
REGULAR ARTICLE

Mean-field cooperativity in chemical kinetics

Aldo Di Biasio • Elena Agliari • Adriano Barra •

Raffaella Burioni

Received: 8 June 2011 / Accepted: 23 July 2011

� Springer-Verlag 2012

Abstract We consider cooperative reactions and we

study the effects of the interaction strength among the

system components on the reaction rate, hence realizing a

connection between microscopic and macroscopic observ-

ables. Our approach is based on statistical mechanics

models and it is developed analytically via mean-field

techniques. First of all, we show that, when the coupling

strength is set positive, a cooperative behavior naturally

emerges from the model; in particular, by means of various

cooperative measures previously introduced, we highlight

how the degree of cooperativity depends on the interaction

strength among components. Furthermore, we introduce a

criterion to discriminate between weak and strong coop-

erativity, based on a measure of ‘‘susceptibility.’’ We also

properly extend the model in order to account for multiple

attachments phenomena: this is realized by incorporating

within the model p-body interactions, whose non-trivial

cooperative capability is investigated too.

Keywords Michaelis–Menten � Hill � Binding isotherm �
Statistical mechanics � Ising model � Reaction-kinetics

1 Introduction

The phenomenon of cooperativity is widespread in biologi-

cal and chemical sciences and it has been the focus of many

theoretical and experimental investigations [1]. Coopera-

tivity is a typical ‘‘emergent’’ property that directly links the

description of a system at the single molecular, elementary

level, with the macroscopic properties in complex macro-

molecules, cells, and organisms. It is often a compelling task

to exploit cooperative effects, such as amplification regimes

and high sensitivity to external parameters [2, 3].

A common feature of cooperative systems is the inter-

action among ‘‘active sites.’’ This interaction can result, for

example, in an increasing affinity for binding of substrate

as more sites are occupied, referred to as positive cooper-

ativity for binding. Conversely, if successive binding of

substrate to active sites reduces the binding affinity and

inhibits the occupation capability of another site, we speak

of negative cooperativity for binding.

Here we focus on the effects of cooperation on reaction

rate curves: when measuring the progress of a reaction as a

function of the concentration of substrate (e.g., the satu-

ration of hemoglobin by oxygen) [4, 5] one finds that

cooperation is typically associated with sigmoidal curves,

in contrast with the hyperbolic Michaelis–Menten law [6],

holding when cooperativity is absent. Actually, the pleth-

ora of different phenomena where cooperativity effects

have been observed in reaction rates is so spread that many

different definitions have been suggested in the past, most

of them being based on the measure of some kind of

deviations from the classical Michaelis–Menten reaction

kinetics [6]. While non-cooperativity is a well-defined

behavior in complex multi-sites binding, all the definitions

of cooperativity still lack a unifying picture, despite shar-

ing a common underlying mechanism.
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Rome, Italy

123

Theor Chem Acc (2012) 131:1104

DOI 10.1007/s00214-012-1104-3



Here our aim is to suggest a unifying picture for coop-

erative behavior in multi-sites systems. Our approach is

based on statistical mechanics and on an effective micro-

scopic description, able to emphasize the role of interac-

tions between sites and to recover all the different

behaviors and definitions at the macroscopic level.

A first step in this direction has been paved [7] by

using linear spin chains for modeling nearest-neighbors

correlations among sites associated with two-values vari-

ables and indicating the binding/non-binding state; here

we move forward, by assuming a simple mean-field

interaction structure among active sites as this allows to

understand and classify complex behaviors of macromol-

ecules. More precisely, minimizing a suitably introduced

free energy we obtain an explicit expression of the reac-

tion rate as a function of substrate concentration and of a

possible coupling among binding sites. In particular, we

show that the strength of the interaction among active

sites discriminates in a simple way between Michaelis–

Menten curves and cooperative behavior, the latter in

agreement with several, well-known criteria (e.g., Hill,

Koshland, range, etc.); furthermore, we identify a critical

interaction threshold where strong cooperativity sets

in/out, also showing that a sigmoidal rate law is not

necessary for cooperativity. In our framework, also

reaction rates curves with an almost discontinuous step

in a defined range of concentration can be recovered. In

particular, the behavior of the reaction curves around the

discontinuous step can be given by an interesting rep-

resentation in terms of ‘‘critical’’ parameters. Finally,

by extending our model to multi-sites attachment (a

reasonable assumption when binding occurs on macro-

molecules or on a homogeneous surface), we obtain

reactions curves exhibiting different features (weak,

strong, sigmoidal, or discontinuous step), as observed

experimentally [4], and negative cooperativity may nat-

urally arise.

The main point in our analysis is the effective

microscopic description, typical of statistical mechanics

and allowing for a clear interpretation of different mac-

roscopic cooperative behaviors. The general interaction

parameter we introduce is certainly not sufficient to

reproduce correctly the complex mechanisms acting at

the elementary level, but its effective value encodes some

of the most relevant features observed in reactions

curves. That is to say, from different observed shapes in

reaction curves we can infer the effective microscopic

structure of interactions between active sites. In our

framework, Hill coefficients and cooperativity measures

can be given an elementary interpretation and the com-

parison between systems associated with different coop-

erativity values can be translated in a relation between

their structural properties.

The paper is organized as follows: In Sect. 2 we briefly

summarize the principal definitions of cooperativity in

chemical kinetics, and in Sect. 3 we introduce our statis-

tical mechanics framework. The latter is then thoroughly

investigated as explained in Sect. 4, where we also recover

previous definitions of cooperativity. In Sect. 5 we properly

extend our model in order to account for multi-attachment

too. Outlooks and conclusions then follow.

2 Measures of cooperativity

In elementary chemistry, cooperativity can be defined as

the ability of ligand binding at one site on a macromolecule

to influence ligand binding at a different site on the same

macromolecule; according to whether the affinity of the

binding sites for a ligand is increased or decreased upon the

occupation of a neighboring site, we speak of positive or

negative cooperativity, respectively. A common example is

provided by hemoglobin, which displays four binding sites

whose affinity for oxygen is increased when the first oxy-

gen molecule binds [7].

In order to study the existence and the extent of coop-

erativity, a convenient observable is the fractional satura-

tion of binding sites at equilibrium h (h = occupied sites/

total sites) for different values of free ligand concentration

a.1 Due to the number of possible forms and levels of

cooperativity, a multitude of diagnostic tests have been

introduced in literature (see for instance [6]), mainly based

on the comparison to a non-cooperative behavior. The

latter occurs when the binding sites act independently and

are identical in their activity; this behavior is observed for

example in myoglobin in the presence of oxygen [7]. In

such cases, the equilibrium reaction curve is well defined

and exhibits the familiar hyperbolic Michaelis–Menten

(MM) form

hMðaÞ ¼
a

aþ KM
; ð1Þ

where KM, called the MM constant, rules the affinity

between components, and a accounts for the substrate

concentration; note that hM correctly saturates to 1 [1].

Hence, cooperativity is expected to be at work when the

reaction rate does not follow MM kinetics.

