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SUMMARY

In this paper we apply some of the recent mathematical techniques (mainly based on interpolation)
developed in the spin glass theory to the ferromagnetic p-spin model. We introduce two Hamiltonians and
derive their thermodynamics. This is a second step toward an alternative and rigorous formulation of the
statistical mechanics of simple systems on lattice. A first step has been performed in J. Stat. Phys. (2007;
arXiv:0712.1344) where the techniques have been tested on the two-body Ising model. For completeness
the adaptation of the well-known random energy model to the context of the ferromagnetism is presented.
At the end a discussion on the extension of these techniques to Gaussian-disordered p-spin models is
also briefly outlined. Copyright © 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Owing to long time waited breakthrough in mathematical methods, in the last decade the statistical
mechanics of disordered systems earned an highly increasing weight as a powerful framework
to analyze complex systems. As a matter of fact several interesting methods, alternative to the
well-known replica trick [1], in the so-called spin glass field of research [2, 3], were developed.
In a recent previous study [4] the whole machinery built in [4-10] has been applied to the
paradigmatic two-body Ising model for ferromagnetism [11]. However, its generalization to (even)
p-spin interactions, which makes the model (both qualitatively and quantitatively) different from
the (two interacting body) Ising model, was not taken into account as well as its limit of infinitely
many interacting particles (lim p — oo), which turns out to be an adaptation to non-frustrated
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784 A. BARRA

systems of the so-called random energy model (REM) [12], introduced in the spin glass literature
as a simplified, correlation-neglecting [13], model.

In this paper our task is to apply some of these techniques (mainly interpolations [7, 8, 14] and
smooth cavity fields [5, 9]) to these models so to close our treatment of simple systems.

The paper is structured as follows: in Section 2 we introduce the p-spin ferromagnetic model; we
prove the existence of the thermodynamic limit and analyze its thermodynamics with the standard
approach of statistical mechanics [15]. In Section 3, focusing on one of the two Hamiltonian
we present, we introduce and adapt the smooth cavity field technique [5] to this model and we
show some general properties for the order parameter (i.e. self-averaging constraints and self-
consistency equation), which, as in the standard Ising model, is found to be the magnetization
[4,11]. In Section 4 we focus on the second Hamiltonian and we study its thermodynamics,
obtaining self-averaging and self-consistency for the order parameter (again the magnetization)
within a framework proper of analytical mechanics. Section 5 is left for the adaptation of the REM
to a theory of ferromagnetism. Section 6 generalizes these approaches to the disordered case. A
discussion follows at the end.

2. THE FERROMAGNETIC EVEN P-SPIN MODEL

2.1. Definition of the model

The Hamiltonian of the even p-spin Ising model is defined on N spin configurations ¢:i — o; ==+1,
labeled by i =1... N, and we will deal mainly with the following two versions:

(p—D!

Hy(0) = ——+ > Gi,Giy ...0; (1)
NPl 1<y <ig-<ip<N e v
p!

HN(O')Z—— Z O’iIO'iz...O','p (2)

-
INP=Y 1<y <igi<ip<N

Both the Hamiltonians above are suitable for a good thermodynamic limit (see Section 2.2) and
offer a correct thermodynamics; hence, they are thought of as extension to several interacting
variables of the two-body Ising—Curie—Weiss model for ferromagnetism. However, we stress that
as we will deal also with the p — oo at the end, the Hamiltonian 2 is suitable for this purpose and
consequently will be analyzed later, close to the infinitely interacting particle limit.

We assume throughout the paper that, without explicit indications, there is no external field
and p is an even natural number. The thermodynamic of the model is carried by the free energy
density fn ()= Fy(f)/N, which is related to the Hamiltonian via

e~ PFN(B) :ZN(ﬁ):Ze—ﬁHN(ﬂ) Q3)
v

Zn(f) being the partition function. For the sake of convenience, we will not deal with fx(f)=
N~'Fy(p) but with the thermodynamic pressure o(ff) defined via

. . ) 1
a(f)= lim ay(f)= lim —ffy(f)= lim —InZy(p) )
N—o0 N—00 N—oo N
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NOTES ON FERROMAGNETIC P-SPIN AND REM 785

A key role will be played by the magnetization m, its fluctuations and its momenta, and hence let
us introduce it as

1 ngNe_ﬂHN(a)

my=— > o, (my)="LZ—————
N | GZn ! 3, e PHN ()

&)

2.2. Infinite volume limit

In this subsection we want to apply the Guerra—Toninelli interpolation scheme [10, 16] to the
model, to prove the existence of the thermodynamic limit.
In a nutshell the idea is two steps:

e show that the free energy can be bounded in the system size N;
e show that the free energy is sub-additive in the system size N.

