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5 Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 2, I-00185 Roma, Italy
6 London Institute for Mathematical Sciences, 35a South St, Mayfair, London W1K 2XF, UK
7 Dipartimento di Matematica, Sapienza Università di Roma, P.le Aldo Moro 2, I-00185 Roma,
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Abstract
Associative network models featuring multi-tasking properties have been
introduced recently and studied in the low-load regime, where the number
P of simultaneously retrievable patterns scales with the number N of nodes as
P ∼ log N. In addition to their relevance in artificial intelligence, these models
are increasingly important in immunology, where stored patterns represent
strategies to fight pathogens and nodes represent lymphocyte clones. They
allow us to understand the crucial ability of the immune system to respond
simultaneously to multiple distinct antigen invasions. Here we develop further
the statistical mechanical analysis of such systems, by studying the medium-
load regime, P ∼ Nδ with δ ∈ (0, 1]. We derive three main results. First,
we reveal the nontrivial architecture of these networks: they exhibit a high
degree of modularity and clustering, which is linked to their retrieval abilities.
Second, by solving the model we demonstrate for δ < 1 the existence of
large regions in the phase diagram where the network can retrieve all stored
patterns simultaneously. Finally, in the high-load regime δ = 1 we find that the
system behaves as a spin-glass, suggesting that finite-connectivity frameworks
are required to achieve effective retrieval.

PACS numbers: 75.10.Nr, 87.18.Vf

(Some figures may appear in colour only in the online journal)
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1. Introduction

After a pioneering paper [1] followed by a long period of dormancy, recent years have
witnessed a surge of interest in statistical mechanical models of the immune system [2–10].
This description complements the more standard approaches, which tend to be phrased in the
language of dynamical systems [11–14], network theory [15–20] or multi-scale mathematical
biology [21–23].

In addition to offering an alternative, complementary, formal perspective on lymphocyte
dynamics, one of the main advantages of statistical mechanics approaches is that they reveal
collective functionality of the constituent elements of large systems to be an emergent property
of the network via which they interact. This fruitful perspective originated in theoretical
physics, but is appreciated also by pure immunologists; see e.g. [24, 25]. In particular, the
problem of parallel processing as tackled in this work, i.e. understanding the natural ability of
the immune system to deal with several pathogens at the same time, is becoming a crucial point
in modern immunology [26, 27]. The long and rich history of statistical mechanical modelling
of neural networks, which share several important features with immune networks [28, 29],
enables us to transfer quantitative technology and intuition from neural network modelling to
the study of signalling in the immune system. However, the price to pay for this progress is
having to start with a symmetric theory, i.e. an equilibrium picture.

There is indeed an intriguing and fruitful analogy (from a modelling perspective) between
neural networks, which have been modelled in statistical mechanics quite extensively, and
immune networks. Let us highlight the similarities and differences. In neural networks the
nodes represent neurons, which interact with each other directly through Hebbian synaptic
couplings. In (adaptive) immune systems, effector branches (B-clones) and coordinator
branches (helper and suppressor T-clones), interact via signalling proteins called cytokines.
The latter can represent both eliciting and suppressive signals. Neural and immune systems
are both able to learn (e.g. how to fight new antigens), memorize (e.g. previously encountered
antigens) and ‘think’ (e.g. select the best strategy to cope with pathogens). However, neural
networks are designed for serial processing: neurons perform collectively to retrieve a single
pattern at a time. This is not acceptable in the immune context. Multiple antigens will normally
be present at the same time, which requires the simultaneous recall of multiple patterns (i.e.
of multiple defense strategies). Moreover, the architectures of neural and immune networks
are very different. A model with fully connected topology, mathematically convenient but
without a basis in biological reality, is tolerable for neural networks where each neuron is
known to have a huge number of connections with others. In contrast, in immune networks,
where interactions among lymphocytes are much more specific, the underlying topology must
be carefully modelled and is expected to play a crucial operational role. From a theoretical
physics perspective, a network of interacting B- and T-cells resembles a bipartite spin-glass. It
was recently shown that such bipartite spin-glasses exhibit retrieval features which are deeply
related to their structures [30, 31], and this can be summarized as follows.

• There exists a structural equivalence between Hopfield neural networks and bipartite spin-
glasses. In particular, the two systems share the same partition function, and hence the
same thermodynamics [32, 33].

• One can either dilute directly a Hopfield network, or its underlying bipartite spin-glass.
The former does not affect pattern retrieval qualitatively [34–39], whereas the latter causes
a switch from serial to parallel processing [30, 31] (i.e. to simultaneous pattern recall).

• Simultaneous pattern recall is essential in the context of immunology, since it implies
the ability to respond to multiple antigens simultaneously. The analysis of such systems
requires a combination of techniques from statistical mechanics and graph theory.
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The last point is the focus of the present paper, which is organized as follows. In
section 2 we describe a minimal biological scenario for the immune system, based on the
analogy with neural networks. We define our model and its scaling regimes, and prepare
the stage for calculations. Section 3 gives a comprehensive analysis of the topological
properties of the network in the extremely diluted regime, which is the scaling regime assumed
throughout our paper. Section 4 is dedicated to the statistical mechanical analysis of the
system in the medium-load regime, focusing on simultaneous pattern recall of the network.
Section 5 deals with the high-load regime. Here the network is found to behave as a spin-glass,
suggesting that a higher degree of dilution should be implemented—in remarkable agreement
with immunological findings [40, 41]—and this will be the focus of future research. The final
section gives a summary of our main conclusions.

2. Statistical mechanical modelling of the adaptive immune system

2.1. The underlying biology

All mammals have an innate (broad range) immunity, managed by macrophages, neutrophils,
etc, and an adaptive immune response. The latter is highly specific for particular targets,
handled by lymphocytes, and the focus of this paper. To be concise, the following introduction
to the adaptive immune system has already been filtered by a theoretical physics perspective,
and immunological observables are expressed in‘physical’ language. We refer to the excellent
books [40, 41] for comprehensive reviews of the immune system, and to a selection of papers
[2–4, 30, 31, 42] for explanations of the link between ‘physical’ models and biological reality.
Our prime interest is in B-cells and in T-cells; in particular, among T-cells, in the subgroups
of so-called ‘helpers’ and ‘suppressors’. B-cells produce antibodies and present them on their
external surface in such a way that they are able to recognize and bind pathogenic peptides.
All B-cells that produce the same antibody belong to the same clone, and the ensemble of all
the different clones forms the immune repertoire. This repertoire is of size O(108–109) clones
in humans. The size of a clone, i.e. the number of identical B-cells, may vary strongly. A clone
at rest may contain some O(103–104) cells, but when it undergoes clonal expansion its size
may increase by several orders of magnitude, to up to O(106–107). Beyond this size the state
of the immune system would be pathological, and is referred to as lymphocytosis.

When an antigen enters the body, several antibodies (i.e. several B-cells belonging to
different clones) may be able to bind to it, making it chemically inert and biologically
inoffensive. In this case, conditional on authorization by T-helpers (mediated via cytokines,
interleukin in the example of figure 1), the binding clones undergo clonal expansion. This
means that their cells start duplicating, and releasing high quantities of soluble antibodies to
inhibit the enemy. After the antigen has been deleted, B-cells are instructed by T-suppressors,
again via cytokines, to stop producing antibodies and undergo apoptosis. In this way the clones
reduce their sizes, and order is restored. Thus, two signals are required for B-cells to start
clonal expansion: the first signal is binding to antigen, the second is a ‘consensus’ signal, in the
form of an eliciting cytokine secreted by T-helpers. This latter mechanism prevents abnormal
reactions, such as autoimmune manifestations8.

T-helpers and T-suppressors are lymphocytes that work ‘behind the scenes’, regulating
the immune response by coordinating the work of effector branches, which in this paper are
the B-cells. To accomplish this, they are able to secrete both stimulatory and suppressive
chemical signals, the cytokines [43, 44]. If within a given (small) time interval a B-clone

8 Through a phenomenon called ‘cross-linking’, a B-cell can also have the ability to bind a self-peptide, and may
accidentally start duplication and antibody release, which is a dangerous unwanted outcome.
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Figure 1. Schematic representation of T-cell dependent B-cell activation. The double interactions of
the B-cell are shown, respectively with the antigen, via its B-cell-receptor (BCR), a Y -like complex,
and with a T-helper (on its left). After linking the B-cell with the CD40 arm, and recognizing with
its T-cell-receptor (TCR) the antigen displayed by the B-cell, the T-helper secretes interleukins
(IL) which upon detection by the interleukin receptors (ILR) of the B-cell stimulate the effector
functions of the B-cell. Note that the interaction via CD40 is intrinsically symmetric.

recognizes an antigen and detects an eliciting cytokine from a T-cell, it will become activated
and start duplicating and secreting antibodies. This scenario is the so-called ‘two-signal model’
[45–48]. Conversely, when the antigen is absent and/or the cytokine signalling is suppressive,
the B-cells tuned to this antigen start the apoptosis programme, and their immuno-surveillance
is turned down to a rest state. For simplicity, we will from now on with the term ‘helper’
indicate any helper or suppressor T-cell. The focus of this study is to understand, from a
statistical mechanics perspective, the ability of helpers and suppressors to coordinate and
manage simultaneously a huge ensemble of B-clones (possibly all).

