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In this paper we develop the interpolating cavity field technique for the mean field ferromag-
netic p-spin. The model we introduce is a natural extension of the diluted Curie–Weiss model
to p > 2 spin interactions. Several properties of the free energy are analyzed and, in particular,
we show that it recovers the expressions already known for p = 2 models and for p > 2
fully connected models. Further, as the model lacks criticality, we present extensive numerical
simulations to evidence the presence of a first-order phase transition and deepen the behaviour
at the transition line. Overall, a good agreement is obtained among analytical results, numerics
and previous works.
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1. Introduction
Born as a theoretical background for thermodynamics, statistical mechanics

provides nowadays a flexible approach to several scientific problems whose depth
and wideness increases continuously. In fact, in the last decades statistical mechanics
has invaded fields as diverse as spin glasses [22], neural networks [1], protein folding
[20], immunological memory [26, 8], social networks [2], theoretical economy [13]
and urban planning [10]. As a consequence, an always increasing need for models
and proper techniques must be fulfilled. Coherently, recently, several models have
been systematically tackled via the smooth cavity field by the authors, namely the
Curie–Weiss model [6], the fully connected p-spin model [7], the Sherrington–
Kirkpatrick model [5], its diluted counterpart Viana–Bray model [9] and the diluted
ferromagnetic model [3]. All these models can just be seen as different components
of a more general class including models based on binary agents with mean field
interactions (Fig. 1). Now, in order to complete the analysis of the free energies
for the whole class, the X-OR-SAT (of the Random Optimization Theory [23]) and

[1]
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Fig. 1. Schematic representation of the connections among different models based on mean field interactions
between variables endowed with discrete symmetry.

the diluted ferromagnetic p-spin model, are still missing; this paper is devoted to
the study of the latter.

In a nutshell, the system is a ferromagnet in which the interactions happen in
p-plets, instead of more classical couples (see also [16]), and the interacting agents
live on a diluted random network, i.e. the Erdös–Rényi graph [31]. In general, the
graph can be specified by fixing the number of nodes N and its “connectivity” α,
which represents the average number of nearest neighbours per site.

As standard ferromagnets, the model is shown to exhibit two phases, a param-
agnetic one and a (replica symmetric) ferromagnetic one, on the the other hand, as
a difference with respect to the standard ferromagnet, the phase transition does not
display criticality for p > 2. The model is investigated by means of cavity field
technique and extensive numerical simulations.

While a rigorous proof of the existence of the thermodynamic limit for spin
structures defined on random graphs (as the one we are considering) is still to be
achieved [14, 15], research on their properties continue, and, in this sense, we assume
such an existence and work out our framework where we find an expression for the
free energy as a function of p, of the network connectivity α and of the (inverse)
temperature β, showing that it is consistent with known results. In particular, by
properly tuning p and α we recover the Curie–Weiss model [6], the diluted Ising
model [3] and the fully-connected p-spin model [7]; moreover, regardless of the
(finite) dilution, for p = 2 criticality is restored. Full agreement with Monte-Carlo
simulations is obtained both on the absence of the critical behaviour and on the
free energy structure.
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The paper is organized as follows: In Section 2 the model is introduced and some
of its properties worked out together with the introduction of a proper statistical
mechanics machinery, while in Section 3 its equilibrium is solved via the smooth
cavity field technique. Section 4 deals with the properties of the free energy and its
consistency with well-known models, while in Section 5 our numerical analysis is
presented. Section 6 is left for a summary and outlook. Finally, Appendix contains
the detailed proofs of the theorems introduced.

2. The diluted even-p-spin ferromagnet

In this section we explore the properties of a diluted even-p-spin ferromagnet:
we restrict ourselves only to even values of p for mathematical convenience as the
investigation with the cavities is much simpler. However, due to monotonicity of
all the observables in p, such restriction does not imply any loss of generality, as
confirmed also by numerical simulations performed on both even and odd values
of p.

Before proceeding, it is worth recalling some concepts concerning the diluted
random network where the magnetic system is set. Such a network is an Erdös–Rényi
(ER) graph [31] defined as follows: given a number N of nodes, we introduce
connections between them in such a way that each pair of vertices i, j has
a connecting link with independent probability equal to α/N , with 0 ≤ α ≤ N . As
a result, the probability distribution for the number of links per node (or coordination
number) is binomial with average α. Hence, the parameter α provides a measure
of the “degree of connectivity” of the graph itself: the smaller α the more diluted
the system; for α = 0 and α = N the extreme cases of fully disconnected and fully
connected graphs, respectively, are recovered. Notice that in the thermodynamic limit
N →∞ the binomial distribution converges towards the Poisson distribution [11].

The ER graph can be algebraically described by the so-called adjacency matrix
A which is an N × N symmetric matrix whose entry Aij is 1 if i �= j and the
two nodes are connected together, otherwise it is zero.

We now associate to each node i a binary variable σi = ±1, i ∈ [1, N ], and
we introduce p families {i1

ν }, {i2
ν }, . . . , {ipν } of i.i.d. random variables uniformly

distributed on the previous interval. Then, the Hamiltonian is given by the following
expression,

HN(σ, γ ) = −
kγN∑
ν=1

σ
i1
ν
σ

i2
ν
. . . σi

p
ν
, (1)

where kγN represents the number of connected p-plets present in the graph. Reflecting
the underlying network, kγN is a Poisson distributed random variable with mean
value γN . The relation among the coordination number α and γ is γ ∝ αp−1: this
will be easily understood a few lines later by a normalization argument coupled
with the high connectivity limit of this mean field model.

