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Again we see that forNT � � we will only retain solutions withmµ � {Š m, 0, m} for all
µ � K. Given the trivial sign and pattern label permutation invariances, we can without loss of
generality consider only non-negative magnetizations, and look for solutions wheremµ = m
for µ = 1 � K and zero otherwise. We then �nd

m =
��

k=Š�

� ( k)
�

Dztanh[� c(m+ mk+ z
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� r )] (61)

with � ( k) given in (39). We can now use the manipulations employed in the previous section,
to �nd
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r =
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.

The corresponding free energy assumes the form
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Note that we recover the equations of the medium storage regime simply by putting� = 0.

5.2. The zero noise limit

We now show that in the high storage case the system behaves as a spin-glass, even in the
zero temperature limit� � � where the retrieval capability should be largest. From(63) we
deduce thatq � 1 in the zero noise limit, while the quantityC = � c(1 Š q) remains �nite.
Let us �rst send� � � in equation (62):
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with the error integral Erf(x) = (2/
�

� )
&x

0 dt eŠt2
. A second equation for the pair(m, C)

follows from (63):
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Figure 10. Left panel: behaviour of� r (�) versus� in the spin-glass state (the inset shows only
r(�) versus� ), as calculated from the RS order parameter equations. This shows thatr(�) goes
to in�nity as � approaches zero, such that� r (�) remains positive; this means that the noise due
to non-condensed patterns can never be neglected. Right panel: behaviour of the functionG(�)
versus� . SinceG(�) < 0 for � > 0, equation (69) cannot have a solution for� > 0, and hence
no pattern recall is possible even at zero noise.

We thus have two coupled nonlinear equations (65), (66), for the two zero temperature
order parametersm and C. They can be further reduced by introducing the variable
� = m(1 Š C)/

�
2� , with which we obtain

m =
"

k
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(67)

and rewriting� = m(1 Š C)/
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2� gives
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Using (66) and excluding the trivial solution� = 0 (which always exists, but represents
the spin-glass state without pattern recall) we obtain after some simple algebra just a single
equation, to be solved for� :
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One easily shows that

lim
� � 0

G(�) = 0, lim
� ��

G(�) = Š
2

�
�

� ( 0|
). (70)

In fact further analytical and numerical investigation reveals that for� > 0 the functionG(�)
is strictly negative; see �gure10. Hence there can be nom �= 0 solution for� > 0, so the
system cannot recall the patterns in the present scaling regimeNB = � NT.

6. Conclusions

The immune system is a marvellous complex biological entity, able to execute reliably a
number of very dif�cult tasks that allow living beings to survive in competitive interaction
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When considering two distinct nodesi, j � VT, the number� of shared nearest-neighbours
corresponds to the number of non-null matchings between the related strings, and this is
distributed according to

P(� |� i , � j , NB) =
NB!

(NB + � Š � i Š � j )!(� i Š �) !(� j Š �) !� !

��
NB

� i

� �
NB

� j

�� Š1

. (A.3)

The average
 � � � i ,� j then follows as


 � � � i ,� j = � i � j /NB. (A.4)

By further averaging overP(� |NB, NT, c, � ) we get


 � � = 
 � � 2/NB. (A.5)

Fluctuations scale as
 � 2� Š 
 � � 2 � 
 � � 2, where, from the distribution above,
 � � = cNB/ 2N�
T .

Upon choosingNB = � NT
� we then get
 � � � N� Š2�

T , which vanishes if 2� > � . Two strings
of any two nodes apparently do not display signi�cant matching, so there is no link between
them, consistent with the results of section3.

On the other hand, if 2� < � so that
 � � � 1, we can approximateP(J|NB, NT, � , c) (the
probability of two randomly drawn nodes in the effectiveNT-node graph having a linkJ) with
P(J|
 � � , NT, � , c): the probability that a random walk of lengthNB with a waiting probability
pw ends at distanceJ from the origin is approximated by the probability that a simple random
walk of length
 � � ends at the same distance (with proper normalization to account for parity
features). In particular,

P(J = 0|NB, NT, � , c) 

�
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 � � / 2

�
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�
2/� 
 � � (A.6)

(using Stirling’s formula in the last step). The expected link probability between two nodes
follows as

P(J �= 0|NB, NT, � , c) = 1 Š P(J = 0|NB, NT, � , c) 
 1 Š

'
2

� �
N� Š�/ 2

T

c
. (A.7)

It is easy to see that when 2� = � the link probability is �nite and smaller than 1, while when
2� < � it converges to 1 in the thermodynamic limit, consistent with the results of section3.

A.2. Generating function approach to percolation in the bipartite graph

Let us consider a bipartite graphB, made of two sets of nodesVT (of sizeNT) andVB (of
sizeNB), with both sizes diverging. The degree distribution for the two parts arepk andqk,
respectively, with

	
k pkk = µ and

	
k qkk = � . Following [53], we introduce the following

generating functions

f0(x) =
NT�

k= 0

pkxk, g0(x) =
NB�

k= 0

qkxk, (A.8)

f1(x) =
1
µ

d
dx

f0(x), g1(x) =
1
�

d
dx

g0(x). (A.9)

We note thatf1(x) andg1(x) are the generating functions for the degree distribution of a vertex
reached following a randomly chosen edge (here the degree does not include the link along
which we arrived). One always hasµ/ NT = �/ NB, and f0(1) = g0(1) = f1(1) = g1(1) = 1
(by construction).

Next we introduce dilution. We de�ne the matrixt, whose elementtk� represents the
probability that a directed link going from a node in partk to a node in part� exists.
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A simple upper bound forC(l , s) follows by imposing that alls+ l nodes are connected to at
least one node

C(l , s) � �C(l , s) = [1 Š (1 Š p)l ]s[1 Š (1 Š p)s]l . (A.22)

This does not imply that the whole sub-graph is connected, but the bound is a good
approximation when the link probability is either low or high. Using this approximation
and the expressionp = c/N�

T , we �nd that: for relatively small� only the cases � O(NT )
andl � O(NB) has non-vanishing probability, for relatively large� only the case withsandl
�nite has non-vanishing probability, and for intermediate values of� both these extreme cases
are possible. In �gureA1 we show a comparison between analytical and numerical results.

Appendix B. Free energy evaluation using the replica method

In this appendix we calculate the free energy per spin of the system characterised by the
Hamiltonian (19), within the replica-symmetric (RS) ansatz, for the scaling regimeNB = � NT.
Let us start by introducing the partition functionZNT (�, � ) and the disorder-averaged free
energyf :
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where· · · denotes averaging over the randomly generated{� µ
i }. If we use the replica identity

logZ = limn� 0 nŠ1 logZn, and separate the contributions from theK condensed patterns from
those of the� NT Š K non-condensed ones we get
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. (B.3)

We compute the non-condensed contributions �rst, using the standard tool of Gaussian
linearization, and the usual short-hands Dz = (2� ) Š1/ 2 eŠz2/ 2 dz and Dz =

( n
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Now it is evident, as in our earlier calculations, that the correct scaling for largeNT requires
choosingτ = 1 Š γ . For the correction term in the exponent this givesO(N1Š2τŠγ

T ) =
O(Nγ Š1

T ), which is indeed vanishing sinceγ < 1. We now arrive at
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We next introducen2 parameters{qαβ} and their conjugates{ �qαβ}, by inserting partitions of
unity:
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Substituting (B.6) into (B.5) gives the contribution to the partition function of non-condensed
patterns:
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The contribution from condensed pattern, see (B.3), is
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with m = { mμ
α } � RnK. If we rescalemμ
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