Combining the two steps together the existence of the thermodynamic limit follows automatically,
as explained, for instance, in [17].

To obtain the first point, it is enough to note that, when dealing with the simple ferromagnetic
models, it is possible to obtain a bound in the size for the free energy simply by aligning all the
spins among themselves and we have for the two outlined Hamiltonians, respectively, (1) and (2)

Bp=1! o o

Zn(p) = Ze(N[;b—l Zilmil) Giy--0i < Zeﬁ/i/pp—ll) %P gZNeﬁN/P ©
g o

1 p 1 B
() =< IZy(A<In2+= (1= )= a(P<In2+— )
pp! . ) Bp! ¥4

ZN(ﬁ) = ZezNI]’—I Zilmip 0'11---O'lp<ZezN;]7—l %gzNeﬁN/Z (8)
g a

By =—tnzyB<in2+L (1- 1) s ap<inat! )

Both the equations reduce to the well-known high-temperature expression of the Curie—Weiss
model if p=2 [4, 11].

In the next step we must show subadditivity of the model with respect to the system size: to
address this task we split the system built by N spins in two subsystems of N and N, spins,
respectively, such that N; 4+ N, =N and by interpolating among a partition function Zy (ff) of N
spins and the product of two partition functions Zy, (f)Zn,(f) of N1 and N, spins we obtain the
result.

To this purpose, note that the Hamiltonian scales as (Hy (o)) ~ N (m?) and consider the inter-
polating parameter 0<t<1, and the auxiliary partition function

Zn(t)= %exp(ﬁgk(P)(Ntmp(0)+N1 (1=0)m{ (0)+N2(1=1)m3 (a))) (10)

where the function g (p) takes into account the different (but irrelevant in this context) dependence

on p of Equations (1) and (2), (i.e. for k=1 we consider the Hamiltonian (1) and g|(p)= p_l;

Copyright © 2008 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009; 32:783-797
DOI: 10.1002/mma



786 A. BARRA

otherwise g2(p)= %). Of course, for the boundary values =0, 1 one has

Lz = 11
~yphn N = fy(p) (1D
1 N N-
~p IO = Wlfm </3>+W2fN2(ﬂ) (12)

and, taking the derivative with respect to ¢, we obtain

d 1

N N
~a NN =—g(p) <m”<o)—ﬁlm{’ (0)——rm5 <°'>>t (13)

where ( ); denotes the Boltzmann—Gibbs thermal average with the extended weight encoded in the
t-dependent partition function (10) and we defined m (o), m2 (o) the magnetizations corresponding
to the subsystems, i.e.

1 M 1 N
my(o)=—7> 0;, my(o)=— ) 0 (14)
N1 /3 2 i=N;+1

Then one sees that m (o) is a convex linear combination of m(¢) and m>(0):
N N.
m(0)=—rmi (@) +—ma(0) (15)

and since the function x — x? is convex, one has

ZyN(P)< {X%GXp(ﬁ(Nlmf(O') +Nom3 (9)) =Zn, (B Zn, (B) (16)

Therefore, integrating Equation (13) back in ¢ between O and 1, and recalling the boundary
conditions (11), (12), the super-additivity property (17) is revealed:

1
NfN(ﬂ)z_EanN(ﬁ)>N1le (B)+ N2 fn, () (a7

and we can state that the infinite volume limit for oy (f§) does exist and equals its sup for both the
Hamiltonians:

lim oy () =supay (B) =x(p) (18)
N—oo N

2.3. Standard approach in thermodynamics

In this section we will focus as a pedagogical example of standard statistical mechanics by analyzing
the Hamiltonian (1) but the whole procedure applies identically also to (2). The idea at the basis
of the mean field approximation is that the probability distribution function P(¢) at equilibrium
can be factorized in the product of independent probabilities on the lattice sites, so as to have

P(0)=Pi(0i) (19)
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where

1+(m)5(0'i—1)+ 1— (m)

Pi(o;)= > >

5(oi+1) (20)

such that we neglect correlation among spins.
We are interested in the averaged free energy density (fN(ﬁ))=—ﬂ71(ocN(ﬂ))=(U(/)’))—

B~1(S(B)) where

_limy—oo (Hn(B) __ (m?)