1 In chemical kinetics, one is typically interested in finding the rate

law governing a reaction, i.e., how the concentration of a given

reactant or product varies in time. For elementary reactions (i.e.,

reactions with a single mechanistic step) the law of mass action is

valid, and the reaction rate is proportional to reactant concentrations

raised to a power defined by stoichiometric coefficients, but this is no

longer true for complex reactions. However, if the substrate

molecules react on binding sites to form a product, as is the case of

enzymes, we expect the rate for product formation to be still

proportional to the fraction of occupied sites h.
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We now review different measures and, accordingly,

definitions of cooperativity (see also [6, 8, 9]), neglecting

those (e.g., Wong co-operativity [10]), which are restricted

to particular forms for the reaction rates. We also omit

those based on the shape of h(a) for a close to zero, as this

is not necessarily indicative of the behavior at intermediate

substrate concentrations: Indeed, mixtures of positive and

negative co-operativity, different degrees of co-operativity,

and the occurrence of tipping points may not be predicted

in this way.

2.1 Koshland cooperativity

The Koshland measure of cooperativity is one of the easiest

to implement, being based on the coefficient j, defined as

the ratio

j ¼ a0:9

a0:1
; ð2Þ

where a0.1 and a0.9 are defined as those values of ligand

concentration such that h(a0.1) = 0.1 and, similarly,

h(a0.9) = 0.9: For the MM hyperbolic function hM(a), one

would get j = 81, independent of KM. Hence, one can notice

that if j\ 81 then h(a) is expected to grow faster than hM(a)

and, according to Koshland, we speak of positive coopera-

tivity, while if j[ 81, then we have negative cooperativity.

The index j has the advantage of being an absolute

number, but the disadvantage of being sensitive to the scale

of measurements and of depending only on a0.1 and on a0.9,

hence ignoring all information that can be derived from the

shape of h(a).

2.2 Global dissociation quotient

Another possible approach to measure the degree of

cooperativity is in terms of deviations from the hyperbolic

behavior by introducing the generalized equation [11]

hðaÞ ¼ a
aþ KðaÞ : ð3Þ

In the absence of cooperativity K(a) is constant, viceversa

one gets K(a) = a(1 - h)/h. Hence, the experimental value

of K(a) can be interpreted as the ratio between free sites

and occupied sites times a and it is often called ‘‘global

dissociation quotient.’’ The slope of this curve, symbolized

by c, i.e., c = dK(a)/da, is used as a quantitative measure

of cooperativity: c equal, greater or smaller than zero

would correspond to absence of cooperativity, negative and

positive cooperativity, respectively. Under this view, the

phenomenon of cooperativity is equivalent to the change in

the global dissociation quotient with ligand concentration;

the larger the rate of change of K(a) and the larger the

degree of cooperativity.

2.3 Hill cooperativity

An alternative way to quantify the deviation from an

hyperbolic behavior is to use the so-called Hill function,

which provides another extension of the MM function and

which reads

hHðaÞ ¼
ah

ah þ KM
; ð4Þ

with KM and h constant. Indeed, Eq. (4) is able to suc-

cessfully fit most experimental data from cooperative sys-

tems, where the parameter h can be interpreted as the

number of ligand molecules that bind to the macromolecule

in a single step [12].

More generally, given experimental data for h(a), one

can define the Hill coefficient as

nHðaÞ ¼
d log

hðaÞ
1�hðaÞ

h i

dðlog aÞ ¼ a
d log

hðaÞ
1�hðaÞ

h i

da
; ð5Þ

which provides a measure of the extent of cooperativity:

when nH (a) [ 1 for all a[ 0, we have positive coopera-

tion; viceversa, if nH (a) B 1 for all a[ 0 we have nega-

tive cooperation. For instance, for oxygen binding to

hemoglobin (with N = 4 binding sites), the estimated Hill

coefficient is about 2.8. Indeed, in biochemical processes

nH is typically smaller than N, suggesting a mixed effect

resulting from the interaction among sites [4].

It is worth noticing that the main difference between c
and nH is that the former represents the absolute change in

global dissociation quotient per absolute change in ligand

concentration, while the latter is related to the corre-

sponding logarithmic changes. However, notice that both

assume an a priori rate function to be compared with

experimental data.

Finally, we underline that, given the experimental curve

h(a), one can straightforwardly get an estimate for nH, and

this explains the popularity of such cooperativity measure;

nonetheless, nH constitutes a macroscopic property and it is

not uniquely related to the difference in binding affinity

due to the occupancy of next sites, which, conversely, is a

microscopic property.

2.4 Range cooperativity: weak or strong behavior

The range measure is, again, based on a comparison

between the reaction curve h(a) and an ‘‘appropriate’’

hyperbolic MM curve, as summarized in the following (see

also [6]): first, one specifies a value K [ 0 and builds the

hyperbolic function hK(a) = a/(a ? K). Then, if h0(0) \
h0K(0) (h0(0) [ h0K(0)) and h(a) and hK(a) intersect at most

once for all choices of K [ 0, we say that h(a) is strongly

positive (negative) cooperative. If h(a) and hK(a) intersect
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more than once, it is possible to formulate a concept of

weak cooperativity (in the range sense): If h0(0) \ h0K(0)

(h0(0) [ h0K(0)) and h(a) [ hK(a) (h(a) \ hK(a)) for large

enough a, then h(a) is weakly positive (negative)

cooperative.

As proved in Karlin [6], for monotone increasing rate

curves the range and Hill measures of cooperativity are

equivalent, more precisely, strong positive (negative)

cooperativity with respect to the range measure is equiva-

lent to a positive (negative) cooperativity according to Hill.

However, differently from Hill measure, which requires the

estimate of the slope for log h(a) against log a, range

measurements do not require interpolating data according

to a given reaction rate and therefore the diagnosis of

cooperativity is relatively simpler and also offers additional

advantages [6]. In particular, the method is able to distin-

guish different degrees of cooperativity (weak and strong),

even though such a distinction is still based on macroscopic

evidences and cannot be directly ascribed to specific values

or range of values in the microscopic parameters charac-

terizing the phenomenon.

3 Bridging chemical kinetics and statistical mechanics

Let us consider a system which has a set of N interacting

binding sites, numbered by an index i ¼ 1; 2; . . .;N: Each

site can bind one identical smaller molecule of a substrate,

and we call a the concentration of free substrate molecules.

When a site has a molecule bound on it, binding on all the

other sites is enhanced (inhibited), which corresponds to a

system with positive (negative) cooperativity. This is the

case, for instance, of homo-allosteric enzymes, or some

catalyst surfaces [13, 14]. Even small monomeric systems,

such as small signaling proteins (Chemotaxis protein Y) or

small ribozymes, may have a similar behavior [15].

In analogy with the Ising model (see for instance [7]),

we associate in complete generality to each binding site a

dichotomic variable ri which takes the value ?1 if the ith

site is occupied, and -1 if it is unoccupied. A configuration

of the molecule is then specified by the set of values

r1; r2; . . .; rN ¼ frg:
Once this bridge has been established, we can speculate

on the way the binding sites interact with the substrate and/

or among themselves. Now, such interactions are based on

electromagnetic exchange forces so that the third law of

dynamics holds, hence, the intrinsic symmetry of the

exchanges implies symmetry in the couplings which

ensures detailed balance, which, in turn, ensures the equi-

librium canonical framework to hold and, ultimately, an

Hamiltonian representation of the phenomenon. In this

way, we can apply the standard statistical mechanics

machinery and the equilibrium state for the system

corresponds to the minimum energy and the maximum

entropy. As a result, when the system is in equilibrium with

a heat bath at a given temperature T, the probability of a

configuration with energy HN is proportional to the

Boltzmann factor exp(-HN/kBT), where kB is the Boltz-

mann constant and T is the temperature or, more generally,

the level of ‘‘noise’’ experienced by the system.