2.2. A minimal model

We consider an immune repertoire of NB different clones, labelled by μ ∈ {1, . . . , NB}. The
size of clone μ is bμ. In the absence of interactions with helpers, we take the clone sizes to
be Gaussian distributed; without loss of generality we may take the mean to be zero and unit
width, so bμ ∼ N (0, 1). A value bμ � 0 now implies that clone μ has expanded (relative to
the typical clonal size), while bμ � 0 implies inhibition. The Gaussian clone size distribution
is supported both by experiments and by theoretical arguments [4]. Similarly, we imagine
having NT helper clones, labelled by i ∈ {1, . . . , NT }. The state of helper clone i is denoted by
σi. For simplicity, helpers are assumed to be in only two possible states: secreting cytokines
(σi = +1) or quiescent (σi = −1). Clone sizes bμ and the helper states σi are dynamical
variables. We will abbreviate σ = (σ1, . . . , σNT ) ∈ {−1, 1}NT , and b = (b1, . . . , bNB ) ∈ R

NB .
The interaction between the helpers and B-clones is implemented by cytokines. These

are taken to be frozen (quenched) discrete variables. The effect of a cytokine secreted by
helper i and detected by clone μ can be nonexistent

(
ξ

μ
i = 0

)
, excitatory

(
ξ

μ
i = 1

)
, or

inhibitory
(
ξ

μ
i = −1

)
. To achieve a Hamiltonian formulation of the system, and thereby

enable equilibrium analysis, we have to impose symmetry of the cytokine interactions. So,
in addition to the B-clones being influenced by cytokine signals from helpers, the helpers
will similarly feel a signal from the B-clones. This symmetry assumption can be viewed
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Figure 2. Left: schematic representation of the bipartite spin-glass which models the interaction
between B- and T-cells through cytokines. The latter are drawn as coloured links, with red
representing stimulatory cytokines (positive couplings) and black representing inhibiting ones
(negative couplings). Note that the network is diluted. Right: the equivalent associative multi-
tasking network consisting of T-cells only, obtained by integrating out the B-cells. This network is
also diluted, with links given by the Hebbian prescription.

as a necessary first step, to be relaxed in future investigations, similar in spirit to the early
formulation of symmetric spin-glass models for neural networks [49, 50]. We are then led
to a Hamiltonian Ĥ(b, σ|ξ ) for the combined system of the following form (modulo trivial
multiplicative factors):

Ĥ(b, σ|ξ ) = − 1√
NT

NT∑
i=1

NB∑
μ=1

ξ
μ
i σibμ + 1

2
√

β

NB∑
μ=1

b2
μ. (1)

In the language of disordered systems, this is a bipartite spin-glass. We can integrate out
the variables bμ, and map our system to a model with helper–helper interactions only. The
partition function ZNT (β, ξ ), at inverse clone size noise level

√
β (which is the level consistent

with our assumption bμ ∼ N (0, 1)) follows straightforwardly, and reveals the mathematical
equivalence with an associative attractor network:

ZNT (β, ξ ) =
∑

σ

∫
db1 . . . dbNB exp[−

√
βĤ(b, σ|ξ )]

=
∑

σ

exp[−βH(σ|ξ )], (2)

in which, modulo an irrelevant additive constant,

H(σ|ξ ) = −1

2

NT∑
i j=1

σiJi jσ j, Ji j = 1

NT

NB∑
μ=1

ξ
μ
i ξ

μ
j . (3)

Thus, the system with Hamiltonian Ĥ(b, σ|ξ ), where helpers and B-clones interact through
cytokines, is thermodynamically equivalent to a Hopfield-type associative network represented
by H(σ|ξ ), in which helpers mutually interact through an effective Hebbian coupling. See
figure 2. Learning a pattern in this model then means adding a new B-clone with an associated
string of new cytokine variables.

If there are no zero values for the
{
ξ

μ
i

}
, the system characterized by (3) is well known

in artificial intelligence research. It is able to retrieve each of the NB ‘patterns’
(
ξ

μ

1 , . . . , ξ
μ
N

)
,

provided these patterns are sufficiently uncorrelated, and both the ratio α = NB/NT and the
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noise level 1/β are sufficiently small [4, 35, 51, 56]. Retrieval quality can be quantified by
introducing NB suitable order parameters, viz. mμ(σ) = N−1

T

∑
i ξ

μ
i σi, in terms of which the

new Hamiltonian (3) can be written as

H(σ|ξ ) = −NT

2

NT∑
μ=1

m2
μ(σ). (4)

If α is sufficiently small, the minimum energy configurations of the system are those where
mμ(σ) = 1 for some μ (‘pure states’), which implies that σ = (

ξ
μ

1 , . . . , ξ
μ
N

)
and pattern μ

is said to be retrieved perfectly. But what does retrieval mean in our immunological context?
If mμ(σ) = 1, all the helpers are ‘aligned’ with their coupled cytokines: those i that inhibit
clone μ (i.e. secrete ξ

μ
i = −1) will be quiescent (σi = −1), and those i that excite clone

μ (i.e. secrete ξ
μ
i = 1) will be active (σi = 1) and release the eliciting cytokine. As a result

the B-clone μ receives the strongest possible positive signal (i.e. the random environment
becomes a ‘staggered magnetic field’), hence it is forced to expand. Thus the arrangement
of helper cells leading to the retrieval of pattern μ corresponds to clone-specific excitatory
signalling upon the B-clone μ.

However, if all ξ
μ
i ∈ {−1, 1} so the bipartite network is fully connected, it can expand

only one B-clone at a time. This would be a disaster for the immune system. We need the
dilution in the bipartite B–H network that is caused by having also ξ

μ
i = 0 (i.e. no signalling

between helper i and clone μ), to enable multiple clonal expansions. The associative network
(3) now involves patterns with blank entries, and ‘pure states’ no longer work as low energy
configurations. Retrieving a pattern no longer employs all spins σi, and those corresponding
to null entries can be used to recall other patterns. This is energetically favourable since the
energy is quadratic in the magnetizations mμ(σ). Conceptually, this is only a reshaping of the
network’s recall tasks: no theoretical bound for information content is violated, and global
retrieval is still performed through NB bits. However, the perspective is shifted: the system
no longer requires a sharp resolution in information exchange between a helper clone and a
B-clone9. It suffices that a B-clone receives an attack signal, which could be encoded even
by a single bit. In a diluted bipartite B–H system the associative capabilities of the helper
network are distributed, in order to simultaneously manage the whole ensemble of B-cells.
The analysis of these immunologically most relevant pattern-diluted versions of associative
networks is still at an early stage. So far only the low-storage case NB ∼ log NT has been
solved [30, 31]. In this paper we analyse the extreme dilution regime for the B–H system, i.e.
NB ∼ Nδ

T with 0 < δ � 1.

3. Topological properties of the emergent networks

3.1. Definitions and simple characteristics

We start with the definition of the bipartite graph, which contains two sets of nodes (or
vertices): the set VB representing B-cells (labelled by μ) and the set VT representing T-cells
(labelled by i), of cardinality NB and NT , respectively. Nodes belonging to different sets can be
pairwise connected via links, which are identically and independently drawn with probability
p, in such a way that a random bipartite network B is built. We associate with each link a
weight, which can be either +1 or −1; these weights are quenched and drawn randomly from
a uniform distribution. As a result, the state of each link connecting the μth B-clone and the

9 In fact, the high-resolution analysis is performed in the antigenic recognition on the B-cell surface, which is based
on a sharp key-and-lock mechanism [2].
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ith T-clone can be denoted by a random variable ξ
μ
i , distributed independently according to

P
(
ξ

μ
i

) = p

2

(
δξ

μ
i ,1 + δξ

μ
i ,−1

)+ (1 − p)δξ
μ
i ,0. (5)

We choose p = c/Nγ

T , with γ ∈ [0,∞) subject to p � 1, and c = O(N0
T ). Upon tuning

γ , B displays different topologies, ranging from fully connected (all NT × NB possible links
are present, for γ → 0) to fully disconnected (for γ → ∞). We have shown in the previous
section how a process on this bipartite graph can be mapped to a thermodynamically equivalent
process on a new graph, built only of the NT nodes in VT , occupied by spins σi that interact
pairwise through a coupling matrix with (correlated) entries

Ji j =
NB∑

μ=1

ξ
μ
i ξ

μ
j . (6)

The structure of the marginalized system is represented by a weighted monopartite graph G,
with weights (6), whose topology is controlled by γ . To illustrate this, let us consider the weight
distribution P(J|NB, NT , γ , c), which can be interpreted as the probability distribution for the
end-to-end distance of a one-dimensional random walk. This walk has a waiting probability
pw = 1 − p, and probabilities of moving left (pl) or right (pr) equal to pl = pr = p/2, i.e.

pw = 1 − (
c
/

Nγ

T

)2
, pl = pr = 1

2

(
c
/

Nγ

T

)2
. (7)

Therefore, we can write

P(J|NB, NT , γ , c) =
L−J∑
S=0

′ NB!

S!
(NB−S−J

2

)
!
(NB−S+J

2

)
!

pS
w p(NB−S+J)/2

r p(NB−S−J)/2
l , (8)

where the prime indicates that the sum runs only over values of S with the same parity as
NB ± J. The result (8) can easily be generalized to the case of biased weight distributions [52],
which would correspond to non-isotropic random walks. The first two moments of (8) are, as
confirmed numerically in figure 3:

〈J〉 = 0, 〈J2〉 = (
c
/

Nγ

T

)2
NB. (9)

We now fix a scaling law for NB, namely NB = αNδ
T , with α > 0. This includes the high-load

regime for δ = 1, as well as the medium-load regime for δ ∈ (0, 1). The low-storage regime
δ = 0 has already been treated elsewhere [30, 31]. We then find

〈J2〉 = αc2/N2γ−δ

T . (10)

The probability of having J �= 0 scales like Nδ−2γ

T for 2γ > δ, while for 2γ < δ it approaches
1 in the limit NT → ∞. One can recover the same result via a simple approximation, which
is valid in the case pr � 1:

P(J = 0|NB, NT , γ , c) ≈ pNB
w = [

1 − (
c
/

Nγ

T

)2]NB
, (11)

see also section A.1 in the appendix for a more rigorous derivation of P(J = 0|NB, NT , γ , c).
Given the assumed scaling of NB, we get P(J �= 0|NB(α, δ, NT ), NT , γ , c) ≈ 1 − e−αc2NT

δ−2γ

,
which translates into

P(J �= 0|NB(α, δ, NT ), NT , γ , c) ≈

⎧⎪⎨
⎪⎩

αc2NT
δ−2γ if 2γ > δ

1 − e−αc2
if 2γ = δ

1 if 2γ < δ.

(12)
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Figure 3. Statistical properties of individual links in randomly generated instances of the graph G
at different sizes NT , with NB = αNδ

T . We measured the mean coupling 〈J〉 (left), the mean squared
coupling 〈J2〉 (middle) and the probability P(J = 0) of a zero link (right), for different values of
γ . The parameters δ = 1 and α = 0.5 are kept fixed. Solid lines: predictions given in (9) and (12).
Markers: simulation data.

This quantity can be interpreted as the average link probability in G. The average degree z̄ over
the whole set of nodes10 can then be written as

z̄ = NT P(J �= 0). (13)

Thus, if we adopt a mean-field approach based only on the estimates (12), (13), we find that
G can display the following topologies, expressed in terms of the average degree z of G (the
average number of links per node).