(Up) N »

21
is the internal energy and

(S(ﬁ»:(1+2(m))ln(l—i—z(m)>+<1—2(m))1n<1—2(m)) 22)

is the entropy density.
Combining together the two expressions above we find

L (mP) 1+ (m) 1+ (m) 1—(m) 1—(m)
s () ()
from which, imposing the stationarity for the magnetization, we obtain
_a“(ﬂ)__ p—1 l <1+<m>> _ p—1
O_—é(m> =—f(m )+21n ) = (m)=tanh(f(m?" ")) (24)

which is the generalization of the well-known self-consistency equation for the Ising model (recov-
ered for p=2).

These equations (varying p) have a non-trivial phase in which the Z, group becomes broken
and a simpler ergodic phase. The system belong to one phase or to another one depending on
the (i.e. graphical) solutions of the self-consistency equation, undergoing at a given temperature,
a phase transition.

Concerning the nature of the transition, things behave quite different depending on p. For general
p the transition is first order (there is a discontinuous jump in the values of the magnetization
when crossing the critical temperature), while p=2 is a special case. The transition is second
order and the order parameter behaves continuously with the temperature.

This can be understood by analyzing the stability of the free energy with respect to a particular
solution encoded in the value of the magnetization, by exploring the second derivative:

b (1 m) .
Otm) (—ﬁ(m” 1>+§ln(1_<Z)))=—ﬁ<p—1><m” )+

from which we see that (neglecting the case p=0,1, which are trivial), only when p=2 we
immediately have that (m)~ (1—1/8)!/2, with e (1, 00), offering a critical behavior. For general
p=3 this is no longer the case and the model behaves differently.

1
- 25
(1—(m?)) (2
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788 A. BARRA

3. THERMODYNAMICS VIA CAVITY FIELD TECHNIQUES

3.1. Pasting a spin

The interpolating technique can be very naturally implemented in the cavity method; let us consider
again the Hamiltonian (1) and its the partition function for a system made by N + 1 spins:

Zvi(B) = Ze_ﬁHN+1(0)
g

Blp=1! . .
= Zl<i1<«--<ip§NG’1"'G’P

= Y Ze(NJrl)pl

oNt+1=%1 O

Bp—D!
. agj i g
XC(N‘H)p_l Zlg11<~ <zp 1SN ’pfl N+l (26)

By applying the gauge transformation ¢; — ¢;0n+1 (which is a symmetry of the Hamiltonian) we
obtain

Bp—D! . .
ZN+] (ﬁ) ZZZN(ﬁ*)d‘)(e(N_H)p—] Zl§i1<-n<ip,1§N 0iy '~-Ut];—l) (27)

where @ is the Boltzmann state at the inverse temperature f*=f(1/(1+N~~D)) (note that in
the thermodynamic limit higher is p faster is the convergence of f* to f8). Let us reverse the
temperature shift and apply the logarithm to both the sides of Equation (27) to obtain

MZ , R
1nZN+1(ﬂ*):ln2+anN(ﬂ)+lan(e NP1 I<ip<--<ip<N 711 tp—l) (28)

Equation (28) tells us that via the third term of its r.h.s. we can bridge an Ising system with N
particles at an inverse temperature f to an Ising system with N 41 particles at a shifted inverse
temperature /*=B(1/(14+N~P~D)). Focusing on such a term let us define an extended partition
function Zy (f,t) as

i) -.-0i

Hy (@) AT 22
ZN(ﬁ t)_ze ﬂ 1\/(0‘)e NP I<ip<- <1I, 1SN p—1 (29)

Note that the above partition function, at =, turns out to be, via the global gauge symmetry
0, — G;oN+1, a partition function for a system of N1 spins at a shifted temperature f* apart
from a constant term. On the same line, we define the generalized Boltzmann state ( ); as

t(p—D!
— Zléil <e<i

(F(o)e V™!

(F(G)>I= t(p— 1)!2 i
eNp 1<y < <ip_1<N Giy -+ t],,1>

<N

Gi,...0;
1S i i

P—|>

(30)

F (o) being a generic function of the spins: Furthermore, we need to introduce, respectively, as
fillable and filled monomials the odd and even momenta of the magnetization weighted by the
extended Boltzmann measure such that

(m2"+1)t with n €N is fillable;
o (m ), with n €N is filled.