We first focus on the interaction between the substrate and

the binding site which is expected to depend on both the

substrate concentration and on the state of the binding site; we

model such interaction by an ‘‘external field’’ h meant as a

proper measure for the concentration of free ligand mole-

cules. Then, for a non-interacting model (whose potential

cooperation features are obviously neglected) one can con-

sider a microscopic interaction energy given by

HNðfrg; hÞ ¼ �h
XN

i¼1

ri: ð6Þ

We can think at h as the chemical potential for the binding

of substrate molecules on sites: When it is positive,

molecules tend to bind to diminish energy, while when it is

negative, bound molecules tend to leave occupied sites. If

we assume that the free molecules are non-interacting

(which is reasonable when they are very diluted), the

chemical potential can be expressed as the logarithm of the

concentration of binding molecules and one can assume

that the concentration is proportional to the ratio of the

probabilities of having a site occupied with respect to that

of having it empty [7]. In this simple case, being the sites

non-interacting, the probability of each configuration is the

product of the single independent probabilities of each site

to be occupied and one finds a � p(ri = ?1)/p(ri =

-1) = exp(?h)/exp(-h), so that

h ¼ 1

2
log a: ð7Þ

Hence the limit h ? -? corresponds to a vanishing

concentration a, while when h ? ?? the concentration a
goes to infinity as well. It is straightforward to see that the

reaction rate associated with Eq. (6) recovers to the

hyperbolic Michaelis–Menten curve [7].

Once we have successfully tested the statistical

mechanics approach for the paradigmatic MM kinetics, we

can proceed with our mapping and account for coopera-

tivity just by extending the one-body theory previously

outlined: To model the interaction between sites, we sim-

ply introduce the full Curie–Weiss (CW) Hamiltonian [16]

HNðfrg; J; hÞ ¼ � J

2N

X1;N

i6¼j

rirj � h
XN

i¼1

ri; ð8Þ

which, again, represents the microscopic energy of the

system in a given configuration, so that the lower HN and
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the larger the probability of finding that configuration. Of

course, J [ 0 means that there exists a two-body interac-

tion between the binding sites, and the free energy is better

minimized if sites ‘‘cooperate’’ by aligning consistently.

The Hamiltonian (Eq. 8) was originally introduced to

describe a system of atoms with magnetic moments: the

spins r’s can point in two possible directions, h represents

an homogeneous external magnetic field acting on each

atom and spanning all real numbers, and J is a fixed

number representing the two-bodies interaction strength

(the exchange term), which for our model rules the coop-

erativity of the system. In fact, the first term in Eq. (8) is an

interaction between the N (N -1)/2 couples of sites: if J is

positive, this energy is smaller the larger the alignment

displayed by the r’s. In the following, we focus on positive

couplings Jij [ 0. The first term ranges from its minimum

value -J (N -1)/2, obtained in the extreme cases in which

all sites are either all occupied or all empty, to its maxi-

mum value 0, obtained at half saturation of the sites. So this

contribution to the energy is such that sites tend to behave

coherently, and the constant parameter J fixes the scale of

the microscopic binding energy. Notice that the symmetry

empty-occupied is actually broken in the presence of an

external field, namely of a sufficiently large substrate

concentration a which favors positive (occupied) states.

Before proceeding, we stress that our model corresponds

to a so-called mean-field approximation, where each site

interacts with all the remaining N -1 with the same

strength J. Actually, this assumption may include several

kinds of situation: systems where the motion of binding

sites occurs on time-scales short enough for them to see

each other before reacting, or the binding of molecules to

semiflexible polymers in the limit of long-range interac-

tions [17].

We also underline that a stochastic approach like ours is

meaningful only if the number of elements taken into

account is large; in particular, our solution holds rigorously

in the thermodynamic limit (i.e., N ? ?), nevertheless,

the predictiveness of our model can be significant even for

a finite-size folded macromolecule, built up by, say, N *
1,000 binding sites, provided that the physical/chemical

features are retained under scaling, namely, we need to

assume that the number of neighbors for any site scales

with N. This is indeed consistent with the mean-field

approach and ensures that the statistical overlap between

global and local behavior is strong in the large N limit.

Otherwise stated, the features of an infinite length mole-

cule, whose interaction are properly rescaled within a

mean-field approach, can be still comparable with a real-

istic one.

Furthermore, despite its simplicity, the model displays

a rich phenomenology: by tuning the ratio J/T, the model

gives rise to different behaviors and degrees of cooperativity;

it is also mathematically tractable and it accounts for a

discontinuous rate law which linear models with nearest-

neighbors interactions cannot recover. In such discontinu-

ous regime, i.e., close to criticality, its predictions (which

are unsensitive to the underlying topology) may barely

represent the real phenomenon, quantitatively. However, as

we will see, they can suggest an interesting measure to be

performed on nearly discontinuous regimes.

The model could be further extended by including, for

instance, a given topology for binding sites [18, 19], in

such a way that the effective number of neighbors per site

is smaller than N (and may even remain finite in the ther-

modynamic limit), or a coupling Jij depending on the

couple of sites considered, say, scaling with their distance;

the resulting mathematics would be more complicated,

without any real qualitative change. Thus, keeping the

framework as simple as possible for the sake of clearness,

we introduce the standard statistical mechanics definitions

for the CW model. The normalized probability for a con-

figuration {r} is then

PNðfrg; J; h; TÞ ¼ Z�1
N expð�HNðfrg; J; hÞ=kBTÞ; ð9Þ

where the normalizing factor ZN(J, h, T) =
P

{r} exp

(-H({r}; J, h)/kB T ) is termed the partition function.

The number n {r} of occupied sites can be computed as

nfrg ¼
XN

i¼1

1

2
ð1þ riÞ; ð10Þ

and the binding isotherm h(a) is reconstructed from the

average fraction of occupied sites hn i/N as a function of

the concentration a

h ¼ hni
N
¼ 1

N

X
frg

nfrgPfrg ¼ 1

2
þ 1

2
mðJ; hÞ; ð11Þ

where m(J, h) =
P

ihrii/N represents the average

magnetization per site in mean-field CW model, the

brackets h.i account for the Boltzmann average (i.e.,

h.i =
P

r.exp(-bHN)/ZN); the dependence on a is obtained

simply by replacing h with (1/2) log a (see Eq. 7). Here m

represents the average fraction of occupied (or unoccupied)

sites with respect to half saturation. In the limit of large N,

the average value hni/N can be obtained by minimizing,

with respect to the parameter h [ (0,1), the effective free

energy [16]

Fðh;a;TÞ ¼ sup
jhj
�J

2
ð2h� 1Þ2� 1

2
ð1� hÞ logðaÞ�TsðhÞ

� �
:

ð12Þ

The (only direct) independence of this variational pre-

scription by the coupling constant (as the sup is taken just

on h) is the main strand we pave to obtain a unifying
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picture of the various catalogs of cooperativity in chemical

kinetics: It holds whatever J.

