(�, t)¼ e��H(�,t)/Z(�, t), the streaming of

the functional  (n, t) with respect to the interpolating parameter is

d ðn, tÞ

dt
¼ n

�2

2

1

E1ðGðn, tÞÞ
E1 Gðn, tÞ

X
�,	

Cð�, 	ÞE2ð pð�, tÞÞE2ð pð	, tÞÞ

 !
: ð48Þ

Proof: By a direct evaluation we get

d ðn, tÞ

dt
¼

E1 Gðn, tÞE2ð
dZð�, tÞ

dt
1

Zð�, tÞÞ

	 

E1ðGðn, tÞÞ

,

where

dZð�, tÞ

dt
¼ �

�

2

X
�

1ffiffi
t
p H1ð�Þ �

1ffiffiffiffiffiffiffiffiffiffi
1� t
p H2ð�Þ

� �
e��Hð�,tÞ:

Then we write

d ðn, tÞ

dt
¼ �

�

2

1

E1ðGðn, tÞÞ
ðA� BÞ,

where

A ¼ E1 Gðn, tÞE2

X
�

1ffiffi
t
p H1ð�Þ pð�, tÞ

� � !
, ð49Þ

B ¼ E1 Gðn, tÞE2

X
�

1ffiffiffiffiffiffiffiffiffiffi
1� t
p H2ð�Þ pð�, tÞ

� � !
: ð50Þ
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Introducing here the label 	 with the usual meaning of another set of Ising spins

	i¼�1, i2 (1, . . . ,N), by applying Wick’s theorem to A (on the family of random

H1(�)) and calling the covariance matrix of H1(�) C(�, 	) we get

A ¼
1ffiffi
t
p
X
�

E1 H1ð�ÞGðn, tÞE2ð pð�, tÞÞð Þ ð51Þ

¼
1ffiffi
t
p
X
�,	

Cð�, 	ÞE1
@Gðn, tÞ

@H1ð	Þ
E2ð pð�, tÞÞ

� �
þ Gðn, tÞE2

@pð�, tÞ

@H1ð	Þ

� �
: ð52Þ

We must then evaluate explicitly

@Gðn, tÞ

@H1ð	Þ
¼ �n�

ffiffi
t
p

Gðn, tÞE2 e��Hð	,tÞ
1

Zð�, tÞ

� �
¼ �n�

ffiffi
t
p

Gðn, tÞE2 pð	, tÞð Þ,

and

@pð�, tÞ

@H1ð	Þ
¼ ��

ffiffi
t
p

��	pð�, tÞ þ pð�, tÞ pð	, tÞð Þ:

Overall we can write

A ¼ ��E1 Gðn, tÞ
X
�,	

Cð�, 	Þ
h
nE2ð pð�, tÞÞE2ð pð	, tÞÞ þ E2ð��	pð�, tÞÞ þ pð	, tÞ

i !
:

By applying Wick’s theorem to B (on the family of random H2(�)) and calling again

its covariance matrix C(�, 	) (as the two Hamiltonian are i.i.d.) we get

B ¼ E1 Gðn, tÞE2

X
�

1ffiffiffiffiffiffiffiffiffiffi
1� t
p H2ð�Þ pð�, tÞ

� � !
ð53Þ

¼
1ffiffiffiffiffiffiffiffiffiffi
1� t
p E1 Gðn, tÞ

X
�,	

Cð�, 	ÞE2
@pð�, tÞ

@H2ð	Þ

� � !
: ð54Þ

Mirroring the previous calculations, we get

@pð�, tÞ

@H2ð	Þ
¼ ��

ffiffiffiffiffiffiffiffiffiffi
1� t
p

��	pð�, tÞ þ pð�, tÞ pð	, tÞð Þ:

Pasting all these together we get the thesis. œ

Remark 1: The proposition still holds even if we consider an external field coupled

to the system and not only for n2 [0, 1].

We are ready to state the next

Theorem 6.2: Let us recall that, calling C the covariance matrix of the SK

Hamiltonian, the model is thermodynamically stable [23], namely there exists a

constant C51 such that limN!1(1/N)C(�, �)�C (and, as a consequence of the
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Schwartz inequality, limN!1(1/N)C(�, 	)�C, and that it admits a sensible thermo-

dynamic limit [35]. Then

lim
n!0þ

lim
N!1

1

N
’Nð�, nÞ ¼ �ð�Þ:

Proof: It is immediate to check that ’N(�, n) is increasing in n for n2 [0, 1] and this

monotony is preserved in the thermodynamic limit, so that

9 lim
n!0þ

lim
N!1

1

N
’Nð�, nÞ, ð55Þ

lim
N!1

1

N
’Nð�, nÞ � lim

N!1

1

N
�Nð�Þ ¼ �ð�Þ, ð56Þ

or simply

lim
n!0þ

lim
N!1

1

N
’Nð�, nÞ � �ð�Þ:

To proof the inverse inequality we use Proposition 6.1.
Let us consider

 Nðn,�, tÞ ¼
1

Nn
logE1 expðnE2ðlogZNð�, tÞÞÞ:

Of course we have that

 Nðn,�, 1Þ ¼ ’Nð�, nÞ, ð57Þ

 Nðn,�, 0Þ ¼ �Nð�Þ, ð58Þ

and we can write

 Nðn,�, 1Þ �  Nðn,�, 0Þ ¼

Z 1

0

dt
@

@t
 Nðn,�, tÞ,

where

@

@t
 Nðn,�, tÞ

¼
n

N

�2

2

1

E1ðGNðn,�, tÞÞ
E1 GNðn,�, tÞ

X
�,	

CNð�, 	ÞE2ð pNð�,�, tÞÞE2ð pNð	,�, tÞÞ

 !
:

ð59Þ

Bounding CN(�, 	) with its sup and noticing thatX
�,	

E2ð pNð�,�, tÞÞE2ð pNð	,�, tÞÞ ¼ 1,
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we have that

@

@t
 Nðn,�, tÞ �

n

N

�2

2
max
�,	
CNð�, 	Þ:

We can use now the property of thermodynamic stability to obtain

lim
N!1

1

N
’Nð�, nÞ � lim

N!1

1

N
�Nð�Þ � n

�2

2
C,

or simply

lim
n!0þ

lim
N!1

1

N
’Nð�, nÞ � �ð�Þ � 0,

which is the inverse bound.
For the commutativity of limn and limN now it is enough to prove the inverse

limit. This can be achieved immediately by applying l’Hopital’s rule to ’N(�, n) in n

to get

lim
n!0þ

’Nð�, nÞ ¼ �Nð�Þ,

such that

lim
N!1

1

N
lim
n!0þ

’Nð�, nÞ ¼ �ð�Þ:

œ

Remark 2: We stress that, although in this paper we limit ourselves to the

investigation of the properties of the pure SK model, the methods exploited in this

section apply to a broad range of models, as discussed for instance in [23].

Finally we enlarge the scheme introduced in this section to allow for telescopic

broken bounds by defining the following functional

 ðn,m, tÞ ¼
1

n
logE1 exp

h n
m
logE2ðexpðm logZðtÞÞÞ

i	 

, ð60Þ

where, as usual, E1,2 average over the disorder H1,2, respectively.
Again it is straightforward to check that

 ðn,m, 1Þ ¼
1

n
logE1ðexpðn logZð1ÞÞÞ �

1

n
logEðexpðn logZÞÞ ð61Þ

 ðn,m, 0Þ ¼
1

m
logE2ðexpðm logZð0ÞÞÞ �

1

m
logEðexpðm logZÞÞ ð62Þ

and that the following generalization of Proposition 6.1 holds

d ðn,m, tÞ

dt

¼
�2

2

ðn�mÞ

E1ðGðn,m, tÞÞ
E1 Gðn,m, tÞ

X
�,	

Cð�,	ÞE2ðpð�, tÞbðm, tÞÞE2ðpð	, tÞbðm, tÞÞ

 !
, ð63Þ
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where

Gðn,m, tÞ ¼ exp
h n
m
logE2 expðm logZðtÞÞð Þ

i
, ð64Þ

by which we can argue that the n-quenched free energy ’N(�, n) has Lipschitz
constant equal to L¼C�2/2.

6.1. The temperature of the disorder

From the perspective described in this paper, by which n is thought of as a real
interpolating parameter between the annealed and the quenched representations of
the free energy, it is interesting to try to connect the latter with the effective
temperatures investigated in the dynamics and, as a direct consequence, with the
spreading of the timescales involved in the thermalization, regardless of the
particular Hamiltonian under investigation.

For this task, in this section we want to try to emphasize the formal analogy
between the ‘‘real’’ temperature � and an ‘‘effective’’ temperature n: by using capital
letters to denote extensive quantities (e.g. the extensive free energy takes the label F),
we start by noticing the formal relation between � and n as

Fð�Þ /
1

�
E log

X
�

e��Hð�;J Þ, ð65Þ

FðnÞ /
1

n
logEen logZðJ Þ: ð66Þ

Interestingly for a connection with the dynamical properties of glasses [28,29,37,38],
while the Boltzmann temperature � rules the overall energy fluctuations of the
system, n seems to tackle the behavior inside the valleys of free energy themselves.