0 < γ < 1 γ = 1

δ < 2γ − 1 Fully disconnected, z → 0 Fully disconnected, z → 0
δ = 2γ − 1 Finitely connected, z = O(1) Finitely connected, z = O(1)
2γ − 1 < δ < 2γ Extremely diluted, z → ∞ but z/NT → 0 –
δ = 2γ Finitely diluted, z = O(NT ) –
δ > 2γ Fully connected, z = NT –

The missing entries in the table correspond to forbidden values δ /∈ (0, 1]. The various
cases are also summarized in the left panel of figure 4. This picture is confirmed by numerical
simulations. The right panels of figure 4 give a finite-size scaling analysis for the average degree
z̄ and its fluctuations z2 − z̄2, measured in realizations of G for several choices of parameters.
We also show corresponding data for Erdös–Rényi graphs, where all links are independently
drawn with probability q, for comparison (here z̄ = qNT and z̄2 − z̄2 = NT q(1 − q)). We find
that (i) in the fully disconnected regime of the phase diagram, z̄ decays to zero exponentially
as a function of NT , (ii) in the extremely diluted regime, z̄ scales with NT according to a power
law, (iii) in the finitely diluted regime z̄ is proportional to NT , and (iv) in the fully connected

10 The degree or coordination number zi of node i is the number of its nearest-neighbours, i.e. the number of links
stemming from the node itself. Thus, the average degree z̄ = ∑

i∈VT
zi/NT measures the density of links present in

the graph.

8
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Figure 4. Left: qualitative phase diagram describing the different topological regimes of G,
according to the mean-field analysis in section 3. Right panels: finite-size scaling for the average
degree z̄ (upper) and fluctuations z2 − z̄2 (lower), measured on realizations ofG for different choices
of parameters γ and δ (see legend). The parameters c = 1 and α = 0.1 are kept fixed. The markers
correspond to numerical data, and the lines connecting the markers are guides to the eye. The
cases being compared include fully disconnected (FD), extremely diluted (ED), finitely diluted
(FD) and fully connected (FC) regimes, and they are shown together with data on Erdös–Rènyi
graphs GER with link probability q = 1 − eαc2

(dashed lines, see equation (12)). For ER graphs
one expects z̄/NT to be constant, and equal to q, while the normalized fluctuations are expected
to be (1 − z̄/NT )z̄/NT . Different points pertain to different graph sizes, but with the same link
probability q; they are found to overlap regardless of their size (•). For G, the behaviour of z̄ is
consistent with mean-field expectations, while connectivity fluctuations are underestimated by the
mean-field approach.

regime z̄ saturates to NT . There is thus full agreement with the predictions of the mean-field
approach. The fluctuations are slightly larger that those of a purely randomly drawn network,
which suggests that G exhibits a certain degree of inhomogeneity. This will be investigated
next.

It is important to stress that, as the system parameters γ and δ are tuned, the connectivity
of the resulting network G can vary extensively and therefore, in order for the Hamiltonian (4)
to scale linearly with the system size NT , the prefactor 1/NT of the Hopfield model embedded
in complete graphs, is not generally appropriate. One should normalize H(σ|ξ ) according to
the expected connectivity of the graph.

3.2. Component size distribution

As γ is increased, both B and G become more and more diluted, eventually under-percolating.
The topology analysis can be carried out more rigorously for the (bipartite) graph B, since its
link probability p = c/Nγ

T is constant and identical for all (i, μ). We can apply the generating
function formalism developed in [53, 54] to show that the size of the giant component
(⊆ VT ,VB) diverges when

p2 = 1/NBNT . (14)

9
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Figure 5. Left: distribution of component sizes of the graphG, for δ = c = 1, α = 0.1 and different
values of γ . Symbols represent simulation data; the solid line represents the analytical estimate for
the underpercolated case (�). Right: degree distributions obtained for different values of δ and γ ,
with α = 0.1 and c = 1 kept fixed. The semi-logarithmic scale highlights the exponential decay at
large values of z.

Hence, upon setting NB = αNδ
T , the percolation threshold for the bipartite graph B is defined

by

N2γ−1−δ

T = c2α = O
(
N0

T

) ⇒ γ = (δ + 1)/2, (15)

which is consistent with the results of section 3; we refer to section A.2 in the appendix for
full details. Below the percolation threshold the generating function formalism also allows us
to get the distribution PB(s|NT , NB, c, γ ) for the size s of the small components occurring in
B. A (connected) component of an undirected graph is an isolated subgraph in which any two
vertices are connected to each other by paths; the size of the component is simply the number
of nodes belonging to the component itself. We prove in section A.2 in the appendix that just
below the percolation threshold, PB(s|NB, NT , c, γ ) scales exponentially with s. One finds that
this is true also for the distribution PG (s|NB, NT , c, γ ) of graph G (see figure 5, left panel).

Interestingly, the small components of G that emerge around and below the percolation
threshold play a central role in the network’s retrieval performance. To see this, one may
consider the extreme case where the bipartite graph B consists of trimers only. Here each
node μ ∈ VB is connected to two nodes i1, i2 ∈ VT , that is

∣∣ξμ
i1

∣∣ = ∣∣ξμ
i2

∣∣ = 1 and
ξν

i1
= ξν

i2
= 0,∀ ν �= μ. The associated graph G is then made up of dimers (i1, i2) only,

and Ji j ∈ {−1, 0, 1} for all (i, j). The energetically favourable helper cell configuration σ is
now the one where

∑
i ξ

μ
i σi = ±2, for any μ. This implies that retrieval of all patterns is

accomplished (under proper normalization). In the opposite extreme case,B is fully connected,
and the helper cell system becomes a Hopfield network where parallel retrieval is not realized.
In general, around and below the percolation threshold, the matrix ξ turns out to be partitioned,
which implies that also the coupling matrix J is partitioned, and each block of J corresponds
to a separate component of the overall graph G. For instance, looking at the bipartite graph
B, a star-like module with node μ ∈ VB at its centre and the nodes i1, i2, . . . , in ∈ VT as
leaves11 can occur when the leaves share a unique non-null μth entry in their patterns, that
is
∣∣ξμ

i1

∣∣ = ∣∣ξμ
i2

∣∣ = · · · = ∣∣ξμ
in

∣∣ = 1. For the graph G this module corresponds to a complete
sub-graph Kn of n � NT nodes. In this case the retrieval of pattern μ is trivially achieved.
In fact, a complete sub-graph Kn in G can originate from more general arrangements in B:

11 The opposite case of a star-like module with the centre belonging to VT is unlikely, given that NT > NB.

10



J. Phys. A: Math. Theor. 46 (2013) 335101 E Agliari et al

each leaf i can display several other null entries beyond μ, but these are not shared, that is
ξν

i ξν
j = 0 ∀ j ∈ VT , ν �= μ ∈ VB. For instance, all stars with centres belonging to VB and

with leaves of length 1 or 2 fall into this extended class. Again, the retrieval of pattern μ and
possibly of further patterns ν is achieved. However, the mutual signs of magnetizations are no
longer arbitrary, as the terms mμξ

μ
i = mνξ

ν
i are subject to constraints.

We can further generalize the topology of components in G compatible with parallel
retrieval, by considering cliques (i.e. subsets of nodes such that every two nodes in the subset
are connected by an edge), which are joined together by one link: each clique consists of nodes
∈ VT that share the same non-null entry, so that the unique link between two cliques is due to
a node displaying at least two non-null entries. This kind of structure exhibits a high degree
of modularity; each clique is a module and corresponds to a different pattern. As for retrieval,
this arrangement works fine as there is no interference between the signal on each node in
VT . For this arrangement to occur a sufficient condition is that B is devoid of squares, so that
two nodes ∈ VT do not share more than one neighbour. This implies that, among the n nodes
connected to j ∈ VB, the probability that any number k > 2 of these display another common
neighbour is vanishing:

lim
NT →∞

n∑
k>2

(
n
k

)
pk(1 − p)n−k = lim

NT →∞

{
1 −

(
1 − c

Nγ

)n
− cn

Nγ

(
1 − c

Nγ

)n−1 }
= 0. (16)

Since n ∼ Nδ−γ

T , we obtain the condition γ � δ. Examples of numerically generated graphs
G, for different choices of parameters, are shown in figure 6.

3.3. Clustering properties

We saw that in the operationally most important parameter regime the graph G is built of small
cliques which are poorly (if at all) connected to each other. This means that non-isolated nodes
are highly clustered and the graph will have a high degree of modularity, i.e. dense connections
between nodes within the same ‘module’, but sparse connections between nodes in different
‘modules’. The clustering coefficient Ci of a node i measures how close its zi neighbours are
to being a clique. It is defined as

Ci = 2Ei/zi(zi − 1), (17)

where Ei is the number of links directly connecting nodes pairs in Vi, while 1
2 zi(zi − 1) is

the total number of non-ordered node pairs in Vi. Hence Ci ∈ [0, 1]. The average clustering
coefficient C̄ = N−1

B,T

∑
i∈VB,T

Ci measures the extent to which nodes in a graph tend to cluster
together. It is easy to see that for a bipartite graph, by construction, Ci = 0 for any node, while
for homogeneous graphs the local clustering coefficients are narrowly distributed around C̄.
For instance, for the Erdös–Rény random graph, where links are identically and independently
drawn with probability q, the local coefficients are peaked around q. As for our graphs G, due
to their intrinsic inhomogeneity, the global measure C̄ would give only limited information.
In contrast, the distribution P(C|NB, NT , γ , c) of local clustering coefficients informs us about
the existence and extent of cliques or ‘bulk’ nodes, which would be markers of low and high
recall interference, respectively. Indeed, as shown in figure 7, in the highly diluted regime most
of the nodes in G are either highly clustered, i.e. exhibiting Ci = 1, or isolated, with Ci = 0,
whereas the coefficients of the remaining nodes are distributed around intermediate values
with average decreasing with γ , as expected. In particular, when both δ and γ are relatively
large, P(C|NB, NT , γ , c) approaches a bimodal distribution with peaks at C = 0 and C = 1,
whereas when δ is sufficiently larger than γ , there exists a fraction of nodes with intermediate
clustering which make up a bulk. Therefore, although the density of links is rather small, the

11
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δ = 0.8, γ = 0.8 δ = 0.9, γ = 0.9

δ = 1.0, γ = 0.8 δ = 1.0, γ = 0.9

Figure 6. Plots of numerically generated graphs G for NT = 104 and α = 0.1, and different
combinations of (δ, γ ). All isolated nodes have been omitted from the plots. The chosen parameter
combinations all give graphs that are just below the percolation threshold δ = 2γ − 1. However,
the two graphs at the top satisfy the further condition δ � γ that marks the ability of simultaneous
pattern retrieval (via weakly connected small cliques). In the bottom graphs this latter condition
is violated, so these would behave more like conventional Hopfield networks (here simultaneous
retrieval of multiple patterns is not possible).

average clustering coefficient is very high, and this is due to the fragmentation of the graph
into many small cliques.