The first two terms at the r.h.s. of Eq. (12) stand for the

internal energy, which corresponds to the Boltzmann

average of the Hamiltonian H({r}, J, h) expressed as a

function of h and a, while

sðhÞ ¼ �h logðhÞ � ð1� hÞ log 1� hð Þ ð13Þ

is the entropic term, whose weight is ruled by the tem-

perature T. For small temperatures, the most likely con-

figurations are those associated with small values of the

internal energy; for large temperatures the most likely

configurations are those corresponding to higher values of

entropy.2 Therefore, the minimum of F is the optimal

compromise between the minimization of the effective

internal energy and the maximization of entropy. We

expect that for large interactions J (or chemical potentials)

the energy term in Eq. (12) is the leading contribution, and

the optimal fraction is ruled by this term, so that the sites

tend to be in the same state and the binding isotherm dis-

plays a sigmoidal shape, while for small values of the

interaction strength the leading term will be the entropic

one, which at a fixed value of the chemical potential prefers

disordered states, i.e., states obtained by a large number of

configurations, and pushes the rate law toward a MM form:

In this sense the temperature can be thought of as a noise

because when it is high the system prefers to be in a dis-

ordered state. However, large or small temperatures are

defined with respect to the interaction strength J and in the

following we are going to fix the temperature equal to 1

and let the interaction strength vary to see all the possible

regimes of binding isotherms arising from different values

of J, as the latter rules cooperativity.

The minimum condition for Eq. (12) with respect to the

order parameter h corresponds to the CW self-consistence

equation [16, 20]

hðJ; aÞ � 1

2
¼ 1

2
tanh Jð2h� 1Þ þ 1

2
logðaÞ

� �
ð14Þ

and gives the average fraction of occupied sites corre-

sponding to the equilibrium state for the system. From

more general perspective, the model introduced here can

also be looked at as statistical mechanics version of the

so-called concerted model or Monod–Wyman–Changeux

(MWC) model [21]. The basic idea of such a model is that

regulated proteins (e.g., enzymes or receptors), in the

absence of any regulator exist in different states, say two

reversible ri = ±1. The fraction of elements assuming a

given state is determined by thermal equilibrium. In the

presence of regulators (e.g., a substrate a) one state may

prevail against the other.

As we will see later, Eq. (14) describes a second-order

phase transition when a = 1 and J larger than the critical

value Jc = 1. Conversely, when J [ Jc and a = ac = 1,

the transition is first order and the average fraction h has a

discontinuity. Equation (14) holds rigorously just in the

thermodynamical limit (N ? ?); for finite systems,

beyond Oð1=NÞ corrections (see for instance [16]), we

recall that the discontinuous functions are mildly smoother,

accordingly with the experimental counterparts [1].

4 Obtaining chemical kinetics from statistical

mechanics

As discussed in the introduction, to determine the rate law

one has to compute the average fraction of occupied sites

as a function of the concentration of free ligand molecules

a, and this dependence is encoded in the self-consistence

Eq. (14).

We consider separately the two cases 0 B J \ 1 and

J [ 1 for the interactions between sites, because, as stated,

while in the former case h is everywhere continuous in a, in

the latter it has a discontinuity in a = 1, taking a value

smaller than 1/2 when a ? 1- and greater than 1/2 when a
? 1?. In both cases, however, it is easy to check that h(a)

? 0 for a ? 0 (which corresponds to the h ? -? limit)

and h(a) ? 1 for a ? ? (h ? ??). This means that the

reaction rate vanishes when the substrate concentration

vanishes and it saturates to one when the substrate con-

centration is large, as expected.

When J ? 0, no cooperativity is expected (as the model

reduces to a one-body theory) and, coherently, we recover

the MM kinetics. In fact, the rate Eq. (14) can be equiva-

lently expressed as

hða; JÞ ¼ a exp 2Jð2hða; JÞ � 1Þ½ �
1þ a exp 2Jð2hða; JÞ � 1Þ½ � ð15Þ

which properly gives, for J = 0

hða; JÞjJ¼0 ¼
a

1þ a
: ð16Þ

Note that we do not lose generality when obtaining a/(1 ?

a) instead of a/(K ? a) at the r.h.s. of Eq. (16): in fact, we

can rewrite the MM equation as h(a) = KM
-1a/(1 ? KM

-1a)

such that choosing KM = 1 is equivalent to shifting a ?
a/KM, which can be compensated by shifting h ? (1/2)log

a - (1/2)log KM as well.

Moreover, from Eq. (15), we get that when J [ 0 the

rate for a given concentration is smaller than the

2 We notice that the entropic term is connected to the logarithm of

the number of configurations associated with a given fraction h of

occupied sites: It is maximized for fractions around 1/2, which have a

larger number of configurations associated, and minimized for h = 0,

h = 1, corresponding to just one configuration and a vanishing

entropy.
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corresponding one for a non-interacting system when

a\ 1, and becomes greater when a[ 1; in fact, the greater

the interaction and the steeper the sigmoidal shape of the

rate. Equation 15 is plotted in Fig. 1 versus a and for

several values of J.

Interestingly, a global change in the system considered,

e.g., concerning ph or temperature, may lead to variations

in the affinity between binding site and reactants as well as

in the coupling strength between binding sites themselves,

giving rise to a curve h(a) displaying a different steepness;

the Bohr effect is one of the best-known manifestations of

these phenomena [22].

Now, the derivative3 of h with respect to a, which is

strictly related to the Hill coefficient and, consequently, to

the cooperativity of the system, can be computed from Eq.

(14):

oh
oa
¼ 1

4a
1� ð2h� 1Þ2

1� J 1� ð2h� 1Þ2
h i : ð17Þ

It is always positive and finite for J \ 1, meaning that h is

an increasing function of a, as we expect. In the limit of

low concentration we obtain

oh
oa

����
a¼0

¼ expð�2JÞ ð18Þ

and the kinetics at very low concentration is governed by

the two-bodies interaction J: the greater J and the flatter the

rate law. Note that the strength of the cooperativity, J,

appears in Eq. (18) as an exponent, implicitly supporting

the log-scale of the Hill coefficient in Eq. (5). When J = 0,

qah|a=0 = 1 and one properly recovers the same trend as

that of the MM kinetics, which has a first-order kinetics

with the same coefficient for small concentrations.

Finally, to recognize the sigmoidal shape typical of

cooperative systems, we have to study the second deriva-

tive, which can be easily computed and expressed in terms

of the first one:

o2h
oa2
¼ � 1

a
oh
oa

1þ 2h� 1

1� J 1� ð2h� 1Þ2
h i� �2

2
64

3
75: ð19Þ

When a ranges in (1, ?), this is always negative, so that h
is a concave function of a in that range, for any value of J.

For a = 1 we have o2
a2h ¼ �ð1=4Þ=ð1� JÞ; so that h is

still concave there. For a [ (0,1) a numerical study of the

second derivative clearly shows that there are different

behaviors, depending on J.