The quenched expectation of the model is given by the composition of the
Poissonian average with the uniform one performed over the families {iν},
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E[·] = EP Ei[·] =
∞∑

k=0

e−γN(γN)k

k!Np

1,N∑
i1
ν ....i

p
ν

[·], (2)

where the term Np ≈ N !/(N − p)! accounts for the number of possible ordered
p-plets.

As they will be useful in our derivation, it is worth stressing the following
properties of the Poisson distribution: Let us consider a function g : N→ R, and
a Poisson variable k with mean γN , whose expectation is denoted by E.

It is easy to verify that

E[kg(k)] = γNE[g(k − 1)], (3)

∂γNE[g(k)] =E[g(k + 1)− g(k)], (4)

∂2
(γN)2E[g(k)] =E[g(k + 2)− 2g(k + 1)+ g(k)]. (5)

The Hamiltonian written as in Eq. (1) has the advantage that it is the sum
of (a random number of) i.i.d. terms. To see the connection to a more familiar
Hamiltonian written in terms of adjacency matrix elements, we first notice that being
α/N the probability that two nodes are connected, among the Np possible p-plets,
the number of connected p-plets is Poisson-distributed with average αp−1N+O(

√
N)

for large N . We now define the adjacency tensor Ai1,...,ip ≡ Ai1,i2Ai1,i3 . . . Ai1,ip

which equals 1 whenever the p-plet i1, . . . , ip occurs to be connected; Ai1,...,ip is
Poisson distributed and has mean γN/Np ∼ (α/N)p−1. Hence, we can write the
following Hamiltonian which is thermodynamically equivalent to HN(σ, γ ) appearing
in Eq. (1),

−HN(σ ; γ ) ∼ −ĤN(σ ;A) =
N∑

i1,...,ip

Ai1,...,ipσi1 . . . σip . (6)

Then, it is enough to consider the streaming of the following interpolating free
energy (whose structure proves the statement a priori by its thermodynamic meaning),
depending on the real parameter t ∈ [0, 1],

φ(t) = E

N
ln

∑
σ

e
β(

∑k
ν=1 σ

i1ν
...σ

i
p
ν
+∑N

i1,...,ip
Ai1,...,ip σi1

...σip )
,

where k is a Poisson random variable with mean γNt and Ai1,...,ip are random
Poisson variables with mean (1− t)γ /Np−1. In this way the two separated models
are recovered in the two extremals of the interpolation (for t = 0, 1). By computing
the t-derivative, we get

1

γ

dφ(t)

dt
=E ln(1+	(σ

i1
0
. . . σi

p
0
) tanh(β)) (7)

− 1

Np

N∑
i1,...,ip

ln(1+	(σi1 . . . σip ) tanh(β)) = 0,
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where the label 0 in ik0 stands for a new spin, born in the derivative, according to
the Poisson property (4); as the i0’s are independent of the random site indices in
the t-dependent 	 measure, the equivalence is proved.

Following a statistical mechanics approach, we know that the macroscopic
behaviour, versus the connectivity α and the inverse temperature β = 1/T , is
described by the following free energy density (often called quenched pressure),

A(α, β)= lim
N→∞

AN(α, β) (8)

= lim
N→∞

1

N
E ln ZN(γ, β),

where
ZN(γ, β) =

∑
{σ }

e−βHN(σ,γ ) (9)

is the partition function. Taken g(σ) as a generic function, the Boltzmann state is
therefore given by

ω(g(σ)) = 1

ZN(γ, β)

∑
{σN }

g(σ)e−βHN(σ,γ ), (10)

with its replicated form

	(g(σ)) =
∏

s

ω(s)(g(σ (s))) (11)

and the total average 〈g(σ)〉 is defined as

〈g(σ)〉 = E[	(g(σ))]. (12)

Let us introduce further, as order parameters of the theory, the multi-overlaps

q1...n =
1

N

N∑
i=1

σ
(1)
i . . . σ

(n)
i , (13)

with a particular attention at the magnetization m = q1 = (1/N)
∑N

i=1 σi and to the
two replica overlap q12 = (1/N)

∑N
i=1 σ 1

i σ 2
i .

The normalization constant of the quenched pressure can be checked by performing
the expectation value of the cost function:

E[H ] =−γNmp,

E[H 2] − E
2[H ] = γ 2N2

[
(q

p

12 −mp)+O

(
1

N

)]
, (14)

by which it is easy to see that the model is well defined, in particular it is linearly
extensive in the volume N . Then, in the high connectivity limit each agent interacts
with all the others (α ∼ N ) and, in the thermodynamic limit, α →∞. Now, such
a high-connectivity limit, i.e. a linear divergence of α, is properly recovered for any
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finite p, p < N . In particular, if p = 2 the amount of couples in the summation
scales as N(N − 1)/2 and γ = 2α; if p = 3 the amount of triples scales as
N(N − 1)(N − 2)/3! with γ = 3!α2.

Before starting our free energy analysis, we want to point out also the connection
between this diluted version and the fully connected counterpart. Let us remember
that the Hamiltonian of the fully connected p-spin model (FC) can be written as
[7]

HFC
N (σ) = p!

2Np−1

∑
1≤i1<···<ip≤N

σi1σi2 . . . σip , (15)

and let us consider the trial function Â(t) defined as follows,

Â(t) = 1

N
E ln

∑
σ

exp
[
β

kγNt∑
ν

σ
i1
ν
σ

i2
ν
. . . σi

p
ν
+ (1− t)

β ′N
2

mp
]
, (16)

which interpolates between the fully connected p-spin model and the diluted one,
such that for t = 0 only the fully connected survives, while the opposite happens
for t = 1. Let us work out the derivative with respect to t to obtain

∂t Â(t)= (p − 1)αp−1 ln cosh(β) (17)

− (p − 1)αp−1
∑

n

−1n

n
θn〈qp

n 〉 −
β ′

2
〈mp〉,

by which we see that the correct scaling, in order to recover the proper infinite
connectivity model, is obtained when α →∞, β → 0 and β ′ = 2(p−1)αp−1 tanh(β)
is held constant.