To measure the extent of modular structures we constructed the topological overlap matrix
T, whose entry Ti j = ∑

k �=i, j cikc jk/zi ∈ [0, 1] returns the normalized number of neighbours
that i and j share. The related patterns for several choices of parameters are shown in the plots
of figure 8, and compared to those of Erdös–Rènyi graphs GER. For Erdös–Rènyi graphs T
displays a homogeneous pattern, that is very different from the highly clustered cases emerging
from G. In particular, for the highly diluted cases considered here, we find that smaller values
of γ induce a smaller number of modules, that are individually increasing in size.

12
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Figure 7. Histograms for P̃(C|NB, NT , γ , c), normalized such that P̃(C|NB, NT , γ , c) = 1 for
those values of C that have the lowest occurrence frequency. This normalization allows to highlight
the intermediate region, where the frequencies are much lower than those pertaining to C = 0 and
C = 1. The results shown here refer to graphs with NT = 104 nodes, α = 0.1 and c = 1, while δ

and γ are varied.

4. Medium storage regime in extremely diluted connectivity: retrieval region

We now turn to the statistical mechanics analysis, and consider the immune network model
composed of NT T-clones (σi, i = 1, . . . , NT ) and NB B-clones (bμ, μ = 1, . . . , NB), such that
the number ratio scales as

lim
NT →∞

NB/Nδ
T = α, δ ∈ (0, 1), α > 0. (18)

The effective interactions in the reduced network with helper cells only are described by the
Hamiltonian

H(σ|ξ ) = − 1

2Nτ
T

NT∑
i, j=1

NB∑
μ=1

ξ
μ
i ξ

μ
j σiσ j, (19)

where the cytokine components ξ
μ
i ∈ {0,±1} are quenched random variables, independently

and identically distributed according to

P
(
ξ

μ
i = 1

) = P
(
ξ

μ
i = −1

) = c/2Nγ

T , P
(
ξ

μ
i = 0

) = 1 − c/Nγ

T (20)

with γ ∈ [0, 1). The parameter τ must be chosen such that H(σ|ξ ) scales linearly with NT ,
and must therefore depend on γ and δ. Heuristically, since the number of non-zero entries
Nnz in a generic pattern

(
ξ

μ

1 , . . . , ξ
μ
NT

)
is O

(
N1−γ

T

)
, we expect that the network can retrieve

a number of patterns of order O(NT /Nnz) = O
(
Nγ

T

)
. We therefore expect to see changes in

τ only when crossing the region in the (γ , δ) plane where pattern sparseness prevails over
storage load (i.e. δ < γ , where the system can recall all patterns), to the opposite situation,

13
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GER

Figure 8. Overlap matrix T with entries Ti j = ∑
k �=i, j cikc jk/zi. The nodes are ordered such that

nodes with large overlaps are adjacent, and the most significant part of T is around the diagonal.
Note: Tii = 1 for all i, by construction. Darker colours correspond to larger entries, and any
extended coloured zone denotes a module, i.e. a set of nodes that are highly clustered and possibly
not connected with the remaining nodes. These plots refer to numerically generated graphs with
NT = 104 nodes, α = 0.1 and c = 1, while δ and γ are varied. To avoid cluttering of the figures,
only a fraction 200 × 200 of each pattern is shown. A similar fraction of the overlap matrix for an
extremely diluted Erdös–Rènyi graph made of 104 nodes is also depicted for comparison (inset).
In this case there is no evidence of modularity; T displays a homogeneous pattern.

where the load is too high and frustration by multiple inputs on the same entry drives the
network to saturation (i.e. δ > γ ). To validate this scenario, which is consistent with our
previous topological investigation, we carry out a statistical mechanical analysis, based on
computing the free energy

f (β) = − lim
NT →∞

1

βNT
〈log ZNT (β, ξ )〉ξ . (21)

14
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4.1. Free energy computation and physical meaning of the parameters

If the number of patterns is sufficiently small compared to NT , i.e. δ < 1, we do not need the
replica method; we can simply apply the steepest descent technique using the NB � NT / log NT

Mattis magnetizations as order parameters:

f (β) = − 1

β
log 2 − lim

NT →∞
1

βNT
log

∫
dm exp

(
−1

2
m2 + NT

〈
log cosh

(√
β/Nτ

T ξ · m
)〉

ξ

)
(22)

with m = (m1, . . . , mNB ), ξ = (ξ 1, . . . , ξNB ) and ξ · m = ∑
μ ξμmμ. Rescaling of the order

parameters via mμ → mμ

√
βcNτ/2+θ

T then gives

f (β) = − 1

β
log 2 − lim

NT →∞
1

βNT
log

∫
dm

× exp

(
NT

(
−βc2

2
Nτ+2θ−1

T m2 + 〈
log cosh

(
βcNθ

T ξ · m
)〉

ξ

))
. (23)

Hence, provided the limit exists, we may write via steepest descent integration:

f (β) = − 1

β
log 2 − 1

β
lim

NT →∞
extrm

[〈
log cosh

(
βcNθ

T ξ · m
)〉

ξ
− βc2

2
Nτ+2θ−1

T m2

]
. (24)

Differentiation with respect to the mμ gives the self-consistent equations for the extremum:

mμ = N1−τ−θ
T

c

〈
ξμ tanh

(
βcNθ

T ξ · m
)〉

ξ
. (25)

With the additional new parameter θ , we now have two parameters with which to control
separately two types of normalization: the normalization of the Hamiltonian, via τ , and the
normalization of the order parameters, controlled by θ . To carry out this task properly, we
need to understand the physical meaning of the order parameters. This is done in the usual
way, by adding suitable external fields to the Hamiltonian:

H → H −
NB∑

μ=1

λμ

NT∑
i=1

ξ
μ
i σi. (26)

Now, with 〈g(σ)〉σ = Z−1
NT

(β, ξ )
∑

σ e−βH(σ|ξ )g(σ) and the corresponding new free energy
f (β,λ),

lim
NT →∞

1

NT

〈
NT∑
i=1

ξ
μ
i σi

〉
σ

= −∂ f (β,λ)

∂λμ

∣∣∣
λ=0

, (27)

with the short-hand λ = (λ1 . . . , λNB ). The new free energy is then found to be

f (β,λ) = − 1

β
log 2 − 1

β
lim

NT →∞
extrm

[〈
log cosh

(
βξ · [cNθ

T m + λ
])〉

ξ
− βc2

2
Nτ+2θ−1

T m2

]
.

(28)

Upon differentiation with respect to λμ we find (27) taking the form

lim
NT →∞

1

NT

〈
NT∑
i=1

ξ
μ
i σi

〉
σ

= lim
NT →∞

〈
ξμ tanh

(
βcNθ

T ξ · m
)〉

ξ
. (29)
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We can then use expression (25) for mμ to obtain the physical meaning of our order
parameters:

mμ = lim
NT →∞

N1−(τ+θ )
T

c

〈
ξμ tanh

(
βcNθ

T ξ · m
)〉

ξ

= lim
NT →∞

〈
1

cNτ+θ
T

NT∑
i=1

ξ
μ
i σi

〉
σ

. (30)

Let us summarize the status of the various remaining control parameters in the theory, in the
interest of transparency. Our model has three given external parameters:

• γ ∈ [0, 1): this quantifies the dilution of stored patterns, via P(ξ
μ
i �= 0) = cN−γ

T ,
• δ ∈ (0, 1) and α > 0: these determine the number of stored patterns, via

limNT →∞ NB/Nδ
T = α.

It also has two ‘internal’ parameters, which must be set in such a way for the statistical
mechanical calculation to be self-consistent, i.e. such that various quantities scale in the
physically correct way for NT → ∞:

• τ � 0: this must ensure that the energy H = −〈 1
2 N−τ

T

∑NB
μ=1

(∑NT
i=1 ξ

μ
i σi

)2〉
σ

scales as
O(NT ),

• θ � 0: this must ensure that the order parameter mμ = 〈(
1
/

cNτ+θ
T

)∑
i ξ

μ
i σi

〉
σ

are of
order O(1).

4.2. Setting of internal scaling parameters

To find the appropriate values for the internal scaling parameters θ and τ we return to the order
parameter equation (25) and carry out the average over ξμ. This gives

mμ = N1−τ−θ
T

c

〈
tanh

(
βcNθ

T

(
(ξμ)2mμ + ξμ

NB∑
ν �=μ

ξνmν

))〉
ξ

, (31)

= N1−τ−θ−γ

T

〈
tanh

(
βcNθ

T

(
mμ +

NB∑
ν �=μ

ξνmν

))〉
ξ

. (32)

Having non-vanishing mμ in the limit NT → ∞ clearly demands θ + τ � 1 − γ . If θ > 0 the
mμ will become independent of β, which means that any phase transitions occur ar zero or
infinite noise levels, i.e. we would not have defined the scaling of our Hamiltonian correctly.
Similarly, if θ + τ < 1 − γ the effective local fields acting upon the σi (viz. the arguments of
the hyperbolic tangent) and therefore also the expectation values 〈σi〉σ , would be vanishingly
weak. We therefore conclude that a natural ansatz for the free exponents is:

(τ, θ ) = (1 − γ , 0). (33)

This simplifies the order parameter equation to

mμ =
〈

tanh

(
βc

(
mμ +

NB∑
ν �=μ

ξνmν

))〉
ξ

. (34)

Let us analyse this equation further. Since P
(
ξ

μ
i �= 0

) ∼ N−γ

T with γ > 0, we can for NT → ∞
replace in (31) the sum over ν �= μ with the sum over all μ; the difference is negligible in
the thermodynamic limit. In this way it becomes clear that for each solution of (31) we have
mμ ∈ {−m, 0, m}. Using the invariance of the free energy under mμ → −mμ, we can from
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now on focus on solutions with non-negative magnetizations. If we denote with K � NB the
number of μ with mμ �= 0, then the value of m > 0 is to be solved from

m =
〈

tanh

(
βcm

(
1 +

K∑
ν=1

ξν

))〉
ξ

. (35)