4.1 J \ 1/4: weak cooperativity

Interestingly, an inflection point is absent not only for

J = 0, but even for greater values, namely J B 1/4. In fact,

expanding h to the first order in a one finds

(a) (b)

Fig. 1 Phases and binding isotherms. a The figure shows the

different phases for the system. For J \ 1/4 the binding isotherms

have no inflection point and the system is weakly (W) cooperative;

when 1/4 \ J \ 1 an inflection point arises, and the presence of a

sigmoidal shape allows us to call this regime strongly (S) cooperative;

both regions correspond to a continuous varying h(a), while for J [ 1

h(a) becomes discontinuous, with a jump at the critical concentration

a = 1 (blue line). b Different regimes for the binding isotherm

obtained by varying the interaction strength J. For J = 0 (blue line)

the hyperbolic Michaelis–Menten law represents the isotherm for a

non-interacting system; for J = 0.2 (green) the system is in a weakly

cooperative regime; for J = 0.6 (red) strong cooperativity manifests

itself with the typical sigmoidal shape; J = 1(light green) is the

critical regime: the derivative in the inflection point which gives the

Hill coefficient is infinite; J = 1.8 (purple) represents the discontin-

uous phase, with an extremely strong cooperativity

3 Note that in the frame of the Curie–Weiss model this is strictly

related to the generalized susceptibility

v ¼ omðhÞ
oh

which measures the response of the system to a change in the field h.

In fact, we have

oh
oa
¼ 1

2

omðhðaÞÞ
oa

¼ 1

2

oh

oa
vðhðaÞÞ ¼ 1

4a
vðhðaÞÞ:
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o2h
oa2

����
a¼0

¼ �2ð1� 4JÞ expð�4JÞ ð20Þ

so in this interval the rate function h is everywhere con-

cave, tending, for J ? 0, to the hyperbolic MM form

(whose second derivative -2(1 ? a)-3 is always nega-

tive). Note that when J = 0 the expression (20) gives,

correctly, the MM value -2. The absence of an inflection

point in the region J [ [0, 1/4] allows us to define it as a

weak cooperativity region: the shape of the binding iso-

therm is practically indistinguishable from that of a non-

cooperative system.

4.2 1/4 \ J \ 1: strong cooperativity

The analysis of Eq. 19 also allows to derive that when

1/4 \ J \ 1, there is a unique inflection point a* (whose

value increases with J), which separates the region where h is

convex (small concentration), to the one where it is concave.

For J = 1/4 this point corresponds to a* = 0, while it is

shifted toward unitary concentrations when J is close to 1. As

a sigmoidal rate has necessarily an inflection point, we may

talk about strong cooperativity in this interval, in contrast to

the weak cooperativity previously introduced. These very

simple definitions have the advantage of being directly rela-

ted to the effective microscopic interaction, so that the

experimental behavior of a system could allow one to

reconstruct this interaction strength and interpret the rate law

in terms of the very general mean-field model. The different

phases for the binding isotherm are shown in Fig. 1.

4.3 J [ 1: discontinuous rate law

We saw that when J \ 1 we can consider two regions, a

weak cooperative one, where the rate law is hyperbolic,

and a strong cooperative one, with an inflection point

growing gradually with the interaction strength.

When J [ 1 (corresponding in the original Ising model to

the ‘‘ferromagnetic’’ phase) the rate law is still increasing

with a, and the expressions (18–20) remain valid for a = 1.

In this point the rate function is discontinuous and the jump is

given by h?(J) - h-(J), where

h�ðJÞ ¼ lim
a!1�

hða; JÞ:

These two limits depend on J: they are both equal to 1/2

for J = 1, when the curve is still continuous, and their

difference increases smoothly with the square root of J -1

when J [ 1 (see Fig. 1). This means that, starting from

vanishing concentration, the system has less sites occupied,

for a given a, than the corresponding non-interacting one,

until the concentration reaches the reference value. Here, it

is sufficient to increase infinitesimally the number of free

molecules to obtain a large filling (depending on J). After

that value, the number of occupied sites is always greater

than the corresponding value for MM. Note that, in

principle, if the concentration varies slowly one could

observe metastability, with a curve which continues

growing continuously up to values of a[ 1. The entire

out of equilibrium features of the model are ruled out in

this treatment as we deal with equilibrium statistical

mechanics, however—as a second step—the bridge could

be extended in that direction. If J ? ? this discontinuity

increases, while its derivative in zero vanishes, so that in

the large volume limit we obtain a step function. This

corresponds to a chemical kinetics where no binding site is

occupied until the concentration has reached the critical

value a = 1, and when this value has been reached all sites

are occupied. This kind of discontinuous behavior can be

observed, for example, in the binding isotherms of small

surfactants onto a polymer gel [23].

When J ? 1 a second-order phase transition appears.

This indicates that the correlation between binding sites

becomes stronger and the typical trend of thermodynamical

observables is a power law [16]. If the statistical mechanics

picture we suggest applies to the reaction rates, then this

power-law behavior becomes very interesting, as it should

be related, as in the statistical mechanics counterpart, to

very general features the systems, due to the concept of

universality [16]. Let us consider in detail the behavior for

J ? 1. As we said before, the discontinuity for J [ 1 is

given by h?(J) - h-(J), whose dependence from J near the

critical point (a = 1, J = 1) can be expressed as

hþðJÞ � h�ðJÞ � ðJ � 1Þ1=2

while on the critical isotherm (i.e., for J = 1) around the

critical concentration a = 1, mean-field theory predicts

hða; 1Þ � 1

2
� a� 1ð Þ1=3:

In this regime one can also predict the behavior of the a
dependence of the Hill coefficient defined in Eq. (5),

which, when a ? 1, diverges as

nHðaÞ � a� 1ð Þ�2=3:

Moreover, we know that when J ? 1 ± the susceptibility,

and so the derivative of h respect to a, diverges as

vja¼1 � 1� Jj j�1:

As hinted in Sect. 3, the exponents of these power laws are

only valid in the limiting case of a very large number of

interacting neighbors per site, while for finite-size systems

corrections depending on the real dimension of the space in

which they are embedded are expected. However, these

scalings, in particular those related to the reaction rate
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around the discontinuity as a function of a, suggest a new

interpretation of almost discontinuous reaction curves and

could represent an interesting measurements to test our

predictions. Indeed, statistical mechanics suggests that

power-law behaviors in the vicinity of the discontinuous

step are signatures of a critical phenomena: If in particular

the detected exponents do not differ that much from the

ones predicted by the CW model, then this suggests that the

mean-field picture, despite its simplicity, is able to capture

the essence of the cooperative phenomenon.

4.4 Cooperativity through the Hill coefficient

As explained in Sect. 2, the usual way to define in a

quantitative manner the cooperativity of a system is by the

Hill coefficient, i.e., the slope at the symmetric4 [1] point

h = 1/2

nH ¼
1

hð1� hÞ
oh

o log a

����
h¼1=2

¼ 4
oh

o log a

����
h¼1=2

ð22Þ

If binding on different sites is an independent process, one

simply finds nH = 1, while in the extremum case in which

sites are either all empty or all occupied nH = N. We call a

system cooperative (non-cooperative) if nH [ 1(nH = 1),

while the cooperativity is said to be negative, meaning that

binding is reduced if there are occupied sites, for nH \ 1.

So this gives a lower bound for the number of interacting

sites, and it is possible to see that it is related to the vari-

ance of the mean number of occupied sites.