REMARK. It is worth noting that for p = 2 we recover the correct scaling of
the diluted Curie-Weiss model [3], furthermore the diluted p-spin model reduces to
the fully connected one, in the infinite connectivity limit, uniformly in the size of
the system.

3. The smooth cavity approach

In this section we want to look for an iterative expression of the free energy
density by using a version of the cavity strategy [5, 6] that we briefly recall: the
idea behind the cavity techniques [18, 22], which, for our purposes, resembles the
stochastic stability approach [12, 25], is that information concerning the free energy
density can be extrapolated when looking at the incremental extensive free energy
given by the addition of a spin.

In diluted models, this additional spin changes also (infinitesimally in the high
N limit) the connectivity and, in evaluating how the free energy density varies
conformingly with this, we are going to prove that it can be written by a cavity
function and such a connectivity shift. So the behaviour of the system is encoded
into these two parts. The latter is simpler as it is made up only by stochastically
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stable terms (a proper definition of these terms will follow in the current section).
Conversely, the former term needs to be expressed via these terms and this must
be achieved by iterative expansions.

At first we show how the free energy density can be decomposed via these
two parts (the cavity function and the connectivity shift). Then, we analyze each
term separately. We will see that they can be expressed by the momenta of the
magnetization and of the multi-overlaps, weighted in a perturbed Boltzmann state,
which recovers the standard one in the thermodynamic limit.

THEOREM 1. In the thermodynamic limit, the quenched pressure of the even
p-spin diluted ferromagnetic model is given by the expression

A(α, β) = ln 2− α

p − 1

d

dα
A(α, β)+�(α, β, t = 1), (18)

where the cavity function �(α, β, t) is introduced as

E

[
ln

∑
{σ } e

β
∑kγ̃N

ν=1 σ
i1ν

σ
i2ν

...σ
i
p
ν e

β
∑k2γ̃ t

ν=1 σ
i1ν

σ
i2ν

...σ
i
p−1
ν

∑
{σ } e

β
∑kγ̃N

ν=1 σ
i1ν

σ
i2ν

...σ
i
p
ν

]

= E

[
ln

ZN,t (γ̃ , β)

ZN(γ̃ , β)

]
= �N(γ̃ , β, t), (19)

with γ̃ = γ (1+N−1) and

�(γ, β, t) = lim
N→∞

�N(γ̃ , β, t). (20)

For the sake of clearness and to avoid interrupting the paper with long technical
calculations, the proof of the theorem is reported in Appendix.

Thanks to the previous theorem, it is possible to figure out an expression for
the pressure by studying the properties of the cavity function �(α, β, 1) and the
connectivity shift ∂αA(α, β). Using the properties of the Poisson distribution (3) and
(4), we can write

d

dα
A(α, β)= (p − 1)

N
αp−2 d

dγ
E

[
ln ZN(γ, β)

]

= (p − 1)αp−2
E

[
ln

∑
{σ }

e
β

∑k+1
ν=1 σ

i1ν
...σ

i
p
ν −− ln

∑
{σ }

e
β

∑k
ν=1 σ

i1ν
...σ

i
p
ν

]
.

Now considering the relation (and definition)

e
βσ

i10
...σ

i
p
0 = cosh β + σ

i1
0
. . . σi

p
0

sinh β, (21)

θ = tanh β, (22)
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we can write
d

dα
A(α, β) = (p − 1)αp−2

[
ln cosh β + E[ln(1+ ω(σ

i1
ν
. . . σi

p
ν
)θ)]

]
. (23)

At the end, expanding the logarithm, we obtain

d

dα
A(α, β)= (p − 1)αp−2 ln cosh β − (p − 1)αp−2

∞∑
n=1

(−1)n

n
θn〈qp

1,...,n〉. (24)

With the same procedure it is possible to show that

d

dt
�(α̃, β, t)= 2α̃p−1 ln cosh β − 2α̃p−1

∞∑
n=1

(−1)n

n
θn〈qp−1

1,...,n〉α̃,t , (25)

where

α̃ = α
[ N

N + 1

] 1
p−1

.

Now, by Eq. (25), we see that even the cavity function, once the r.h.s. of Eq. (25)
is integrated back against t , can be expressed via all the order parameters of the
model,

�(α̃, β, t) = 2α̃p−1

(
t · ln cosh(β)−

∞∑
n=1

(−θ)n

n

∫ t

0
〈qp−1

1,...,n〉α̃,t

)
.

So, as expected, we can understand the properties of the free energy by analyzing
the properties of the order parameters: magnetization and overlaps, weighted in their
extended Boltzmann state ω̃t .

Further, as we expect that the order parameters are able to describe thermodynamics
even in the true Boltzmann states ω, 	 [21], accordingly to the following definitions,
we are going to show that filled order parameters (the ones involving even numbers
of replicas) are stochastically stable or, in other words, are independent of the
t-perturbation in the thermodynamic limit, while the others become filled, again in
this limit (such that even for them ωt → ω in the high N limit and thermodynamics
is recovered). The whole is explained in the following definitions and theorems of
this section.

DEFINITION. We define the t-dependent Boltzmann state ω̃t as

ω̃t (g(σ )) = 1

ZN,t (γ, β)

∑
{σ }

g(σ)e
β

∑kγ̃N
ν=1 σ

i1ν
...σ

i
p
ν
+β

∑k2γ̃ t
ν=1 σ

i1ν
...σ

i
p−1
ν , (26)

where ZN,t (γ, β) extends the classical partition function in the same spirit of the
numerator of Eq. (26) itself.