It is not a priori obvious how the number K of non-zero magnetizations (i.e. the number of
simultaneously triggered clones) can or will scale with NT . We therefore set K = φNδ′

T , in
which the condition K � NB then places the following conditions on φ and δ′: δ′ ∈ [0, δ], and
φ ∈ [0,∞) if δ′ < δ or φ ∈ [0, α] if δ′ = δ. We expect that if K is too large, equation (35)
will only have the trivial solution for NT → ∞, so there will be further conditions on φ and
δ′ for the system to operate properly. If δ′ > γ , the noise due to other condensed patterns (i.e.
the sum over ν) becomes too high, and m can only be zero:

E

[(
K∑

μ=1

ξμ

)2]
=

K∑
μ=1

E[ξμ2] = φc
Nδ′

T

Nγ

T

→ ∞. (36)

On the other hand, if δ′ < γ this noise becomes negligible, and (35) reduces to the Curie–
Weiss equation, whose solution is just the Mattis magnetization [35, 51, 55]. It follows that
the critical case is the one where when δ′ = γ . Here we have for NT → ∞ the following
equation for m:

m =
∑
k∈Z

π(k|φ) tanh(βcm(1 + k)) (37)

with the following discrete noise distribution, which obeys π(−k|φ) = π(k|φ):

π(k|φ) = 〈
δk,

∑∞
μ=1 ξμ

〉
ξ
. (38)

4.3. Computation of the noise distribution π (k)

Given its symmetry, we only need to calculate π(k|φ) for k � 0:

π(k|φ) = lim
K→∞

∫ π

−π

dψ

2π
e−iψk〈eiψξ 〉K

ξ = lim
K→∞

∫ π

−π

dψ

2π
e−iψk

(
1 + cφ

K
(cos ψ − 1)

)K

=
∫ π

−π

dψ

2π
exp (−iψk + φc(cos ψ − 1))

= e−φc
∫ π

−π

dψ

2π
e−iψk

∑
n�0

(φc)n

2nn!
(eiψ + e−iψ )n

= e−φc
∫ π

−π

dψ

2π
e−iψk

∑
n�0

(φc)n

2nn!

∑
l�n

n!

l!(n − l)!
e−iψ(k−n+2l)

= e−φc
∑
n�0

∑
l�n

(
φc

2

)n 1

l!(n − l)!
δn,k+2l

= e−φc
∑
l�0

(
φc

2

)k+2l 1

l!(k + l)!
= e−φcIk(φc) (39)

where Ik(x) is the kth modified Bessel function of the first kind. These modified Bessel
functions obey

2
k

x
Ik(x) = Ik−1(x) − Ik+1(x),

2
d

dx
Ik(x) = Ik−1(x) + Ik+1(x).

(40)
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The first identity leads to a useful recursive equation for π(k|φ), and the second identity
simplifies our calculation of derivatives of π(k|φ) with respect to φ, respectively:

π(k − 1|φ) − π(k + 1|φ) − 2π(k|φ)
k

φc
= 0, (41)

d

dφ
π(k|φ) = c

(
1

2
π(k − 1|φ) + 1

2
π(k + 1|φ) − π(k|φ)

)
. (42)

4.4. Retrieval in the zero noise limit

To emphasize the dependence of the recall overlap on φ, viz. the relative storage load, we will
from now on write m → mφ . With the abbreviation 〈g(k)〉k = ∑

k π(k|φ)g(k), and using (41)
and the symmetry of π(k|φ), we can transfer our equation (37) into a more convenient form:

mφ = 1

2
〈[tanh(βcmφ(1 + k)) + tanh(βcmφ(1 − k))]〉k

= 1

2

∑
k∈Z

[π(k − 1|φ) − π(k + 1|φ)] tanh(βcmφk) = 1

φc
〈k tanh(βcmφk)〉k. (43)

In the zero noise limit β → ∞, where tanh(βy) → sgn(y), this reduces to mφ = 1
φc 〈|k|〉k, or,

equivalently,

mφ = lim
β→∞

〈tanh(βcm(1 + k))〉k = 〈sign(1 + k)〉k

=
∑

k>−1

π(k) −
∑
k<−1

π(k) = π(0|φ) + π(1|φ). (44)

Hence we always have a non-zero rescaled magnetization, for any relative storage load φ. To
determine for which value of φ this state is most stable, we have to insert this solution into the
zero temperature formula for the free energy and find the minimum with respect to φ. Here,
with mμ = mφ for all μ � K = φNγ

T and mμ = 0 for μ > K, the free energy (24) takes
asymptotically the form

f (β) = 1

2
c2φm2

φ − 1

β
〈log cosh(βcmφk)〉k − 1

β
log 2. (45)

So for β → ∞, and using our above identity 〈|k|〉k = φcm, we find that the energy density is

u(φ) = lim
β→∞

f (β) = 1

2
c2φm2

φ − cm〈|k|〉k = −1

2
c2φm2

φ (46)

= −1

2
c2φ

(
π(0|φ) + π(1|φ)

)2
. (47)

To see how this depends on φ we may use (42), and find

1

c2

d

dφ
u(φ) = − 1

2
m2

φ − φmφ

d

dφ
(π(0|φ) + π(1|φ))

= − 1

2
m2

φ − φcmφ

(
−1

2
π(0|φ) + 1

2
π(2|φ)

)
= −1

2
m2

φ + mφπ(1|φ)

= − 1

2
mφ(mφ − 2π(1|φ)) = −1

2
mφ(π(0|φ) − π(1|φ)) < 0. (48)
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The energy density u(φ) is apparently a decreasing function of φ, which reaches its minimum
when the number of condensed patterns is maximal, at φ = α. However, the amplitude of each
recalled pattern will also decrease for larger values of φ:

d

dφ
mφ = d

dφ
π(0|φ) + d

dφ
π(1|φ) = −π(1|φ)/φ < 0. (49)

Hence mφ starts at m0 = 1, due to π(k|0) = δk,0, and then decays monotonically with φ.
Moreover, it follows from 〈|k|〉2

k � 〈k2〉k = 〈∑μ�K (ξμ)2〉ξ = φc that

mφ = 〈|k|〉k/φc � 1/
√

φc, u(φ) = − 1
2 c2φm2

φ � − 1
2 c. (50)

If we increase the number of condensed patterns, the corresponding magnetizations decrease
in such a way that the energy density remains finite.

4.5. Retrieval at non-zero noise levels

To find the critical noise level (if any) where pattern recall sets in, we return to equation (25),
which for (τ, θ ) = (1 − γ , 0) and written in vector notation becomes

m = Nγ

T

c
〈ξ tanh(βcξ · m)〉ξ . (51)

We take the inner product on both sides with m and obtain a simple inequality:

m2 = Nγ

T

c
〈(ξ · m) tanh(βcξ · m)〉ξ

= βNγ

T

〈
(ξ · m)2

∫ 1

0
dx[1 − tanh2(βcxξ · m)]

〉
ξ

� βNγ

T 〈(ξ · m)2〉ξ = βcm2. (52)

Since m2(1 − βc) � 0, we are sure that m = 0 for βc � 1. At βc = 1 nontrivial solutions
of the previously studied symmetric type are found to bifurcate continuously from the trivial
solution. This can be seen by expanding the amplitude equation (43) for small m:

mφ = 1

φc
〈k tanh(βcmφk)〉k

= βcmφ − 1

3
β3c2m3

φ〈k4〉k/φ + O
(
m4

φ

)
. (53)

This shows that the symmetric solutions indeed bifurcate via a second-order transition, at the
φ-independent critical temperature Tc = c, with amplitude mφ ∝ (βc − 1)

1
2 as βc → 1. All

the above predictions are confirmed by the results of numerical simulations, and by solving
the order parameter equations and calculating the free energy numerically, see figure 9.

We can now summarize the phase diagram in terms of the scaling exponents (γ , δ). The
number of stored patterns is NB = αNδ

T , of which K = φNδ′
T can be recalled simultaneously,

with δ′ = min(γ , δ):

δ < γ : φmax = α, all stored patterns recalled simultaneously, with Curie–Weiss overlap
m
δ = γ : φmax = α, all stored patterns recalled simultaneously, with reduced but finite m
δ > γ : φmax = ∞, at most φNγ

T patterns recalled simultaneously, with φ → ∞ and
mφ → 0.
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Figure 9. Left: energy density u versus the relative fraction of retrieved patterns, in terms of φ̂ = cφ
and T̂ = T/c = 1/βc. The minimum energy density is reached when φ̂ is maximal, i.e. when all
stored patterns are simultaneously retrieved, but with decreasing amplitude for each. Right: critical
noise levels for different values of φ̂, confirming that T̂ −1

c = β̂c = 1, independently of φ̂. In both
the panels, solid lines represent our theoretical predictions, while symbols represent data from
numerical simulations on systems with NT = 5 × 104, γ = δ = 0.45, c = 2 and with standard
sequential Glauber dynamics.

5. High storage regime in extremely diluted connectivity: absence of retrieval

Let us finally consider the same network, composed of NT T-clones (σi, i = 1, . . . , NT ) and
NB B-clones (bμ, μ = 1, . . . , NB), but now at high storage load:

lim
NT →∞

NB/NT = α, α > 0. (54)

The effective interaction between T-cells is still described by the Hamiltonian (19), and the
cytokine variables ξ

μ
i ∈ {0,±1} are generated from (20), but now we focus on the extremely

diluted regime for the B–T network, i.e. γ < 1. Again we must choose τ such that the
Hamiltonian will be of order NT . Heuristically, since the number of non-zero entries Nnz in a
typical pattern (ξ

μ

1 , . . . , ξ
μ
NT

) scales as O(N1−γ

T ), the number of patterns with non-overlapping
entries (i.e. those we expect to recall) will scale as O(NT /Nnz) = O(Nγ

T ). The contribution
from K = O(Nγ

T ) such condensed patterns to the Hamiltonian would then scale as

HC ∼ N−τ
T

K∑
μ=1

(
NT∑
i=1

ξ
μ
i σi

)2

∼ N−τ
T KN 2

nz ∼ N−τ
T Nγ

T N2(1−γ )

T ∼ N2−γ−τ

T . (55)
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The non-condensed patterns, of which there are Nnc = NB − Nc ∼ NB = O(NT ), are expected
to contribute

HNC ∼ N−τ
T

Nnc∑
μ=1

(
NT∑
i=1

ξ
μ
i σi

)2

∼ N−τ
T Nnc

√
Nnz

2 ∼ N−τ
T NT N1−γ

T ∼ N2−γ−τ

T . (56)

Thus, we expect to have an extensive Hamiltonian for τ = 1 − γ .