The Hill coefficient for our general model depends, as

expected, on the interaction J; in particular for J \ 1 we have

nH �
o log h=ð1� hÞ½ �

o log a
¼ 4

oh
oa

����
a¼1

¼ 1=ð1� JÞ: ð23Þ

Being the derivative of h for a = 1, the Hill coefficient is

finite (and greater than one) for J \ 1 and it diverges for

J ? 1- when the discontinuity appears. An infinite Hill

coefficient may seem unrealistic; however, it is not an

unavoidable feature of our modeling: in fact, h scales with

the connectivity of the underlying network of interactions

and, while the latter diverges in this minimal fully con-

nected representation, diluted mean fields can still work

finely. However, as the mathematics involved becomes

immediately very heavy we preferred to present the pure

theory within the limitation of the high connectivity limit.

We observe that the last equation relates nH to the typical

scale of interaction energy. This is a macroscopic measure

of cooperativity which is directly associated with the

microscopic interactions among sites.

4.5 Cooperativity through the global dissociation

quotient measure

Among the useful tools to describe cooperativity, we recall

the global dissociation quotient K(a), whose derivative c is

expected to be different from zero when some form of

cooperation occurs; in particular, c should be negative

when there is a positive cooperation. Figure 2 shows some

plots of c(a) for different values of J: consistently with the

definition of K(a), (see 2), in the region of a\ 1, the

stronger the interaction, the smaller c, properly indicating

the deviation from the K-constant MM curve. As the

derivative of h with respect to a appears in the definition of

c, in correspondence of the critical value J = 1, c(a)

diverges for a = 1. In fact, this is the (critical) region

where the correlations between sites, and so the coopera-

tivity, are expected to diverge.

For sake of clarity in the figure, we did not show a plot

of c for J [ 1; however, in this case the curve is below the

others shown for a\ 1 and it is not defined for a = 1: from

this point on, it is practically vanishing.

4.6 Cooperativity through the Koshland measure

Lastly, we want to recover even the measure of coopera-

tivity introduced by Koshland (see Sect. 2.1): To satisfy

this task, we plotted the previously defined Koshland

coefficient as a function of the two-bodies interaction

coupling J (see Fig. 2), as the latter is the only relevant

tunable parameter to explore cooperativity at work.

The coefficient is defined only for J \ 1.5; in fact, for

J [ 1, h(a) is a discontinuous function and when J C 1.5 the

equations h(a) = 0.1 and h(a) = 0.9 cease to have a solution.

As shown in Fig. 2 (bottom), we find that it is a

decreasing function of J, which takes the value j = 81 for

non-interacting systems (J = 0), and j * 1 when J = 1.4:

Coherently with this scenario, we note that h(a = 1) = 1/2

for every J B 1, when J [ 0 the binding isotherm is below

the MM isotherm for a\ 1 (such that a0.1 is larger than in

MM theory) and above MM curve for a[ 1 (such that a0.9

is smaller than in MM theory).

5 Multiple interacting systems

When considering the binding of systems like long chain

molecules, possibly on a homogeneous surface [24], it may

4 When there is not such a symmetry, one should more properly

consider the quantity

nH ¼ 4
oh

o log a

����
max;min

: ð21Þ

that is the slope of h(log a) calculated at the inflection point, where it

has an extremum. In fact for an unsymmetrical system the slope at

h = 1/2 is not generally an extremum slope and should not be taken

as a suitable cooperativity index.
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be possible that the interaction involves more than two

hosting sites per time and this can in principle affect the

global ‘‘cooperative capability’’ of the system. Thus, in the

following, we want to extend our model by accounting for

multiple interactions, involving more than two elements

together, in particular three- and four-bodies interactions.

The simplest p-body interaction among N sites which

can be either occupied or empty (ri = ?1 or -1,

respectively) can be expressed by the Hamiltonian (Eq. 24)

HNðfrg; J; hÞ ¼ �
X1
p¼2

p!

2Np�1
Jp

X
1� i1\���\ip �N

ri1 . . .riN

� h
XN

i¼1

ri:

ð24Þ

The interaction strength J is assumed to be positive (for

J = 0 we recover the standard MM kinetics again) and the

combinatorial factor before the summation makes the

energy extensive and accounts for a sensible p ? ? limit

[25, 29].

It is easy to see that the energy (the mean value of the

Hamiltonian) scales as

hHNi / NhmUðmÞi;UðmÞ ¼
Xp�1

k¼1

ckmk þ h; ð25Þ

where ck is the coefficient of the Taylor series implicitly

defined by Eq. (25), and m = 2h - 1.

The argument in the self-consistent equation m ¼
tanhðUÞ is then built up, in complete generality, by all the

terms of the Taylor series (whose convergence is tackled

by the p! term in the numerator). However, as |m| B 1 we

expect that only the first terms do matter in the thermal

average and the main contribution is given by the term

corresponding to p = 2, which has been studied in detail so

far.

Let us highlight here another advantage in performing

the statistical mechanics approach: As the Hamiltonian

(Eq. 24) represents a sum of Hamiltonians (each for a

different value of p), which, in principle, can have very

different coupling strengths (i.e., the distribution of Jp can

range over several orders of magnitude), in this case

solving the global problem as a whole can be prohibitive,

while here we can consider each Hamiltonian contribution

by itself and focus only on one single term per time

(namely p ¼ 2; 3; 4; . . .). This procedure, which we are

going to perform, allows to isolate the different contribu-

tion (and weight in the global behavior) of each indepen-

dent binding capability represented by each independent

p-term in the sum.

Notice that the r0s acting on a single site could tend to

keep it in the state -1 or ?1 in accordance to their product.

So, for example, for p = 4 one could have three sites,

acting on the ith site, in a configuration, say (?1, ?1, -1),

which favors the state ri = -1, even if in the whole there

are more sites in the state r = ?1. The same local field is

obtained when the configuration is (-1, -1, -1), i.e., if all

the three sites are empty. The energetic behavior of this

extension is then deeply different from the previous case:

Usually one deals with linear forces, which are generated

(a) (b)

Fig. 2 Global dissociation quotient and Koshland coefficient. a The

figure shows different regimes for the derivative of the global

dissociation quotient c(a) = dK/da obtained by varying the interac-

tion strength J. For J = 0.2 (green) c remains quite close to zero,

indicating that K is nearly constant in a, as one expects for a non-

cooperative system; for J = 0.6 (red) the global dissociation quotient

has a stronger dependence on a: we know that in this case the binding

isotherm has a sigmoidal shape and strong cooperativity appears;

when J = 1 (cyan) we are in the critical regime, where the derivative

of h, and so c, diverges at a = 1. b The Koshland coefficient

j = a0.9/a0.1 obtained by our theory as a function of the two-bodies

interaction J. It is a decreasing hyperbolic function, defined for values

of J below J = 1.5, which tends to be lower when cooperatively is

larger and the binding isotherm takes a steeper sigmoidal form. The

dotted lines represent in both figures the reference values corre-

sponding to a non-cooperative system, i.e., J = 0
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by quadratic potentials (i.e., p = 2) such that the Maxwell–

Boltzmann probability distribution is Gaussian accordingly

with what naively expected by a simple Central Limit

Theorem argument and critical behavior, at a = 0, arises to

confirm this picture [20]. If a more complex scenario

appears, then a violation of this linear framework is

expected: for instance for p = 3 it is straightforward to

check that even a positive J may have subtle anti-cooper-

ation features: in fact, it is immediate to check that the

energy would prefer the orientation of the spins

?1, ?1, ?1 but also ?1, -1, -1; this can be thought

of as a competitive feature of the multi-attachment that

naturally introduce negative cooperativity in the process

under investigation.