We see that the original Boltzmann state of an N -spin system is recovered as
t approached 0, while, in the limit t → 1 and gauging the spins, it is possible to
build a Boltzmann state of an N + 1 spins, with a little shift both in α, β, which
vanishes in the N →∞ limit.
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Now, coherently with the implication of thermodynamic limit (by which
AN+1(α, β) − AN(α, β) = 0 for N → ∞), we are going to define the filled
overlap monomials and show their independence (stochastic stability) with respect
to the perturbation encoded by the interpolating parameter t . These parameters are
already “good” order parameters describing the theory, while the others (the fillable
ones) must be expressed via the formers, and this will be achieved by expanding
them with a suitably introduced streaming equation.

DEFINITION. We can split the class of monomials of the order parameters in
two families:
• We define filled or equivalently stochastically stable those overlap monomials

with all the replicas appearing an even number of times (i.e. q2
12, m2,

q12q34q1234).
• We define fillable those overlap monomials with at least one replica appearing

an odd number of times (i.e. q12, m, q12q34).

We are going to show three theorems that will play a guiding role for our
iteration: as this approach has been deeply developed in similar contexts (as fully
connected Ising and p-spin models [6, 7], fully connected spin glasses [5] or diluted
ferromagnetic models [3, 11], which are the “boundaries” of the model of this paper)
we will not show all the details of the proof, but we sketch them in Appendix
as they are really intuitive. The interested reader will find a clear derivation in
Appendix and can deepen this point by looking at the original works.

THEOREM 2. In the thermodynamic limit and setting t = 1 we have

ω̃N,t (σi1σi2 . . . σin) = ω̃N+1(σi1σi2 . . . σinσ
n
N+1). (27)

THEOREM 3. Let Qab be a fillable monomial of the overlaps (this means that
qabQab is filled), where a, b ∈ N. We have

lim
N→∞

lim
t→1
〈Qab〉t = 〈qabQab〉, (28)

(examples: for N → ∞ we get 〈m1〉t → 〈m2
1〉, 〈q12〉t → 〈q2

12〉, 〈q12q34〉t →
〈q12q34q1234〉).

THEOREM 4. In the N → ∞ limit, the averages 〈·〉 of the filled polynomials
are t-independent in β average.

4. Properties of the free energy

In this section we are going to address various points: at first we work out the
constraints that the model must fulfill, which are in agreement both with a self-
averaging behaviour of the magnetization and with the replica-symmetric behaviour
of the multi-overlaps [27]; then we write an iterative expression for the free energy
density and its links with known models as diluted ferromagnets (p → 2 limit) and
fully connected p-spin models (α →∞ limit).
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With the definition

β̃ = 2(p − 1)α̃p−1θ (29)

= 2(p − 1)αp−1 N

N + 1
θ

N→∞−→ 2(p − 1)αp−1θ = β ′,

we show (and prove in Appendix) the streaming of replica functions, by which
fillable multi-overlaps can be expressed via filled ones.

PROPOSITION 1. Let Fs be a function of s replicas. Then the following streaming
equation holds:

∂〈Fs〉t,α̃
∂t

= β̃
[ s∑

a=1

〈Fsm
p−1
a 〉t,α̃ − s〈Fsm

p−1
s+1 〉t,α̃

]
(30)

+ β̃θ
[ 1,s∑

a<b

〈Fsq
p−1
a,b 〉t,α̃ − s

s∑
a=1

〈Fsq
p−1
a,s+1〉t,α̃

+ s(s + 1)

2! 〈Fsq
p−1
s+1,s+2〉t,α̃

]
+O(θ2).

REMARK. We stress that, at the first two levels of approximation presented here,
the streaming has the structure of a θ -weighted linear sum of the Curie–Weiss
streaming (θ0 term) [6] and the Sherrington–Kirkpatrick streaming (θ1 term) [5],
providing mathematical structures of disordered systems with a certain degree of
independence with respect to the kind of quenched noise (frustration or dilution).

It is now immediate to obtain the linear order parameter constraints (often known
as Aizenman–Contucci polynomials [4, 6, 11]) of the theory: in fact, the generator
of such a constraint is the streaming equation when applied on each filled overlap
monomial (or equivalently it is possible to apply the streaming on a fillable one
and then gauge the obtained expression; for the sake of clearness both the methods
will be exploited, the former for q2 and the latter for m).

As examples, dealing with the terms mp−1 and q
p−1
2 , it is straightforward to

check that

0= lim
N→∞

∂〈mp−1
N 〉t,α̃
∂t

= β̃
(
〈m2(p−1)

1 〉 − 〈mp−1
1 〉2

)

+ β̃θ
(
〈mp−1

1 q
p−1
2 〉 − 〈mp−1

1 〉〈qp−1
2 〉

)
+O(θ3),

then, by gauging the above expression, in the thermodynamic limit, (as limN→∞〈mp−1
N 〉t

→ 〈mp〉), we get(
(〈m2p

1 〉 − 〈mp

1 〉2)+ θ(〈q2p

2 〉 − 〈qp

2 〉2)
)
= 0, ∀θ ∈ R

+.

The fact that the previous expression holds for every θ suggests self-averaging for
the energy (by which all the linear constraints can be derived [11]) due to the first
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term, as well as replica symmetric behaviour of the two replica overlap due to the
last one. Analogously, the contribution of the 〈q2

2 〉 generator is

0=
(
(〈qp−1

12 m
p−1
1 〉 + 〈qp−1

12 m
p−1
2 〉 − 2〈qp−1

12 m
p−1
3 〉)

+ θ(〈qp−1
12 q

p−1
12 〉 − 4〈qp−1

12 q
p−1
23 〉 + 3〈qp−1

12 q
p−1
34 〉)

)
,

which shows replica symmetric behaviour of the magnetization by the first term
and the classical Aizenman–Contucci relations [4, 11] by the latter.

