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Dztanh ¢ mt+ m +z r + O(NS ).
=1
Again we see that foly we will only retain solutions wittm#*  {S m, 0, m} for all
M K. Given the trivial sign and pattern label permutation invariances, we can without loss of
generality consider only non-negative magnetizations, and look for solutions wHerem
forp =1 K and zero otherwise. We then nd

m= (k) Dztanh[ c(m+ mk+ z 1)] (61)
k=S
with ( k) given in 39). We can now use the manipulations employed in the previous section,
to nd
" #

m= k Dztanh[ c(mk+ z " 1)] (62)
k
" #
Dztantf[ c(mk+z “1)] , (63)
k
r= #
[1S c(1S gl
The corresponding free energy assumes the form

q

. 1 B 1
frs(m, g, r) =S log2+ 5 r( ¢)?(1Sq)+ 3 2 m

_ .
2 1S c¢(1Sq)

(08

Slog[1S c¢(1S )]
#
S  Dzlogcosh[ c(mk+ z "1)] . (64)
k
Note that we recover the equations of the medium storage regime simply by puttir@

5.2. The zero noise limit

We now show that in the high storage case the system behaves as a spin-glass, even in the
zero temperature limit where the retrieval capability should be largest. F(@&3) we
deduce thatj 1 in the zero noise limit, while the quanti§ = ¢(1S q) remains nite.
Letus rstsend  inequation 62):

_ - #
k k 1scC

m= — Dzsgn mk+ Zv— = —Erf mk(—_) ,

1sC 2 K

& .
with the error integral EXX) = (2/ ) gdteStz. A second equation for the pajm, C)
follows from (63):

(65)

" #
C= lim ¢ 1S Dztantf[ c(mk+ z )]

. 1 Z g
R + —
lim i Dztanh ¢ mk 15C k,

mk(1S C)
.2

_ . #
m2k2 2
2 (1SC) exp S—k (218C) :
k

1Erf
m k

(66)
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Figure 10. Left panel: behaviour of r() versus in the spin-glass state (the inset shows only
r() versus ), as calculated from the RS order parameter equations. This showg jhajoes

to in nity as  approaches zero, such that( ) remains positive; this means that the noise due
to non-condensed patterns can never be neglected. Right panel: behaviour of the fB(gtion
versus . SinceG() < Ofor > 0, equation§9) cannot have a solution for> 0, and hence
no pattern recall is possible even at zero noise.

We thus have two coupled nonlinear equatiof§),( (66), for the two zero temperature
order parametersn and C. They can be further reduced by introducing the variable
=m(1SC) 2, with WhiC# we obtain

m= k Erf(k) (67)

and rewriing = m(18 C)/ 2 gives
. 2 Lk 1
C=1S—=1S 2 — Erf(k) . (68)
m k
Using (66) and excluding the trivial solution = 0 (which always exists, but represents
the spin-glass state without pattern recall) we obtain after some simple algebra just a single
equation, to be solved for:

" #
2 =G() -1 EErf(k) § 2 e, (69)
k
One easily shows that
lim G() =0, lim G() =$ 2 (). (70)

In fact further analytical and numerical investigation reveals that¥or O the functionG( )
is strictly negative; see gurd0. Hence there can be mo = 0 solution for > 0, so the
system cannot recall the patterns in the present scaling regirre Nr.

6. Conclusions

The immune system is a marvellous complex biological entity, able to execute reliably a
number of very dif cult tasks that allow living beings to survive in competitive interaction
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When considering two distinct nodésj V4, the number of shared nearest-neighbours
corresponds to the number of non-null matchings between the related strings, and this is
distributed according to

NB! NB NB st
P T N = - - — - A.3
Cho M) = s sy st (A3)

The average | , then follows as

b = j/NB. (A4)
By further averaging oveP( |Ng, Nr,c, ) we get

= ?/Ng. (A.5)
Fluctuations scale as? S 2 2, where, from the distribution above, = cNg/2N;.
Upon choosindNg = Ny we then get NTSz , Which vanishes if 2> . Two strings

of any two nodes apparently do not display signi cant matching, so there is no link between
them, consistent with the results of sectin

On the other hand, if 2<  so that 1, we can approximate(J|Ng, Nr, , c) (the
probability of two randomly drawn nodes in the effectNge-node graph having a link) with
P(J| ,Nr, , c):the probability that a random walk of lengily with a waiting probability
pw ends at distanc&from the origin is approximated by the probability that a simple random
walk of length  ends at the same distance (with proper normalization to account for parity
features). In particular,

P(J = ONg, Ny, , ©) /5 25 2/ (A.6)

(using Stirling’s formula in the last step). The expected link probability between two nodes
follows as '

> NTSIZ
P(J = ONg, Nr, , ©) = 15 P(J= OlNg, Nr, , ©) 15—~ —. (A7)

It is easy to see that when 2= the link probability is nite and smaller than 1, while when
2 < itconvergesto 1 in the thermodynamic limit, consistent with the results of settion