5.1. Replica-symmetric theory

In the scaling regime NB = αNT we can no longer use saddle-point arguments directly in
the calculation of the free energy. Instead we calculate the free energy for typical cytokine
realizations, i.e. the average

f = − lim
NT →∞

1

βNT
log ZNT (β, ξ ). (57)

Here · · · indicates averaging over all
{
ξ

μ
i

}
, according to the measure (20). The average over

cytokine variables is done with the replica method, for K = O
(
Nγ

T

)
; full details are given

in appendix B. We solve the model at the replica symmetric (RS) level, which implies the
assumption that the system has at most a finite number of ergodic sectors for NT → ∞, giving

β f RS = lim
NT →∞

extrm,q,rβ f̂RS(m, q, r), (58)

β f̂RS(m, q, r) = − log 2 + 1

2
αr(βc)2(1 − q)

+ βc2

2Nγ

T

m2 − α

2

(
βcq

1 − βc(1 − q)
− log[1 − βc(1 − q)]

)

−
〈∫

Dz log cosh[βc(m · ξ + z
√

αr)]

〉
ξ

(59)

in which m = (m1, . . . , mK ) denotes the vector of K = φNγ

T condensed (i.e. potentially
recalled) patterns, ξ = (ξ 1, . . . , ξK ), and Dz = (2π)−1/2e−z2/2 dz. As in the analysis of
standard Hopfield networks, this involves the Edward–Anderson spin-glass order parameter q
[35, 51] and the Amit–Gutfreund–Sompolinsky uncondensed-noise order parameter r [35, 51].
We obtain self-consistent equations for the remaining RS order parameters (m, q, r) simply
by extremizing f̂RS(m, q, r), which leads to

mμ = Nγ

T

c

〈
ξμ

∫
Dz tanh[βc(m · ξ + z

√
αr)]

〉
ξ
,

q =
〈∫

Dz tanh2[βc(m · ξ + z
√

αr)]

〉
ξ

,

r = q

[1 − βc(1 − q)]2
.

(60)

As before we deal with the equation for mμ by using the identity ξμ tanh(A) = tanh(ξμA)

(since ξμ ∈ {−1, 0, 1}) and by separating the term mμξμ from the sum m · ξ:

mμ = Nγ

T

c

〈 ∫
Dz tanh

[
βc

(
mμ(ξμ)2 +

∑
ν �=μ�K

mνξ νξμ + zξμ
√

αr

)]〉
ξ

=
〈 ∫

Dz tanh

[
βc

(
mμ +

∑
ν �=μ�K

mνξ ν + z
√

αr

)]〉
ξ
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=
〈 ∫

Dz tanh

[
βc

(
mμ +

K∑
ν=1

mνξ ν + z
√

αr

)]〉
ξ

+ O(N−γ ).

Again we see that for NT → ∞ we will only retain solutions with mμ ∈ {−m, 0, m} for all
μ � K. Given the trivial sign and pattern label permutation invariances, we can without loss of
generality consider only non-negative magnetizations, and look for solutions where mμ = m
for μ = 1 � K and zero otherwise. We then find

m =
∞∑

k=−∞
π(k)

∫
Dz tanh[βc(m + mk + z

√
αr)] (61)

with π(k) given in (39). We can now use the manipulations employed in the previous section,
to find

m =
〈

k

φ

∫
Dz tanh[βc(mk + z

√
αr)]

〉
k

(62)

q =
〈∫

Dz tanh2[βc(mk + z
√

αr)]

〉
k

, (63)

r = q

[1 − βc(1 − q)]2
.

The corresponding free energy assumes the form

β f̂RS(m, q, r) = − log 2 + 1

2
αr(βc)2(1 − q) + 1

2
βc2φm2

−α

2

(
βcq

1 − βc(1 − q)
− log[1 − βc(1 − q)]

)

−
〈∫

Dz log cosh[βc(mk + z
√

αr)]

〉
k

. (64)

Note that we recover the equations of the medium storage regime simply by putting α = 0.

5.2. The zero noise limit

We now show that in the high storage case the system behaves as a spin-glass, even in the
zero temperature limit β → ∞ where the retrieval capability should be largest. From (63) we
deduce that q → 1 in the zero noise limit, while the quantity C = βc(1 − q) remains finite.
Let us first send β → ∞ in equation (62):

m =
〈

k

φ

∫
Dz sgn

[
mk + z

√
α

1 − C

]〉
k

=
〈

k

φ
Erf

(
mk(1 − C)√

2α

)〉
k

, (65)

with the error integral Erf(x) = (2/
√

π)
∫ x

0 dt e−t2
. A second equation for the pair (m,C)

follows from (63):

C = lim
β→∞

βc

〈
1 −

∫
Dz tanh2[βc(mk + z

√
αr)]

〉
k

= lim
β→∞

∂

∂m

〈
1

k

∫
Dz tanh

[
βc

(
mk + z

√
αq

1 − C

)]〉
k

,

= ∂

∂m

〈
1

k
Erf

(
mk(1 − C)√

2α

)〉
k

=
√

2

απ
(1 − C)

〈
exp

(
−m2k2(1 − C)2

2α

)〉
k

. (66)
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Figure 10. Left panel: behaviour of αr(α) versus α in the spin-glass state (the inset shows only
r(α) versus α), as calculated from the RS order parameter equations. This shows that r(α) goes
to infinity as α approaches zero, such that αr(α) remains positive; this means that the noise due
to non-condensed patterns can never be neglected. Right panel: behaviour of the function G(�)

versus �. Since G(�) < 0 for α > 0, equation (69) cannot have a solution for α > 0, and hence
no pattern recall is possible even at zero noise.

We thus have two coupled nonlinear equations (65), (66), for the two zero temperature
order parameters m and C. They can be further reduced by introducing the variable
� = m(1 − C)/

√
2α, with which we obtain

m =
〈

k

φ
Erf(k�)

〉
k

(67)

and rewriting � = m(1 − C)/
√

2α gives

C = 1 −
√

2α�

m
= 1 −

√
2α�

〈
k

φ
Erf(k�)

〉−1

k

. (68)

Using (66) and excluding the trivial solution � = 0 (which always exists, but represents
the spin-glass state without pattern recall) we obtain after some simple algebra just a single
equation, to be solved for �:

√
2α = G(�) = 1

�

〈
k

φ
Erf(k�)

〉
k

− 2√
π

〈e−k2�2〉k. (69)

One easily shows that

lim
�→0

G(�) = 0, lim
�→∞

G(�) = − 2√
π

π(0|φ). (70)

In fact further analytical and numerical investigation reveals that for � > 0 the function G(�)

is strictly negative; see figure 10. Hence there can be no m �= 0 solution for α > 0, so the
system cannot recall the patterns in the present scaling regime NB = αNT .

6. Conclusions

The immune system is a marvellous complex biological entity, able to execute reliably a
number of very difficult tasks that allow living beings to survive in competitive interaction
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with a living environment. To accomplish this it relies on a huge ensemble of functions and
agents. In particular, the adaptive part of the immune system relies on a broad ensemble of
cells, e.g. B and T lymphocytes, and of chemical messengers, e.g. antibodies and cytokines. As
for lymphocytes, one can distinguish between an ‘effector branch’, consisting of B-cells and
killer T-cells, and an ‘organizational branch’, which coordinates the operation of the effector
branch and consists mainly of helper and regulator T-cells. The latter control the activity of
the effector branch through a rich and continuous exchange of cytokines, which are specific
chemical messengers which elicit or suppress effector actions.

From a theoretical point of view, a fascinating ability of the immune system is its
simultaneous management, by helpers and suppressors, of several B-clones at once; this
is a key ability, as it implies the ability to defend the host from simultaneous attacks by several
pathogens. Indeed, we investigated this ability in the present study, as an emergent, collective,
feature of a spin-glass model of the immune network, that describes the adaptive response
performed by B-cells under the coordination of helpers and suppressors. In particular, the focus
of this paper is on the ability of the T-cells to coordinate an extensive number of B-soldiers,
by fine-tuning the load of clones and the degree of dilution in the network.

As a starting point we assumed symmetric interactions among clones. Although this is
a first necessary step in order to achieve a full equilibrium theory, this symmetry is not a
biological requisite. However, we note that, while cytokines have a directionality and form
gradients, the linkage between helpers and B-cells via the CD40 arm is intrinsically symmetric,
thus conferring some sort of stability. In neural network models it was found that robustness
properties regarding retrieval, and in general most of the emergent behaviour, largely survived
in off-equilibrium extensions. We expect that the same will be true for immune networks.

It is worth considering the parallel processing capability also from a slightly different
perspective. Beyond the interest in multiple clonal expansions (which, in our language, is
achieved through signalling by +1 cytokines), the quiescence signals that are sent to the B-
clones that are not expanding (which, in our language, is achieved through signalling by −1
cytokines) is fundamental for homeostasis. In fact, B-cells that are not receiving a significant
amount of signals undergo a depauperation process called ‘anergy’ [45, 46] and eventually die.
Hence, in the present multi-tasking network, the capability of signalling simultaneously to all
clones is fundamental, and with implications beyond solely the management of simultaneous
clonal expansions; we emphasize that within our approach this is achieved in a rather natural
way.