Interestingly, this extension still shares with the simplest

p = 2 case the same entropy: In fact, as in the two-body

case, for this long-range interacting system the energy can

be easily expressed as a function of the parameter h
describing the fraction of occupied sites, and of the con-

centration a

N�1Hpðh; aÞ ¼ �
J

2
ð2h� 1Þp � 1

2
logðaÞð2h� 1Þ: ð26Þ

while the entropy per site is exactly the same as in the

p = 2 case. Given the effective free energy (still keeping

T = 1 for the sake of simplicity)

Fðh; J; aÞ ¼ sup
jhj
� J

2
ð2h� 1Þp � 1

2
logðaÞð2h� 1Þ � sðhÞ

� �
;

ð27Þ

the minimum condition with respect to the order parameter

h reads off as

hðJ; aÞ � 1

2
¼ 1

2
tanh

1

2
pJð2h� 1Þp�1 þ 1

2
logðaÞ

� �
: ð28Þ

This corresponds to the equilibrium state for the system,

and the average fraction of occupied sites will be given by

the solution of this equation. Once again, this equation, as

in the p = 2 case, is strictly valid when the number of sites

is large.

Again, we expect that for large interactions J (or

chemical potentials) the energy term in (27) is the leading

one, and the sites tend to be in the same state (this corre-

sponds to a large magnetization), while for small values of

the interaction strength the leading term is the entropic one,

which prefers disordered states, i.e., states where the sites

do not see each other.

5.1 Case p = 3

In this case the energy Eq. (26) is an odd function of

m = 2h - 1 at fixed a

N�1H3ðh; aÞ ¼ �J3ð2h� 1Þ3=2� 1

2
logðaÞð2h� 1Þ: ð29Þ

Its global minimum, corresponding to a fraction of

occupied sites h and satisfying

h ¼ 1

2
þ 1

2
tanh

3

2
J3ð2h� 1Þ2 þ 1

2
logðaÞ

� �
; ð30Þ

is located at an average number of occupied sites smaller

than 1/2, when the concentration is very small. On the

contrary, when the concentration is around a = 1 (so that

the chemical potential for binding is small) and J3	 1 the

global minimum of energy corresponds to a large number

of occupied sites. There is an intermediate region where

H3(h, a) can have two local minima for h smaller and larger

than 1/2, respectively, but the relative strength of the

chemical potential log(a) versus the interaction J3 tells us

which is the global one, corresponding to the equilibrium

state. It is easy to see that the two minima (located,

respectively, around h = 1/4 and h = 1) correspond to the

same energy on the line a = exp (-3 J3/4), which this is

the critical line where there is a two-phases coexistence in

the limit of large J3 or log(a) and of negligible entropy

contribution (T ? 0). However, the meaningful function to

minimize is the whole free energy and in general one has to

take into account the entropy term, which tends to favor an

equal number of occupied or empty sites and to disfavor

deviation from this (Fig. 3).

So we can identify three regions in the (J3, a) plane:

When J3 is very small, the leading interaction is guided by

the chemical potential log(a), so that the sign of h - 1/2 is

the same as the former and it vanishes for a = 1. This

corresponds to a weakly (W) cooperative system. Growing

J3, the system begins to feel mutual interactions, and the

average number of occupied sites as a function of a has an

inflection point for a* [ 1, increasing quickly before that

point and more slowly after (see for instance the case

J3 = 0.8 in Fig. 4). This is due to the interplay between

entropy, which pulls the system toward h = 1/2, and the

energy, which prefers h = 0 or h = 1 when the chemical

potential is sufficiently large (Fig. 4).

As in the previous p = 2 case, we can perform a

numerical study of the second derivative with respect to a
of the binding isotherm, in order to discriminate between

weak and strong cooperativity, to understand when an

inflection point, and consequently a sigmoidal shape,

appears: While for p = 2 we found that this happens for

J = 1/4 in a = 0 so that this exact value for J can be

inferred by developing the second derivative for small

values of a, here this is no longer true, as we find that the

first inflection point is obtained for J3 = 0.5, in corre-

spondence of a = 1.5. This is related to the fact that the

minimum of the free energy passes quite abruptly
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(however, continuously and it is ultimately due to a vio-

lation of the quadratic shape for the energetic term) from

values of h not much larger than one half to larger values.

We can then identify J3 = 0.5 as the value separating a

weak cooperativity regime from a strong cooperativity one.

When J3 is larger than this value, another zero in the

second derivative appears, so that we have two inflection

points. Above the critical value J3 = 0.9, instead, we have

a unique inflection point below a = 1.

For a critical interaction strength of J3 = 0.86, the

system has a first-order transition so that h is continuous in

a below a critical concentration a*(J3) [ 0 and it grows

abruptly above this threshold. Increasing J3, this critical

concentration becomes lower up to negative values at

certain J3. In this case, due to the strong interaction, a

concentration smaller than a = 1 in sufficient to have this

discontinuous transition between a negative value of h
- 1/2 and a positive one. When J3, and so the cooperativity

(a) (b)

Fig. 3 Phases and binding isotherms for p = 3. a The figure shows

the phases of a p = 3 system. For J3 \ 0.50 the system is weakly

(W) cooperative, with no inflections; for 0.50 \ J3 \ 0.86 = J3c it is

strongly (S) cooperative, having at least one inflection point; the blue
line shows the J3-dependent critical concentration at which, for

J3 [ J3c, a discontinuity in h(a) appears, passing from a relatively

small h(I) to a larger one (II) as the concentration increases (at fixed

J3). b Binding isotherms h(a) for different interaction strengths J3. For

J3 = 0.4 (blue line) the system is weakly cooperative, with a

hyperbolic form; for J3 = 0.8 (green) it has two inflections, the first

for a = 1/2 and the second for a larger a; for J3 = 1.1 (red) the

isotherm has a strong inflection for a\ 1 and a discontinuity for a

value of the concentration between 1 and 1.5, corresponding to a

transition to a more ordered state; for larger J3, as the cyan curve for

J3 = 1.5 shows, the discontinuity is shifted toward a\ 1. Note that

all the curves pass through the point (1, 1/2)

(a) (b)