Furthermore, turning now our attention to the free energy, it is easy to see that
the streaming equation allows to generate all the desired overlap functions coupled
to every well behaved Fs . In this way, if Fs is a fillable overlap, we can always
expand recursively it into a filled one, the only price to pay given by the θ order
that has to be reached or, which is equivalent, the number of derivatives that have
to be performed.

Let us now remember the t-derivative of the cavity function (25), showing
explicitly the first two terms of its expansion,

d

dt
�(α̃, β, t)= 2α̃p−1 ln cosh β + β̃〈mp−1

1 〉α̃,t (31)

− β̃

2
θ〈qp−1

12 〉α̃,t − 2β̃p−1
∞∑

n=3

−1nθn

n
〈qp−1

1,...,n〉α̃,t .

As derivative of fillable terms involves filled ones, we can arrive to an analytical
form of �(α, β) if we calculate it as the t-integral of its t-derivative, together
with the obvious relation �(t = 0) = 0. Hence, if we apply the streaming equation
machinery to the overlaps constituting Eq. (31), we are able to fill them and to
remove their t-dependence in the thermodynamic limit. In this way we are allowed
to bring them out from the final t-integral.

In fact, without gauging (so, not only in the ergodic regime, where symmetries
are preserved), we can expand the streaming of 〈mp−1〉t ,

d〈mp−1
1 〉t
dt

= β̃
[
〈m2(p−1)

1 〉 − 〈mp−1
1 m

p−1
2 〉t

]

− β̃θ
[
〈mp−1

1 q
p−1
12 〉t − 〈mp−1

1 q
p−1
23 〉t

]
+O(θ2).

We can note the presence of the filled monomial 〈m2(p−1)

1 〉, whose t-dependence
has been omitted explicitly to underline its stochastic stability, while the overlaps
〈mp−1

1 m
p−1
2 〉t and 〈mp−1

1 q
p−1
12 〉t can be saturated in two steps of streaming. This will

be sufficient, wishing to have a fourth-order expansion for the cavity function.
We now derive these two functions and apply the same scheme to all the overlaps

that appear and that have to be necessary filled in order to obtain the desired result,
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d〈mp−1
1 m

p−1
2 〉t

dt
= 2β̃

[
〈m2(p−1)

1 m
p−1
2 〉t − 〈mp−1

1 m
p−1
2 m

p−1
3 〉t

]

+ θβ̃
[
〈mp−1

1 m
p−1
2 q

p−1
12 〉 − 4〈mp−1

1 m
p−1
2 q

p−1
13 〉t

+ 3〈mp−1
1 m

p−1
2 q

p−1
34 〉t

]
, (32)

d〈m2(p−1)

1 m
p−1
2 〉t

dt
= 2β̃

[
〈m2(p−1)

1 m
2(p−1)

2 〉t
]
+ β̃

[
fillable terms

]
+O(θ2). (33)

Integrating back in t and neglecting higher order terms we have

〈m2(p−1)

1 m
p−1
2 〉t = β̃

[
〈m2(p−1)

1 m
2(p−1)

2 〉
]
t, (34)

and we can write

〈mp−1
1 m

p−1
2 〉t = β̃θ〈mp−1

1 m
p−1
2 q

p−1
12 〉t + β̃2〈m2(p−1)

1 m
2(p−1)

2 〉t2. (35)

Let us take a look now at the other overlap 〈mp−1
1 q

p−1
12 〉t ,

d〈mp−1
1 q

p−1
12 〉t

dt
= β̃

[
〈m2(p−1)

1 q
p−1
12 〉t − 〈mp−1

1 m
p−1
2 q

p−1
12 〉t

− 2〈mp−1
1 m

p−1
2 m

p−1
3 q

p−1
12 〉t

]
+O(θ2), (36)

that gives
〈mp−1

1 q
p−1
12 〉t = β̃〈mp−1

1 m
p−1
2 q

p−1
12 〉t +O(θ2). (37)

At this point we can write for 〈mp−1
1 〉t,α̃ (and consequently for 〈qp−1

12 〉t,α̃)

〈mp−1
1 〉t,α̃ = β̃〈m2(p−1)

1 〉t − β̃3

3
〈m2(p−1)

1 m
2(p−1)

2 〉t3

− β̃2θ〈mp−1
1 m

p−1
2 q

p−1
12 〉t2 +O(θ3),

〈qp−1
12 〉t,α̃ = β̃θ〈q2(p−1)

12 〉t + β̃2〈mp−1
1 m

p−1
2 q

p−1
12 〉t2 +O(θ3).

With these relations, Eq. (31) becomes

d

dt
�N(α, β, t)= 2αp−1 ln cosh β + β̃2〈m2(p−1)

1 〉t

− β̃2θ2

2
〈q2(p−1)

12 〉t − 3β̃3θ

2
〈mp−1

1 m
p−1
2 q

p−1
12 〉t2

− β̃4

3
〈m2(p−1)

1 m
2(p−1)

2 〉t3 +O(θ5),
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which ultimately allows us to write an iterated expressions for � evaluated at t = 1,

�N(α, β, 1)= 2αp−1 ln cosh β + β̃2

2
〈m2(p−1)

1 〉 − β̃2θ2

4
〈q2(p−1)

12 〉 (38)

− β̃3θ

2
〈mp−1

1 m
p−1
2 q

p−1
12 〉 − β̃4

12
〈m2(p−1)

1 m
2(p−1)

2 〉t3 +O(θ5).