Copyright © 2008 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009; 32:783-797
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NOTES ON FERROMAGNETIC P-SPIN AND REM 789

3.2. Stability with respect to deterministic perturbation

When considering the generalized Boltzmann state, there are peculiar properties of both the filled
and the fillable monomials that we have to exploit: In the thermodynamic limit, the first class
does not depend on the perturbation induced by the cavity field and, at t =3, the latter (via the
0; — 0;0 N1 symmetry) is projected into the first class. Let us show these concept in some details.

Theorem 3.1
In the N — oo limit the averages (m%\,") of the filled monomials are ¢-independent for almost all
values of f, such that

lim &, (m%"), =0
N—oo
Proof
The proof is a straightforward application of Lemma 3.3. ]

Theorem 3.2
Let (M), be a fillable monomial of the magnetization (this means that (mM) is filled). We have

lim lim(M),=(mM) (31)
N—oot—f
Proof
The proof is a straightforward application of Lemma 3.3. O

For a clearer statement of the lemma we take the freedom of pasting the volume dependence
of the averages as a subscript close to the perturbing tuning parameter ¢.

Lemma 3.3

Let ( ) and ( ) be the states defined, on a system of N spins, respectively, by the canonical
partition function Zy (f) and by the extended one Zy (f3, t); if we consider the ensemble of indexes
{i1...i;} with r €[1, N], then for t =f5, where the two measures become comparable, thanks to
the global gauge symmetry (i.e. the substitution ; — o;0+1) the following relation holds

1
ON1=p(Ti, -..0i,) =ON41(0, ... 01,0 )+ O (ﬁ) (32)

. ) . _— g —_—
where r is an exponent; hence, if r is even ONp1= 1, while if it is odd ONL1=ON+I-

Proof
Let us write wy,; for t =1, defining for the sake of simplicity n=0;,...0;,:

Blp=1)! ) . Bp! . .
ON,1=p(1) = Z—l e NP1 Zl<i1<-~<ip<N“’1"‘J’P+NP—' Zil--ipflg’l'“g"’"n
o ZN(ﬂ)

Introducing first a sum over oy at the numerator and at the denominator (which is the same
as multiply and divide for 2V because there is still no dependence to oy 1) and making the
transformation g; — g; 01, the variable gy appears at the numerator and it is possible to build
the status at N+ 1 particles with the little temperature shift that vanishes in the thermodynamic

(33)

Copyright © 2008 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009; 32:783-797
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790 A. BARRA

limit:

1
N =p(M) =N 11 (0, )+ O (ﬁ) (34)
where r is an exponent; hence, ¢y =0dy+1 if r is odd and we obtained a filled monomial starting
from a fillable, or afv 4 =1 if r is even, and remaining with a filled term as we started. O

3.3. Self-consistency and self-averaging

Now we want to use the introduced machinery to obtain the two fundamental relations for the
thermodynamics of the model: an equation that describes the system by varying the temperature
in terms of an order parameter (a self-consistency equation) and an equation that states that the
order parameter is a good order parameter, i.e. a self-averaging equation.

To this task let us consider the stream with respect to the perturbed Boltzmann measure: when
a generic well-defined function of the spins F (o) is considered, the following streaming equation
holds:

0(Fn(0)):
ot

It is possible to prove straightforwardly Equation (35) by direct simple derivation.
In order to obtain self-consistency and self-averaging we should have to deal with variances of

1

= (Fy(o)mby )i —(Fn (@) (mh ) (35)

suitable order parameters. It is immediate to find that the streaming of (m]’i,_l), fulfill our task
obeying the following differential equation:

-1 2(p—1 -1
(= (my"y — k)2 (36)
which, thanks to Theorem (3.2), becomes trivial in the thermodynamic limit. In fact, calling

m=limy_,compy and skipping the subscript ¢ on liquoo(m?\,(p -D )¢ (because it is filled and

consequently in the thermodynamic limit does not depend on ) we obtain
1 (mp—l )2
- p=ly (X2t
(2 Ol =1 <<m2<p—1>>

which is easily solved by splitting the variables and the solution is

(mP~1y, =/ (m2(P=D) tanh(Bt,/ (m2(r=D))) (37)

Once assumed for now self-averaging (i.e. v/ (m2P) = (m?)) and evaluated Equation (37) by using
the gauge at = (i.e. (mz(f’*l)),:[gz (m?P)) we obtain

(m) =tanh(B(mP~')) (38)

and self-consistency (Equation (24)) is recovered.