To deepen this point we revise here the powerful approach investigated by
Sherrington, Coolen and coworkers in a series of papers [39–41]. First, let us
introduce the average E� over the configurations as

Zð�, J Þ ¼
1

2N

X
�

e��Hð�,J Þ ¼ E�e
��Hð�,J Þ,

by which the annealed and quenched free energies ( fA, fQ, respectively) can be
written as

fAð�Þ ¼ �
1

�N
logEJðZð�, J ÞÞ ¼ �

1

�N
logEJE�e

��Hð�,J Þ, ð67Þ

fQð�Þ ¼ �
1

�N
EJ logZð�, J Þ ¼ �

1

�N
EJ logE�e

��Hð�,J Þ, ð68Þ

where p(J) should not be confused with the a priori J-distribution that is included in
EJ, and such that in the annealed case (n¼ 1) both the r.v. J and � thermalize on the
same timescale (related to �), while in the quenched case (n¼ 0) the r.v. J is averaged
after taking the logarithm, such that its dynamics is completely frozen with respect to
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the dynamics of the fast variables �. Since, so far, we have used n as a real

interpolating parameter, we want to see here whether it can be thought of as a

quencher (tuning it from one to zero) for the J.
For this task let us consider (and implicitly define) the extended extensive free

energy Boltzmann functional

F ¼ EJE�pð�, J Þ Hð�, J Þ þ
1

�
log pð�, J Þ

� �
ð69Þ

where p(J, �) is a properly introduced weight whose explicit expression we want to

work out.
We restrict ourselves in searching for explicit expressions that allow the following

decomposition

pðJ, �Þ ¼ pðJ Þ pð�jJ Þ,

such that, by direct substitution, we can write

F ¼ EJpðJ Þ FeffðJ Þ þ
1

�
log pðJ Þ

� �
, ð70Þ

where Feff(J) is the standard extensive free energy:5

FeffðJ Þ ¼ E�pð�jJ Þ Hð�, J Þ þ
1

�
log pð�jJ Þ

� �
: ð71Þ

Now, for fixed J, we can minimize Feff(J) with respect to p(�jJ) with the constraint

E�p(�jJ)¼ 1 so as to obtain the classical expression

pð�jJ Þ � pð�jJ,�Þ ¼
1

Zð�, J Þ
e��Hð�,J Þ,

where Z(�, J)¼E�e
��H(J,�) is the standard partition function and the extensive free

energy assumes the familiar representation

FeffðJ Þ � FeffðJ,�Þ ¼ �
1

�
logZð�, J Þ: ð72Þ

Now let us instead minimize F with respect to p(J) with two constraints: the

former being the normalization over P(J), i.e. EJp(J)¼ 1, the latter being the

choice of the entropy for the J variables, which we retain in the classical

equilibrium form (implicitly assuming adiabaticity as in the seminal papers by

Coolen [39,40])

�
1

�
EJpðJ Þ log pðJ Þ ¼ Sðn,�Þ:

Note that here we emphasize the n-dependence introduced in this further ‘‘entropy’’

due to the complexity of the J-distribution.6 Note further that this entropy is tuned

by �.
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Let us use 
 and � for the Lagrange multipliers, such that the functional to be
minimized can be read off as

F þ �ðEJpðJ Þ � 1Þ þ 

1

�
EJpðJ Þ log pðJ Þ þ Sðn,�Þ

� �
: ð73Þ

By minimizing with respect to p(J) we get

FeffðJ,�Þ þ

þ 1

�

� �
þ


þ 1

�

� �
log pðJ Þ þ � ¼ 0 ð74Þ

or simply

pðJ Þ ¼ e�
�

þ1FeffðJ Þe�

�

þ1�:

Using the constraint over the normalization (the one ruled by �) we immediately get

e
�

þ1� ¼ EJe

�
�

þ1Feffð�,J Þ:

We are left with the determination of 
. For this task we can always choose the
function S(n,�) such that 1


þ1 ¼ n, so as to get

pðJ Þ � pðJ,�, nÞ ¼
1eZð�, nÞ e��nFeffðJ,�Þ, ð75Þ

where eZð�, nÞ ¼ EJe
��nFeffðJ,�Þ:

The explicit expression defining S(n,�) becomes

Sðn,�Þ ¼ �
1

�
EJpðJ,�, nÞ log pðJ,�, nÞ, ð76Þ

such that, pasting the whole lot together, we get the explicit expression for the
functional F(�, n), namely the n-quenched free energy:

Fð�, nÞ ¼ �
1

�n
log eZð�, nÞ ¼ � 1

�n
logEJ Zð�, J Þnð Þ: ð77Þ

It is straightforward to check that, for instance, when considering the Curie–Weiss
model, the n-dependence disappears, while with opportune limits, it assumes the
classical meaning when dealing with the Sherrington–Kirkpatrick model (e.g.
Equations 67 and 68).
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Notes

1. We learned this beautiful metaphor from Ton Coolen, whom we thank.
2. Here and in the following, we set the Boltzmann constant kB equal to one, so that

�¼ 1/(kBT)¼ 1/T.
3. This procedure is deeply related to the mean field nature of the interactions, which

ultimately allows one to consider even the low-temperature regimes as expressed in terms
of high-temperature solutions [36].

4. High temperature is the �-region where there is only one solution, i.e. q¼ 0, of the self-
consistency relation. When this condition breaks down, a phase transition to a broken
replica phase appears; we label �c that particular value of the temperature.

5. We allow ourselves a little abuse of notation in forgetting the � dependence for now.
6. Of course for simple systems, such as for instance the Curie–Weiss model where

P(J)
 �(J� 1), this term does not contribute to the thermodynamics and there is no
n-dependence.
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