Overall the result we were looking for, namely a Landau-like polynomial form for
the free energy, reads off as

A(α, β)= ln 2 + αp−1 ln cosh β (39)

+ β ′

2

(
β ′〈m2(p−1)〉 − 〈mp〉

)

+ β ′θ
4

(
β ′θ〈q2(p−1)

12 〉 − 〈qp

12〉
)
+O(θ5).

Now, several conclusions can be addressed from the expression (39). In fact,
as we are going to see immediately through remarks, this formula can bridge
free-energies of quite different models (diluted versus nondiluted, critical versus
uncritical) and acts as a general free energy expression close to the phase transition.

REMARK. At first let us note that, by constraining the interaction to be pairwise,
critical behaviour should arise [21]. Coherently, we see that for p = 2 we can write
the free energy expansion as

A(α, β)p=2 = ln 2+ α ln cosh(β)− β ′

2
(1− β ′)〈m2〉 − β ′θ

4
〈q2

2 〉,
which coincides with the one of the diluted ferromagnet [3] and displays criticality
at 2αθ = 1, where the coefficient of the second-order term vanishes, in agreement
with previous results [3] and Landau theory [21].

REMARK. The free energy density of the fully connected p-spin model is [7]
A(β ′) = ln 2+ ln cosh(βmp−1)− (β/2)mp, which coincides with the expansion (39)
in the limit of α →∞ and β → 0 with β ′ = 2(p − 1)αp−1θ .

REMARK. It is worth noting that the connectivity no longer plays a linear role in
contributing to the free energy density, as it does happen for the diluted two body
models [3, 19]. This is interesting in applications to economic networks, where, for
high values of coordination number it may be interesting to develop strategies with
more than one coupling [28].

5. Numerics

We now analyze the system described in the previous section, from the numerical
point of view by performing extensive Monte-Carlo simulations. Within this approach
it is more convenient to use the second Hamiltonian introduced (see Eq. (6)),
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ĤN(σ, A) = −
N∑
ii

σi1

N∑
i2<i3<···<ip=1

Ai1,...,ipσi2σi3 . . . σip . (40)

The product between the elements of the adjacency tensor ensures that the p − 1
spins considered in the second sum are joined by a link with i1.

The evolution of the magnetic system is realized by means of a single spin-flip
dynamics based on the Metropolis algorithm [24]. At each time step a spin is
randomly extracted and updated whenever its coordination number is larger than
p − 1. For α large enough (at least above the percolation threshold, as obviously
holds for the results found previously) and p = 3, 4 this condition is generally
satisfied. The updating procedure for a spin σi works as follows: First, we calculate
the energy variation Ei due to a possible spin flip, which for p = 3 and p = 4
reads, respectively,

Ei = 2σi

N∑
j<k=1

Ai,jAi,kσjσk, (41)

Ei = 2σi

N∑
j<k<w=1

Ai,jAi,kAi,wσjσkσw. (42)

Now, if Ei < 0, the spin-flip σi → −σi is realized with probability 1, otherwise
it is realized with probability e−βE .

The cases p = 3, 4 were studied in detail, while for p = 2 we refer to [3].
Our investigations are aimed to provide the evidence for the existence of a phase
transition and its nature, as well as to highlight a proper scaling for the temperature
as the parameter α is tuned.

Concerning the first point, we measured the so-called Binder cumulants defined
as

GN(T (α)) ≡ 1− 〈m4〉N
3〈m2〉2N

, (43)

where 〈·〉N indicates the statistical average obtained for a system of size N and
T = β−1 [29]. The study of Binder cumulants is particularly useful to locate and
catalogue the phase transition. In fact, in the case of continuous phase transitions,
GN(T ) takes a universal positive value at the critical point Tc, namely all the
curves obtained for different system sizes N cross each other. On the other hand,
for a first-order transition GN(T ) exhibits a minimum at Tmin, whose magnitude
diverges as N . Moreover, a crossing point at Tcross can be as well detected when
curves pertaining to different sizes N are considered [30]. Now, Tmin and Tcross
scale as Tmin − Tc ∝ N−1 and Tcross − Tc ∝ N−2, respectively.

In Fig. 2 we show data for GN(T ) obtained for p = 3 and considering systems
of different sizes, namely N = 400, N = 500, and N = 800, but equal connectivity,
namely α = 50 (left panel) and α = 80 (right panel). The existence of a minimum
is clear and it occurs at T ≈ 625 and T ≈ 1600, respectively; notice that such
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Fig. 2. Binder cumulants GN(T ) for systems with p = 3 and different size N , as shown in the legend, and
connectivity α = 50 (left panel) and α = 80 (right panel). The inset shows Tmin − α2/4 versus the system
size N in a logarithmic scale plot, again α = 80; data points from numerical simulations (•) are fitted by the
scaling law N−1.

temperatures scale like αp−1, in agreement with the analytic results above. Analogous
results are found also for p = 4 and they all highlight the existence of a first-order
phase transition (hence lack of criticality) at a temperature which depends on the
connectivity α.

More precisely, focusing the attention on the case p = 3, according to Fig. 2 we
can derive Tc = α2/4, which was compared with Tmin measured for several choices
of α and N : Indeed, Tmin asymptotically approaches α2/4 as N gets larger. We
also find that the scaling behaviour of Tmin − α2/4 is consistent with ∼ N−1; the
inset of Fig. 2 shows the special case α = 80.

In order to deepen the role of connectivity in the evolution of the system we
measure the macroscopic observable 〈m〉 and its (normalized) fluctuations 〈m2〉−〈m〉2,
studying their dependence on T and on α. Data for different choices of size and
dilution are shown in Fig. 3 for p = 3 and in Fig. 4 for p = 4.