We still have to proof the validity of the assumption we made concerning self-averaging, which,
within our framework, is a straightforward application of Theorems (3.1) and (3.2); in fact, given
natural numbers n, k the following relations hold:

(m*'m?) = (m>") (m?) (39)
(m?) = (m? =) (m") (40)
Copyright © 2008 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009; 32:783-797
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NOTES ON FERROMAGNETIC P-SPIN AND REM 791

These equations can be proved simply deriving via the streaming equation (35) a filled monomial,
then evaluating in the thermodynamic limits the result and then equating this result to zero as the
fillable terms do not depend on ¢.

As an example consider 0 =1limy_, o, d; (m?) with even p of course. By the streaming we know
that gt(mp) =(mPmP~ 1Y, —(mP);(mP~1), and in the thermodynamic limit we obtain (m?Py =
(mP)=.

4. THERMODYNAMICS VIA MECHANICAL TECHNIQUES

4.1. The Hamilton—Jacobi streaming

In this section we consider the Hamiltonian (2) and we want to derive its thermodynamics using
two interpolating parameters, (¢, x). In this manner it is possible to work out an Hamilton—Jacobi-
like equation in the space of these parameters [4, 18] (where ¢ plays a role of a ficticious time and
x of a ficticious space) building by hands the effective potential, paying attention to obtain for this
potential the variance of some power of the magnetization so as to obtain the exact solution by
solving directly the free field problem.

The idea is as follows: Let us introduce an extended free energy density oy (¢, x) as

! s " (g!)

1
an(t,x)=—1Ind> exp Gi,...0; + > Giy...0; 41)
N %5 2NP-1 1<iy. i p<N e T Ne/2-1 1<iy.ipja <N " s
It is straightforward to check that
doy (2, x) 1 » doy (2, x) )2
ke , — 42
i 2(m ) o (m?77) (42)
Such that the following Hamilton—Jacobi equation holds:
day(t,x) 1 (doy(r,x)\?
— Vt,x)=0 43
PR ( o ) +V(t,x) (43)
where the potential V (¢, x) is exactly
V(t,x)=5((mP) = (mP/%)?) (44)

4.2. Free field solution

Hence, if we solve the free field problem (i.e. V (¢, x) =0) the solution we get automatically implies
self-averaging for the order parameter and is, at least in principle, much simpler than the whole
problem. Let us move in this manner.

From standard analytical mechanics, we know that the solution of the Hamilton—Jacobi equation
is given by a solution in a particular point plus the integral of the Lagrangian in time.

As a particular point we choose of course (¢, x) = (0, xo) because usually the term with higher-
order coupling is the most difficult and we reject it by choosing =0. The Lagrangian, as the

Copyright © 2008 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009; 32:783-797
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792 A. BARRA

potential is imposed to be zero, is simply the kinetic energy
£(1,x) = 5 (0x(1, %)) (45)

such that, at the end, we obtain

t
a(t,x):oc(O,xo)—f—/ £(t',x)dt’ (46)
0

Thermodynamics will be recovered as a particular point in this space (¢, x) by choosing at the end
(t7x):>(_ﬁv O)

Let us solve the two terms offering the solution: At first note that as the potential is absent
the trajectories x(¢) are Galilean lines such that x(f) =xo+ vt where the velocity field is v=
Orou(t,x)= (ml’/z), than start moving solving for «(0, xo):

o(2)

—1
2NP IS(T,'].

1
(0, x0) = NaneXp > Giy---0i,p
a

..G','p/ng

= %lngexp ((x— (mp/z)t)g(mp/z_l);a,)

t
=In2+Incosh (—%(mp/2)(mp/2_l)>

— In2+Incosh (—%t( P—1)> 47)

where in the last passage we used the factorization property (m”/2)(mP/?)— (mP) allowed by
neglecting the potential.

Turning to the Lagrangian, we stress that, again, as the potential is zero the (kinetic) energy is
a constant of motion and hence does not depend on time, such that

t t 1 1
/ £(x,t’)dt/=/ £(x)di’ =£(x)t == (mP?)t = = (mP)t (48)
0 0 2 2
where in the last passage we used the self-averaging induced by neglecting the potential.