We first assumed that the number NB of B-cells scales with the number NT of T-cells
as NB = αNδ

T , with δ < 1, and we modelled the interaction between B-cells and T-cells by
means of an extremely diluted bipartite spin-glass where the former are addressed only by a
subset of T-cells whose cardinality scales like N1−γ

T , with γ � 1. We proved that this system
is thermodynamically equivalent to a diluted monopartite graph, whose topological properties
are shown to depend crucially on the parameters γ and δ. In particular, when γ � δ the graph
is fragmented into multiple disconnected components, each forming a clique or a collection
of cliques typically connected via a bridge. Each clique corresponds to a pattern and this
kind of arrangement easily allows for the simultaneous recall of multiple patterns. On the
other hand, when γ < δ, the effective network can exhibit a giant component, which prevents
the system from simultaneous pattern recall. These results on the topology of the immune
network are then approached from a statistical mechanics angle: we analyse the operation of
the system as an effective equilibrated stochastic process of interacting helper cells. We find
that for γ > δ the network is able to retrieve perfectly all the stored patterns simultaneously,
in perfect agreement with the topology-based prediction. When the load increases, i.e. when
NB becomes larger (so the exponent δ is increased), overlaps among bit entries of the ‘cytokine
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patterns’ to be recalled become more and more frequent, and this gives rise to a new source of
non-Gaussian interference noise that is non-negligible for γ � δ. If γ = δ the system is still
able to retrieve all the patterns, but with a decreasing recall overlap.

Since the numbers of cells, i.e. NT and NB, are fluctuating quantities, their ratio α is not
constant in real networks. It is therefore important that the system’s phase diagram exhibits
significant regions of α values where the system would operate adequately. Deriving this phase
diagram was our goal.

In the high storage case, for δ = 1, the network starts to feel also the Gaussian noise due
to non-condensed patterns, and this is found to destroy the retrieval states. Here the system
behaves as a spin-glass, from which we deduce that an extremely diluted B–H network (i.e.
one with γ < 1) is insufficiently diluted to sustain a high pattern load. Our predictions and
results are tested against numerical simulations wherever possible, and we consistently find
perfect agreement.

Despite the fact that it is experimentally well established that helpers are much more
numerous than B-cells, their relative sizes are still comparable in a statistical mechanical
sense. The biological interest lies in the high storage regime, where the maximum number of
pathogens can be fought simultaneously. From the present study we now know that to bypass
the spin-glass structure of the phase space at this load level, a projection of the model into a
finite-connectivity topology (γ = 1) is required. This, remarkably, is also in agreement with
the biological picture of highly selective touch-interactions among B- and T-cells.

It is both welcome and encouraging that both biological data and statistical mechanical
theory have now converged to the same suggestion: that the most efficient and biologically
most plausible operation regime is likely to be that of finite connectivity for the effective
helper–helper immune network. This must therefore be the direction of the next stage of our
research programme.
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Appendix A. Topological properties

A.1. Rigorous calculation of link probability

We consider the bipartite graph B, and denote with ρi the number of links stemming from
node i ∈ VT . Note that ρi also gives the number of non-null entries in the string

(
ξ 1

i , . . . , ξ
NB
i

)
processed at node i, that is

ρi =
NB∑

μ=1

|ξμ
i |. (A.1)

All entries ξ
μ
i are i.i.d. variables (5), so for each node the number ρi is distributed according

to

P(ρ|NB, NT , γ , c) =
(

NB

ρ

)(
c

2Nγ

T

)ρ (
1 − c

2Nγ

T

)NB−ρ

. (A.2)
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When considering two distinct nodes i, j ∈ VT , the number � of shared nearest-neighbours
corresponds to the number of non-null matchings between the related strings, and this is
distributed according to

P(�|ρi, ρ j, NB) = NB!

(NB + � − ρi − ρ j)!(ρi − �)!(ρ j − �)!�!

[(
NB

ρi

)(
NB

ρ j

)]−1

. (A.3)

The average 〈�〉ρi,ρ j then follows as

〈�〉ρi,ρ j = ρiρ j/NB. (A.4)

By further averaging over P(ρ|NB, NT , c, γ ) we get

〈�〉 = 〈ρ〉2/NB. (A.5)

Fluctuations scale as 〈�2〉 − 〈�〉2 ∼ 〈�〉2, where, from the distribution above, 〈ρ〉 = cNB/2Nγ

T .
Upon choosing NB = αNT

δ we then get 〈�〉 ∼ Nδ−2γ

T , which vanishes if 2γ > δ. Two strings
of any two nodes apparently do not display significant matching, so there is no link between
them, consistent with the results of section 3.

On the other hand, if 2γ < δ so that 〈�〉 � 1, we can approximate P(J|NB, NT , γ , c) (the
probability of two randomly drawn nodes in the effective NT -node graph having a link J) with
P(J|〈�〉, NT , γ , c): the probability that a random walk of length NB with a waiting probability
pw ends at distance J from the origin is approximated by the probability that a simple random
walk of length 〈�〉 ends at the same distance (with proper normalization to account for parity
features). In particular,

P(J = 0|NB, NT , γ , c) ≈
( 〈�〉

〈�〉/2

)
2−〈�〉 ≈

√
2/π〈�〉 (A.6)

(using Stirling’s formula in the last step). The expected link probability between two nodes
follows as

P(J �= 0|NB, NT , γ , c) = 1 − P(J = 0|NB, NT , γ , c) ≈ 1 −
√

2

πα

Nγ−δ/2
T

c
. (A.7)

It is easy to see that when 2γ = δ the link probability is finite and smaller than 1, while when
2γ < δ it converges to 1 in the thermodynamic limit, consistent with the results of section 3.

A.2. Generating function approach to percolation in the bipartite graph

Let us consider a bipartite graph B, made of two sets of nodes VT (of size NT ) and VB (of
size NB), with both sizes diverging. The degree distribution for the two parts are pk and qk,
respectively, with

∑
k pkk = μ and

∑
k qkk = ν. Following [53], we introduce the following

generating functions

f0(x) =
NT∑

k=0

pkxk, g0(x) =
NB∑

k=0

qkxk, (A.8)

f1(x) = 1

μ

d

dx
f0(x), g1(x) = 1

ν

d

dx
g0(x). (A.9)

We note that f1(x) and g1(x) are the generating functions for the degree distribution of a vertex
reached following a randomly chosen edge (here the degree does not include the link along
which we arrived). One always has μ/NT = ν/NB, and f0(1) = g0(1) = f1(1) = g1(1) = 1
(by construction).

Next we introduce dilution. We define the matrix t, whose element tk� represents the
probability that a directed link going from a node in part k to a node in part � exists.
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For bipartite graphs, t is simply a 2 × 2 matrix with zero diagonal entries. We can now
write the generating functions for the distributions of occupied edges attached to a vertex
chosen randomly as follows [53]:

f0(x|t) = f0(1 + (x − 1)t12), f1(x|t) = f1(1 + (x − 1)t12), (A.10)

g0(x|t) = g0(1 + (x − 1)t21), g1(x|t) = g1(1 + (x − 1)t21). (A.11)

Let us now consider a node i ∈ VT , with zi neighbours (where zi is distributed according to
pk). Due to the dilution, only a fraction of the links that could connect to i will be present. The
nodes in the second part that are reached from i will, in turn, have a number of links hitting
some nodes in VT . The generating function F0(x|t) of the distribution of nodes in the first part
which are involved in both steps is

F0(x|t) =
∞∑

m=0

∞∑
k=m

pk

(
k

m

)
tm
12(1 − t12)

k−m[g1(x; t)]m

= f0(g1(x|t)|t) = f0(1 + (g1(x|t) − 1)t12). (A.12)

In fact, in the expansion of [g1(x; t)]m, the coefficient of xn is simply the probability that m
randomly reached nodes are connected to a set of n other nodes. If we choose an edge rather
than a node we have, analogously

F1(x|t) = f1(1 + (g1(x|t) − 1)t12). (A.13)

The corresponding generating functions found upon starting with a note in the part VB have
analogous definitions, and will be written as G0 and G1.

The generating function H0 for the distribution P(s|t) of the size s of the components
(connected sub-graphs) which one can detect is H0(x|t) = ∑

s P(s|t)xs. Similarly, H1(x|t) will
be the generating function for the size of the cluster of connected vertices that we reach by
following a randomly chosen vertex. We note that in the highly diluted regimes we can exploit
the fact that the probability of finding closed loops is O

(
N−1

T

)
(so H0 and H1 do not include

the giant component), which allows us to write the explicit expressions

H0(x|t) = xF0(H1(x|t)|t), H1(x|t) = xF1(H1(x|t)|t). (A.14)

This then gives for the average cluster size:

〈s〉 = H ′
0(1|t) = 1 + F ′

0(1|t)H ′
1(1|t) = 1 − F ′

0(1|t)
1 − F ′

1(1|t) , (A.15)

where we used H ′
1(1|t) = 1 + F ′

1(1|t) H ′
1(1|t). As for F0 and F1, recalling equations (A.12)

and (A.13) we get F ′
0(1|t) = f0(g1(1|t21)|t12)g′

1(1|t21) = f ′
0(1|t12)g′

0(1)t21, and analogous
formulae for F1(1|t). Therefore,

〈s〉 = 1 + t12t21 f ′
0(1)g′

0(1)

1 − t12t21 f ′
1(1)g′

1(1)
. (A.16)

This expression diverges for

t12t21 = 1

f ′
1(1)g′

1(1)
= μν(∑

j j( j − 1)p j
)(∑

k k(k − 1)qk
) (A.17)

signalling the phase transition at which a giant-component first appears. Assuming t to be
symmetric, as we are interested in equilibrium statistical-mechanical descriptions of the
system, the left-hand side of the previous equations simplifies into t2 ≡ t2

12. As for the
degree distributions pk and qk, the case considered in the main text is the easiest one, viz. an
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Figure A1. Distribution for the cluster size P(s|NB, NT , c, γ ) measured numerically over a
simulated graph G with NT = 104 nodes. The parameters δ = 1, α = 0.5 and c = 1 are
kept fixed, while γ is varied (see legend). In the interest of clarity, we plotted the analytical
estimate of equations (A.20) and (A.22) only for γ = 0.78.

originally fully-connected bipartite network that has been progressively diluted, in such a way
that pk = δk,NT −1 and qk = δk,NB−1. Hence, we immediately find

t2 ≈ 1/NT NB. (A.18)

As mentioned earlier, the distribution for the size of the small components reached from a
randomly chosen node i ∈ VT has generating function H0(x|t) = xF1(H1(x|t)|t).