The profile of the magnetization, with an abrupt jump, and the corresponding
peak found for its fluctuations confirm the existence of a first-order phase transition
at a well-defined temperature Tc whose value depends on the dilution α. More
precisely, by properly normalizing the temperature in agreement with analytical
results, namely β̃ ≡ βαp−1, we found a very good collapse of all the curves
considered. Hence, we have agreement among analytic and numerics concerning the
scaling of the temperature as αp−1. Moreover our data clearly indicate that the
critical temperature can be written as Tc = f (p)αp−1, where f (p) is a monotonic
decreasing function of p. In particular, numerical hints suggest f (3) = 1/4 and
f (4) ≈ 0.08.
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Fig. 3. Magnetization (main figure) and its normalized fluctuations (inset) for 3-spin systems of different sizes
and different dilution as a function of β αp−1. The collapse of all the curves provides a strong evidence for
the scaling of the temperature.
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Fig. 4. Magnetization for 4-spin systems of different sizes and different dilution as a function of β αp−1. The
collapse of all the curves provides a strong evidence for the scaling of the temperature.

6. Conclusions

In this paper we performed an analysis of the ferromagnetic diluted p-spin model
via cavity field technique and numerical simulations. Several questions have been
addressed, including an expression for the free energy, the self-averaging families
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for the order parameters and a study of the phase transition among a paramagnetic
and a ferromagnetic regime. Despite a rigorous picture for the lacking of replica
symmetry breaking in diluted ferromagnet is still unavailable, we supported strong
evidence toward a full replica symmetric behaviour in the whole phase diagram. In
particular, we showed the vanishing of criticality for p > 2 and we found a proper
scaling for the transition temperature as a function of the system dilution, namely
Tc ∼ αp−1.

Further development should be two-fold: from one side the same analysis is
still to be performed on the X-OR-SAT model which constitutes another element
making up the class of models based on binary agents with mean field interaction.
On the other side, the whole mathematical architecture still suffers a not exhaustive
development; in fact the difference among even and odd p model, at least for large
p, is thermodynamically almost irrelevant, while the lacking of the gauge symmetry
in the latter rules out the method at this stage. Moreover, it is highlighted the
need to develop a Hamilton–Jacobi technique [17] in order to handle this kind of
problem to avoid the iteration procedure implied by the cavity method.

Finally, we underline that our analysis has been carried on assuming the existence
of the thermodynamic limit for spin-structures defined on diluted networks, although
a rigorous proof is still missing; we plan to investigate the existence of the
thermodynamic limit in the future.

Appendix: Analytical proofs

In this section the proofs of all the theorems and Proposition 1 are reported.

Proof of Theorem 1:
Bridging a system made of N + 1 spins with one made of N spins implies the

definition of rescaled γ, α parameters, accordingly to [3, 11]

γ̃ = γ
N

N + 1
N→∞−→ γ, (44)

α̃= α
[ N

N + 1

] 1
p−1 N→∞−→ α. (45)

We have, in distribution, the Hamiltonian of a system made of N + 1 particles
writable as

HN+1(σ, γ )=−
kγ (N+1)∑

ν=1

σ
i1
ν
σ

i2
ν
. . . σi

p
ν

(46)

∼−
kγ̃N∑
ν=1

σ
i1
ν
σ

i2
ν
. . . σi

p
ν
−

k2γ̃∑
ν=1

σ
i1
ν
σ

i2
ν
. . . σ

i
p−1
ν

σN+1,

that we may rewrite as

HN+1(σ, γ ) = HN(σ, γ̃ )+ ĤN(σ, 2γ̃ ). (47)
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Following the above decomposition, let us consider the partition function of the
same N + 1 spin model and let us introduce the gauge transformation σi → σiσN+1
which is a symmetry of the Hamiltonian known as spin-flip,

ZN+1(γ, β)∼
∑
{σN+1}

e−βHN(σ,γ̃ )−βĤN (σ,γ̃ )σN+1 (48)

=
∑
{σN+1}

e
βHN(σ,γ̃ )+β

∑k2γ̃
ν=1 σ

i1ν
...σ

i
p−1
ν

σN+1

= 2
∑
{σN }

e
β

∑kγ̃N
ν=1 σ

i1ν
...σ

i
p
ν
+β

∑k2γ̃
ν=1 σ

i1ν
...σ

i
p−1
ν

= 2ZN(γ̃ , β)ω̃(e−βĤN ),

where the new Boltzmann state ω̃, and its replicated 	̃, are introduced as

ω̃(g(σ ))=
∑
{σN } g(σ)e−βHN(γ̃ ,σ )∑
{σN } e

−βHN(γ̃ ,σ )
, (49)

	̃(g(σ ))=
∏

i

ω̃(i)(g(σ (i))). (50)

To continue the proof we now take the logarithm of both sides of the last expression
in Eq. (48), apply the expectation E and subtract the quantity E[ln ZN+1(γ̃ , β)]. We
obtain

E[ln ZN+1(γ, β)]−E[ln ZN+1(γ̃ , β)] = ln 2−E

[
ln

ZN+1(γ̃ , β)

ZN(γ̃ , β)

]
+�N(γ̃ , β, 1), (51)

For large N , the left-hand side gives

E[ln ZN+1(γ, β)] −E[ln ZN+1(γ̃ , β)] (52)

= (γ − γ̃ )
d

dγ
E[ln ZN+1(γ, β)]|γ=γ̃

= γ
1

N + 1

d

dγ
E[ln ZN+1(γ, β)]|γ=γ̃ =

= γ
d

dγ
AN+1(γ, β). (53)

Considering the α dependence of γ , we have

∂γ ∝
1

(p − 1)αp−2
∂α ⇒ γ

d

dγ
A ∝ α

p − 1

d

dα
A,

where the symbol ∝ instead of = reflects the arbitrariness by which we include
the p! term, multiplying α, inside the definition of γ , or directly in α.
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Performing now the thermodynamic limit, we see that at the right-hand side we
have

lim
N→∞

E[ln ZN+1(α, β)

ZN(α̃, β)
] −→ A(α, β) (54)

and the theorem is proved. �

Proofs of Theorems 2, 3, 4:
In this sketch we are going to show how to get Theorem 2 in some detail.