A.2. Generating function approach to percolation in the bipartite graph

Let us consider a bipartite grafy made of two sets of noda4 (of size Ny) andVg (of
sizeNg), with both sizes diverging. The degree distribution for the two partgam@nd g,
respectively, with |, pkk = pand gk = . Following [53], we introduce the following
generating functions

Nr Ng

()= P, (= g (A.8)
k=0 k=0

B = a0 G = e (a9)

We note thaff;(x) andg; (x) are the generating functions for the degree distribution of a vertex
reached following a randomly chosen edge (here the degree does not include the link along
which we arrived). One always hagNr = / Ng, andfo(1) = go(1) = f1(1) = g1(1) = 1
(by construction).

Next we introduce dilution. We de ne the matrix whose element; represents the
probability that a directed link going from a node in p&rto a node in part exists.
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A simple upper bound fdE(l, s) follows by imposing that alé+ | nodes are connected to at
least one node

C(,s) C(,9=[15@Sp'1ILS (1S p)I'. (A.22)

This does not imply that the whole sub-graph is connected, but the bound is a good
approximation when the link probability is either low or high. Using this approximation
and the expressiop = ¢/N;, we nd that: for relatively small only the cases  O(Ny)

andl  O(Ng) has non-vanishing probability, for relatively largeonly the case witls andl

nite has non-vanishing probability, and for intermediate values bbth these extreme cases
are possible. In guréAl we show a comparison between analytical and numerical results.

Appendix B. Free energy evaluation using the replica method

In this appendix we calculate the free energy per spin of the system characterised by the
Hamiltonian (9), within the replica-symmetric (RS) ansatz, for the scaling redime  Nr.

Let us start by introducing the partition functiai, (, ) and the disorder-averaged free
energyf:

*

1 x
Zu () = exptS NP I (B.1)

— . 1 -
f=S lim —IlogZy,(, ), B.2
Jim 10074, () ®2)

where=~ denotes averaging over the randomly generftfy. If we use the replica identity
logZ = lim, on°llogZ", and separate the contributions from kheondensed patterns from
those of the Ny S K non-condensed ones we get

*

_ l 1 . Ny Ng n
f=S lim Ilim log expt = N7 w -
I
Nr n o NNy 1., 2 . ij=lp=1 =1
1 B K n Nr 2’
=S Zlog2S lim lim log expt = N W
Nt n 2
u=1 =1 i=1
*
1 . NB n NT 2,
x exp* > N2 W : (B.3)
p>K =1 =1 1, n
We compute the non-condensed contributions rst, using the staredard tool of Gaussian
linearization, and the usual short-hands (2 ) $V2e?/2dzand z= * "_, Dz :
* > . * > 1NBSK
1 now / 1o "N
:eXp+§NTS * -:oexp+§NT5 i -5
pK =1 i=1 =1 =1
— 1 nesk
- S /2
=0 Dzexp NG z i 3
=1 i=1
PoNesK

Moo , .
= Dz 1ScNy +cN? cosh N7'2 2z
=1 =1
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P N 2 I 1Sk
1 P A&
=0 pz 1+ éBCN_?VST oiazd +0 N_?ZTSV 3
i=1 a=1
* n NT ! 1NBéK
1 o = =
=0 Dzexpt EBCNEVST 225 0%P+ ONPTY -3 (B.4)
a,p=1 i=1

Now it is evident, as in our earlier calculations, that the correct scaling for Mygequires
choosingt = 1S y. For the correction term in the exponent this gi@EN1>"°Y) =
O(NY>%), which is indeed vanishing singe< 1. We now arrive at

4 N Ny 5

. 1 & &
C=lexp (NsSK)log Dzexp EBcl\Lfl 225 0%+ ONY®1) | (B.5)
a,p=1 i=1

We next introducen? parametergqqg} and their conjugatefieg}, by inserting partitions of
unity:

) L1 ™
1= doegd Gup S . oi"oiB
ap | Ti:1
) dgupdoes 1
_ p00up : & a B
= —ap Hap s — agP B.6
- 2 /Ny exp |NTGBQGB Qo Nr 0’0 (B.6)

Substituting B.6) into (B.5) gives the contribution to the partition function of non-condensed
patterns:
!
)
IEI dqu dtu
ap

x exp iNr  Ogplop + (Ns S K)log DzezP® ap-1%%s% + O NY
a,p

x exp Si 0%0up0" (B.7)
i ap

The contribution from condensed pattern, ), is

1 S1 " " i an (v SD/2 "o
exp EBN¥ g's® = Dmexp PBNYSY lofmb
HIKa=1 =1 HIKD=1i=1
(B.8)
withm={m} R Ifwerescalant ¢ BNUSY2mi this becomes
Sy nk/2 <1 S non
BNy " dmexp SEBCZNTlSym2+ Bc gHotmt (B.9)
pKa=1 i=1
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