The generating function approach implicitly assumes that small components are always
tree-like, i.e. the probability of finding closed loops in finite components is negligible in the
large system size limit. Hence, if t = 1−c/Nγ

T , then γ � 1, so we are in effect considering how
the system approaches the percolation threshold from the underpercolated regime. Therefore,
H1(x|t) ≈ x in such a way that

F1(x|t) = {1 − t + t[1 + (x − 1)t]NB−2}NT −2. (A.19)

Upon substituting (A.19) into the expression for H0(x|t), followed by a numerical inverse
Laplace transform, we obtain clear evidence that, when s is small, the leading term for P(s|t)
decreases exponentially with s. This prediction is confirmed by numerical simulations, see the
right panel of figure 4. More generally, the distribution of component sizes can be written as

P(s|NB, NT , c, γ ) =
(

NT

s

) NB∑
l=1

(
NB

l

)
(1 − p)s(NB−l)(1 − p)l(NT −s)C(l, s), (A.20)

where we accounted for the probability of choosing a component (⊆VT ) of size s linked
through, overall, l nodes (⊆VB), and for the probability that this sub-graph is disconnected
from the remaining nodes; C(l, s) is the probability that a subgraph made of s + l elements is
connected. Now, the s nodes ∈ VT can be partitioned into sub-graphs {s1, s2, . . . , sl}, where sk

includes all nodes linked to exactly k nodes among the l selected. Therefore, we can write

C(l, s) =
∑

s1,...,sl

s!δs,
∑

k |sk|∏l
k=1 |sk|!

l∏
k=1

[pk(1 − p)l−k]|sk|. (A.21)
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A simple upper bound for C(l, s) follows by imposing that all s + l nodes are connected to at
least one node

C(l, s) � C̃(l, s) = [1 − (1 − p)l]s[1 − (1 − p)s]l . (A.22)

This does not imply that the whole sub-graph is connected, but the bound is a good
approximation when the link probability is either low or high. Using this approximation
and the expression p = c/Nγ

T , we find that: for relatively small γ only the case s ∼ O(NT )

and l ∼ O(NB) has non-vanishing probability, for relatively large γ only the case with s and l
finite has non-vanishing probability, and for intermediate values of γ both these extreme cases
are possible. In figure A1 we show a comparison between analytical and numerical results.

Appendix B. Free energy evaluation using the replica method

In this appendix we calculate the free energy per spin of the system characterised by the
Hamiltonian (19), within the replica-symmetric (RS) ansatz, for the scaling regime NB = αNT .
Let us start by introducing the partition function ZNT (β, ξ ) and the disorder-averaged free
energy f :

ZNT (β, ξ ) =
∑

σ

exp

⎛
⎝1

2
βN−τ

T

NT∑
i, j=1

NB∑
μ=1

ξ
μ
i ξ

μ
j σiσ j

⎞
⎠ (B.1)

f = − lim
NT →∞

1

βNT
log ZNT (β, ξ ), (B.2)

where · · · denotes averaging over the randomly generated {ξμ
i }. If we use the replica identity

log Z = limn→0 n−1 log Zn, and separate the contributions from the K condensed patterns from
those of the αNT − K non-condensed ones we get

f = − lim
NT →∞

lim
n→0

1

βnNT
log

∑
σ1,···,σn

exp

⎛
⎝1

2
βN−τ

T

NT∑
i, j=1

NB∑
μ=1

n∑
α=1

ξ
μ
i ξ

μ
j σα

i σα
j

⎞
⎠

= − 1

β
log 2 − lim

NT →∞
lim
n→0

1

βnNT
log

〈
exp

⎛
⎝1

2
βN−τ

T

K∑
μ=1

n∑
α=1

(
NT∑
i=1

ξ
μ
i σα

i

)2
⎞
⎠

× exp

⎛
⎝1

2
βN−τ

T

NB∑
μ>K

n∑
α=1

(
NT∑
i=1

ξ
μ
i σα

i

)2
⎞
⎠〉

σ1,...,σn

. (B.3)

We compute the non-condensed contributions first, using the standard tool of Gaussian
linearization, and the usual short-hands Dz = (2π)−1/2 e−z2/2 dz and Dz = ∏n

α=1 Dzα:

� = exp

⎛
⎝1

2
βN−τ

T

∑
μ>K

n∑
α=1

(
NT∑
i=1

ξ
μ
i σα

i

)2
⎞
⎠ =

⎡
⎢⎣exp

⎛
⎝1

2
βN−τ

T

n∑
α=1

(
NT∑
i=1

ξiσ
α
i

)2
⎞
⎠
⎤
⎥⎦

NB−K

=
⎡
⎣∫ Dz exp

(√
βN−τ/2

T

n∑
α=1

zα

NT∑
i=1

ξiσ
α
i

)⎤⎦
NB−K

=
[∫

Dz
NT∏
i=1

(
1 − cN−γ

T + cN−γ

T cosh

(√
βN−τ/2

T

n∑
α=1

σα
i zα

))]NB−K
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=
⎡
⎣∫ Dz

NT∏
i=1

[
1 + 1

2
βcN−γ−τ

T

(
n∑

α=1

σα
i zα

)2

+ O
(
N−2τ−γ

T

)]⎤⎦
NB−K

=
⎡
⎣∫ Dz exp

⎛
⎝1

2
βcN−γ−τ

T

n∑
α,β=1

zαzβ

NT∑
i=1

σα
i σ

β

i + O
(
N1−2τ−γ

T

)⎞⎠
⎤
⎦

NB−K

. (B.4)

Now it is evident, as in our earlier calculations, that the correct scaling for large NT requires
choosing τ = 1 − γ . For the correction term in the exponent this gives O(N1−2τ−γ

T ) =
O(Nγ−1

T ), which is indeed vanishing since γ < 1. We now arrive at

� = exp

{
(NB − K) log

∫
Dz exp

(
1

2
βcN−1

T

n∑
α,β=1

zαzβ

NT∑
i=1

σα
i σ

β

i + O(Nγ−1
T )

)}
. (B.5)

We next introduce n2 parameters {qαβ} and their conjugates {q̂αβ}, by inserting partitions of
unity:

1 =
∏
αβ

∫
dqαβδ

(
qαβ − 1

NT

NT∑
i=1

σα
i σ

β

i

)

=
∫ [∏

αβ

dqαβdq̂αβ

2π/NT

]
exp

(
iNT

∑
α,β

q̂αβ

(
qαβ − 1

NT

∑
i

σα
i σ

β

i

))
. (B.6)

Substituting (B.6) into (B.5) gives the contribution to the partition function of non-condensed
patterns:

� =
∫ [∏

αβ

dqαβ dq̂αβ

]

× exp

(
iNT

∑
α,β

q̂αβqαβ + (NB − K) log
∫

Dz e
1
2 βc

∑n
α,β=1 zαqαβ zβ + O

(
Nγ

T

))

× exp

(
−i
∑

i

∑
α,β

σ α
i q̂αβσ

β

i

)
. (B.7)

The contribution from condensed pattern, see (B.3), is

exp

(
1

2
βNγ−1

T

∑
μ�K

n∑
α=1

(
NT∑
i=1

ξ
μ
i σα

i

)2)
=
∫

Dm exp

(√
βN(γ−1)/2

T

∑
μ�K

n∑
α=1

NT∑
i=1

ξ
μ
i σα

i mμ
α

)
,

(B.8)

with m = {mμ
α } ∈ R

nK . If we rescale mμ
α → c

√
βN(1−γ )/2

T mμ
α this becomes

(
c2βN1−γ

T

)nK/2
∫

dm exp

(
−1

2
βc2N1−γ

T m2 + βc
∑
μ�K

n∑
α=1

NT∑
i=1

ξ
μ
i σα

i mμ
α

)
. (B.9)
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Inserting (B.7), (B.9) into (B.3) gives the following expression for the free energy per spin:

f = − 1

β
log 2 − lim

NT →∞

{
K/2

βNT
log

(
c2βN1−γ

T

)+ lim
n→0

1

βnNT
log

∫
dm

[∏
αβ

dqαβ dq̂αβ

]

× exp

(
NT

[
i
∑
α,β

q̂αβqαβ + NB − K

NT
log

∫
Dz e

1
2 βc

∑n
α,β=1 zαqαβ zβ − 1

2
βc2N−γ

T m2

])

×
NT∏
i=1

〈
exp

(
βc

∑
μ�K

n∑
α=1

ξ
μ
i σα

i mμ
α − i

∑
α,β

σ α
i q̂αβσ

β

i

)〉
σ 1

i ,...,σ n
i

}
. (B.10)

The number of order parameters being integrated over is of order K, so corrections to the
saddle-point contribution will be of order O(K log N/N). To proceed via steepest descent we
must therefore impose K � NT / log NT . Since also the energy term N−γ

T

∑
μ�K m2 should be

of order 1, as well as the individual components of m, the only natural choice is K = O(Nγ ).
Under this scaling condition we then find

f = − 1

β
log 2 − lim

K→∞
lim
n→0

1

βn
extrm,q,q̂ f̂ (m, {q, q̂}) (B.11)

with

f̂ (m, {q, q̂}) = i
∑
α,β

q̂αβqαβ + α log
∫

Dz exp

⎛
⎝1

2
βc

n∑
α,β=1

zαqαβzβ

⎞
⎠− βc2

2Nγ

T

n∑
α=1

∑
μ�K

(mμ
α )2

(B.12)

+
〈

log

〈
exp

(
βc

∑
μ�K

n∑
α=1

ξμσαmμ
α − i

∑
α,β

σ α q̂αβσ β

)〉
σ 1,...,σ n

〉
ξ

. (B.13)

Now we can use the replica symmetry ansatz, and demand that the relevant saddle-point is of
the form

mμ
α = mμ, qαβ = δαβ + q(1 − δαβ ), q̂αβ = iα(βc)2

2
[Rδαβ + r(1 − δαβ )]. (B.14)

From now on we will denote m = (m1, . . . , mK ) and ξ = (ξ 1, . . . , ξK ). After some simple
algebra we can take the limit n → 0, and find that our free energy simplifies to

β f RS = lim
NT →∞

extrm,q,r f̂RS(m, q, r) (B.15)

with

f̂RS(m, q, r) = − log 2 + 1

2
αr(βc)2(1 − q) + βc2

2Nγ

T

m2

−α

2

(
βcq

1 − βc(1 − q)
− log[1 − βc(1 − q)]

)

−
〈 ∫

Dz log cosh[βc(m · ξ + z
√

αr)]

〉
ξ

. (B.16)
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[7] Košmrlj A, Jha A K, Huseby E S, Kardar M and Chakraborty A K 2008 Proc. Natl Acad. Sci. USA 105 16671–6
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