It automatically has as a corollary Theorem 3 which ultimately gives, as a simple
consequence when applied on filled monomials, Theorem 4.

Let us assume for a generic overlap correlation function Q, of s replicas, the
following representation

Q =
s∏

a=1

∑
ia
l

na∏
l=1

σa
ia
l
I ({ial }),

where a labels the replicas, the internal product takes into account the spins (labeled
by l) which contribute to the a-part of the overlap qa,a′ and runs to the number of
time that the replica a appears in Q. The external product takes into account all the
contributions of the internal one and the I factor fix the constraints among different
replicas in Q; so, for example, Q = q13q23 can be decomposed in this form noting
that s = 3, n1 = n3 = 1, n2 = 2, I = N−2δ

i1
1 ,i3

1
δ
i2
1 ,i3

2
, where the δ functions fixes the

links between replicas 1, 3 → q1,3 and 2, 3 → q2,3. The averaged overlap correlation
function is

〈Q〉t = E
∑
ia
l

I ({ial })
s∏

a=1

ωt

( na∏
l=1

σa
ia
l

)
.

Now if Q is a fillable polynomial, and we evaluate it at t = 1, let us decompose
it, using the factorization of the ω state on different replica, as

〈Q〉t = E
∑
ia
l
,ib

l

I ({ial }, {ibl })
u∏

a=1

ωa

( na∏
l=1

σa
ia
l

) s∏
b=u

ωb

( nb∏
l=1

σb

ib
l

)
,

where u stands for the number of the fillable replicas inside the expression of Q.
So we split the measure 	 into two different subsets ωa and ωb: in this way the
replica belonging to the b subset are always in even number, while the ones in the
a subset are always odd. Applying the gauge σa

i → σa
i σ a

N+1, ∀i ∈ (1, N) the even
measure is unaffected by this transformation (σ 2n

N+1 ≡ 1) while the odd measure
takes a σN+1 inside the Boltzmann measure.

〈Q〉 =
∑
ia
l
,ib

l

I ({ial }, {ibl })
u∏

a=1

ω
(
σa

N+1

na∏
l=1

σa
ia
l

) s∏
b=u

ω
(
σb

N+1

nb∏
l=1

σb

ib
l

)
. (55)

At the end we can replace in the last expression the index N + 1 of σN+1 by k
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for any k �= {ial } and multiply by one as 1 = N−1 ∑N
k=0. Up to orders O(1/N),

which go to zero in the thermodynamic limit, we have the proof.
It is now immediate to understand that Theorem 2 on a fillable overlap monomial

has the effect of multiplying it by its missing part to be filled (Theorem 3), while
it has no effect if the overlap monomial is already filled (Theorem 4). �

Proof of Proposition 1:
The proof works by direct calculation:

∂〈Fs〉t,α̃
∂t

= ∂E

∂t

[∑
{σ } Fse

∑s
a=1(β

∑kγ̃N
ν=1 σa

i1ν
...σ a

i
p
ν
+β

∑k2γ̃ t
ν=1 σa

i1ν
...σ a

i
p−1
ν

)

∑
{σ } e

∑s
a=1(β

∑kγ̃N
ν=1 σa

i1ν
...σ a

i
p
ν
+β

∑k2γ̃ t
ν=1 σa

i1ν
...σ a

i
p−1
ν

)

]
(56)

= 2α̃p−1
E

[
	̃t (Fse

∑s
a=1(βσa

i10
...σ a

i
p−1
0

)

)

	̃t (e

∑s
a=1(βσa

i10
...σ a

i
p−1
0

)

)

]
− 2α̃p−1〈Fs〉t,α̃

= 2α̃E

[	̃t (Fs�
s
a=1(cosh β + σa

i1
0
. . . σ a

i
p−1
0

sinh β))

	̃t (�
s
a=1(cosh β + σa

i1
0
. . . σ a

i
p−1
0

sinh β))

]
− 2α̃p−1〈Fs〉t,α̃

= 2α̃p−1

(
E

[	̃t (Fs�
s
a=1(1+ σa

i1
0
. . . σ a

i
p−1
0

θ))

(1+ ω̃t (σ
a

i1
0
. . . σ a

i
p−1
0

)θ)s

]
− 〈Fs〉t,α̃

)
,

Now noting that

�s
a=1(1+ σa

i1
0
. . . σ a

i
p−1
0

θ)= 1+
s∑

a=1

σa

i1
0
. . . σ a

i
p−1
0

θ +
1,s∑
a<b

σ a

i1
0
. . . σ a

i
p−1
0

σb

i1
0
. . . σ b

i
p−1
0

θ2 + · · · ,

1

(1+ ω̃t θ)s
= 1− sω̃t θ +

s(s + 1)

2! ω̃2
t θ

2 + · · ·

we obtain

∂〈Fs〉t,α̃
∂t

= 2α̃p−1
(
E

[
	̃t

(
Fs(1+

s∑
a=1

σa

i1
0
. . . σ a

i
p−1
0

θ (57)

+
1,s∑
a<b

σ a

i1
0
. . . σ a

i
p−1
0

σb

i1
0
. . . σ b

i
p−1
0

θ2 + . . . )
)
×

×
(

1− sω̃t θ +
s(s + 1)

2! ω̃2
t θ

2 + . . .

)]
− 〈Fs〉t,α̃

)
,

from which our thesis follows. �
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