Fig. 4 Phases and binding isotherms for p = 4. a Phases for the

p = 4 model. Binding is continuous for J4 \ Jc1 = 0.69, and it passes

from a weak (W) to a strong (S)—both continuous—regime at

J4 = 1/24; for Jc1 \ J4 \ Jc2 = 1.37 isotherms have two discontinu-

ities, one for a critical ac \ 1 and the other one for a ac

0
= 1/ac [ 1

(corresponding to a critical line, so that we can identify three (I, II,

III) continuous regions at a fixed J4; when J4 [ Jc2; however, there is

only one large discontinuity at a = 1, and the behavior is similar to

the one observed in the J4 [ 1 phase for p = 2 (see Fig. 1). b binding

isotherms h(a) of a four-bodies interacting system, for different values

of the interaction J4. The binding isotherm for J4 = 0.04 (the blue
line) has no inflections and represents a practically non-cooperative

system; when J4 = 0.5 (green) the curve has an inflection point for a

small concentration; for J4 [ Jc1 two inflection points appear and the

isotherms develop two discontinuities corresponding, respectively, to

the concentrations a1 and a2 such that a1a2 = 1, see the curves for

J4 = 0.8 (red) and J4 = 1.1 (cyan); for interactions larger than Jc2,

the system has just one discontinuity for a = 1 and the binding

isotherm tends to a step function, as for the purple line corresponding

to J4 = 1.5
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is large, the critical line tends to be located at

a ¼ � expð3J3=4Þ:

5.2 Case p = 4

As for p = 2, in this case the energy is symmetric with

respect to h = 1/2 when the concentration is equal to one,

so that also the free energy features this symmetry

Fðh; aÞ ¼ sup
jhj
�2J4ð2h� 1Þ4 � 1

2
logðaÞð2h� 1Þ � sðhÞ

� �

ð31Þ

and thermodynamic stability requires its minimization

(w.r.t. h) as

h ¼ 1

2
þ 1

2
tanhð2J4ð2h� 1Þ3 þ 1

2
logðaÞÞ: ð32Þ

When the interaction among sites is small, again, we have a

binding fraction ruled by the concentration of free ligands

and vanishing as the latter goes to zero. For J4 = Jc1 =

0.69; however, the system has a first-order phase transi-

tion so that, coming from small concentrations, there is a

value ac(J4) \ 1 for which h changes abruptly to a larger

value, which is smaller than 1/2. Then, h(a) varies con-

tinuously in the interval ac(J4) \ a\ ac(J4)0, passing

through the point (1, 1/2), and there is a new transition with

a discontinuity at an inverse value of ac(J4),

ac(J4)0 = ac(J4)-1. In fact, for this range of interaction

strengths J4, and for concentrations around ac(J4), the free

energy has two local minima coming from the well-mat-

ched competition between the energetic and the entropic

terms, the former preferring small, ‘‘ordered’’ h, while the

latter has always its maximum at h = 1/2. The concen-

tration tells us which is the global minimum and the two

minima are equal at ac. The same happens around the

symmetrical value ac(J4)0.
The critical concentration ac tends to one with the

interaction strength growing, and for J4 = Jc2 = 1.37 the

system becomes ferromagnetic. In this case the mutual

interaction is the overwhelming force driving the system,

and, as in the previous p = 2 case, the binding isotherm

has a discontinuity when passing from a\ 1 to a[ 1,

changing abruptly from a large negative value (depending

on J4) to a positive, opposite value (see Fig. 4). It is

interesting to note that the values of ac and ac
0 depend on J4

and even for p = 3 we find a critical concentration

depending on J3: because this dependence is absent in the

p = 2 case, an experimental J4-dependent critical con-

centration may indicate that a multiple interaction effect is

acting (this can be seen for example in [23]).

Analogously to the cases p = 2,3, we can determine

exactly the value J4 = 1/24 as the one for which a first

inflection point appears, so that the binding isotherm passes

from a weak to a strong cooperativity region. In fact, as for

the p = 2 case (see Eq. 20) by gaining the second deriv-

ative of the binding isotherm for small a one can see that

the leading term is proportional to (1 - 24J4). The iso-

therm has a unique inflection point until J4 = 0.45, then a

second point appears at a = 2.4, which for larger J4 splits

in two points, so that for 0.45 \ J4 \ Jc1 we have three

inflections. The ones corresponding to the smaller and to

the larger values of a disappear when Jc1 is reached and,

instead of these inflections, the isotherm has two

discontinuities.

A discontinuous behavior which could be explained in

term of two and multisite interactions between hosting sites

has been observed in the binding isotherm of long chain

alkyl sulfates and sulfonates to the protein bovine serum

albumin, and in the adsorption isotherm of alkylammonium

chlorides chains on the biotite surface [26]. Typically, if

there are multi-site interactions (with p [ 2) it is very

likely that also two-bodies interactions are present, and one

should consider the several possible interactions with dif-

ferent strengths Jp in the energy term, while for the sake of

clearness we considered them separately.

Before concluding some remarks are in order. As we

have shown, the phenomenology pertaining to systems

with p-body interactions depends sensitively on p and this

allows to infer information about the properties of the

system under study, starting from its reaction rate. On the

other hand, we also notice that when looking at the most

likely configuration, that is the most likely value of h for a

given parameter set (p, J, a), we find that it exists and it is

unique: if we, for the sake of simplicity, focus just on even

p [ 2 values, we can see that the amount of solutions is

constant, namely, independent by the amount and com-

plexity of the cooperating/anti-cooperating binding sites.

More precisely, the self-consistent relation in Eq. 28 may

allow for one or two distinct solutions, but only one is a

global minimum for the free energy: the minima of the free

energy do not scale, but simply shift, with p, while the

global minimum is always unique. This argument may be

applied to the problem concerning the folding of (long)

proteins, whose secondary and tertiary structure is essen-

tially always the same, despite a large number of multi-

attachment is in principle possible [27].

6 Conclusions and perspectives

In this paper we pursued the strand early paved by

Thompson [7] in modeling chemical kinetics with statisti-

cal mechanics techniques: highlighting the emergent

properties in this field, namely cooperation among binding

sites, we relaxed the original assumption of dealing with
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geometric models (i.e., linear chains) in favor of mean-field

models as the latter may properly account also other

experimental findings (as discontinuous jumps or folding)

and benefit of a broad tunable set of scenarios.

After a streamlined introduction to the modern defini-

tions of ‘‘cooperativity’’ in chemical kinetics, we devel-

oped a one-to-one mapping between chemical variables

(binding sites, substrate, etc) and the statistical mechanics

counterparts. Then, we applied statistical mechanics pre-

scriptions, based on the variational principles, and we

found an expression for the reaction rate h (representing the

number of occupied sites) as a function of the substrate

concentration a. In doing so the interaction constant

J between binding sites is treated as a free (microscopic)

parameter. We show that by tuning J we are able to recover

a plethora of different behaviors, ranging from non-coop-

erative (J = 0), weak cooperativity (J \ 1/4), and strong

cooperativity (J [ 1/4). Our results are also shown to be

consistent with the number of definitions of cooperativity

(e.g., Hill, Koshland, or range), previously introduced.

Furthermore, we found a universal criterion to distinguish

between weak and strong cooperativity, that is, by looking

at the inflections of the second derivative of the free

energy. Indeed, we found that the existence of coopera-

tivity (i.e., a positive interaction constant) is not sufficient

for the existence of a flex in the reaction rate. Otherwise

stated, a non-sigmoidal law does not necessarily mean that

no cooperativity is at work. Such situations are here

referred to as cooperativity of weak degree.

There are several directions along which this work can

be extended: for example including a well-defined topol-

ogy for binding sites [28], which would account to more

realistic interaction scalings among the binding sites. Also,

non-strictly-positive couplings would realize a spin-glass

system which, as well known from statistical mechanics,

significantly enriches the phenomenology, to be possibly

mapped in terms of reaction kinetics.
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