4.3. Self-consistency and self-averaging

Combining together the two pieces we obtain
pt 1 1
a(t, x)=In2+Incosh —T(m” ) +§(mp)t (49)

and we recover o(f}) by choosing (¢, x) — (—f3, 0) such that the extended partition function implic-
itly defined in (41) turns out to be a Boltzmann partition function

oc(ﬂ)=ln2+lnc0sh(§ﬁ(m1’_1)>—%(mp)ﬁ (50)

Copyright © 2008 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009; 32:783-797
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by which, imposing the stationarity condition with respect to m, we obtain the self-consistency
equation for the magnetization:

(m) = (p—1)tanh (BZ-(m? ")) (51)

which recover the well-known Ising—Curie—Weiss case for p =2.
Within this technique self-averaging is already obtained as we studied the free field solution,
such that V(¢,x)=0,V(¢, x) € R and of course in the point (t =—f5, x =0).

5. INFINITELY MANY INTERACTING VARIABLE

As a last remark on simple systems we want to develop the ordered counterpart of the REM [12]
and its generalization (the GREM) [19], which, in this ferromagnetic context, should be thought
of as deterministic energy model.

The REM is a really useful model in spin glass theory [20]. In a nutshell, concerning technicali-
ties, in this system the correlations between energy levels are absent and the latter are exponentially
distributed. Concerning the physics behind the computations it is well known that the REM can be
thought of as the lim,_, , of the p-spin model of spin glasses which, for p =2 coincides with the
SK model [13]. Its Gaussian reformulation (GREM) has been very useful to develop the Ruelle
probability cascades for Parisi theory [19]. Reminding to bibliography for a proper introduction
we turn our attention to the same structure in the simpler ferromagnetic context.

If we consider the Hamiltonian (2), remembering that (m?) € [0, 1], we see that

1 1 /N N 1
; -1 — 1im —(mP\— _ L . —_
Jim NTUHy(0)= lim = (m >‘2<“,- o= +] 5(a,+1)>_210 (52)

Let us define the following free energy

1
~Bfx(B=an(B==In SN (53)

in which the variables J, behave as follows:
1 if(Ti:lVi 0ra,-=—1Vi
Jg' = .
0 otherwise
It is straightforward to check that

1 In2 if f<In2
lim oy(f)= lim — In(2efN + 2N —2))= (54)
N—>00 N—oo N B if f>1n2

This structure defines the analogous of the REM for non-random systems. The GREM extension
counterpart here can be summarized as follows: Let us divide N =N+ N2+ - -+ N, such that the
following ratio are well defined in the thermodynamic limit:

Ni N, N
— >, — —>02...— —> 0O
N N N
Copyright © 2008 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009; 32:783-797
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and introduce a collection of J,;;, i €(1l...s) such that

1 ifG,'=~--=O'N1=1
Ja,lz .
0 otherwise

1 if0'i=-~~=0'1vb,=1
Ja,s = .
0 otherwise

Introducing two sets of real numbers {;},{a;}, i €(1...s) such that aj 4o +---+o;=1, a;+
ax+---+as=1, and defining the free energy as

(= 2use o (55)
again it is straightforward checking that
lim ay(f)= sup (B(ai+---+ay), flar+---+as_1)+os1n2...1n2) (56)
N—o0 {ai, o}

that is the analogous of the GREM for non-random systems.

6. A QUICK LOOK AT DERRIDA’S P-SPIN MODEL

In this section we want just to sketch how the methods explained along the paper can be translated
to the disordered counterpart, which are still nowadays considered mathematically a challenge.
We will not go throughout a real analysis of these models as it would require essentially another
paper but just show the simplicity by which these ideas can be translated to complex systems.

It is very natural to generalize the ferromagnetic p-spin Hamiltonian, by letting the spins interact
through random couplings. The resulting Hamiltonian (in zero external field) is

»,\__ | P
Hy ' (6)=— Ji\ i O ...0; 57
v (@ 2NP—1 1<i1<§:<ip<N ety eD

We assume the couplings J;, i, to be independent identically distributed centered Gaussian random
variables, with unit variance. One can easily show, along the lines of Section 2.2, that the normal-
ization factor v/ p!/2NP~1 is actually the one required to yield a good thermodynamic limit.

Dealing with an external average over the random couplings we need to introduce replicas of
the states by defining a product Boltzmann state Q) as

Q=) x0’()...0° () (58)

where s is a generic natural number and we need to indicate with [E the averages over the noise. The
order parameter in this context is not the magnetization, which due to both positive and negative
signs in the coupling does not play a particular role but the overlap, defined as

1 1
qab=NZa?Gf~’, (qab)=[EQ(ﬁ ZU?O'?) (59)
1 1
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Note that the Gaussian random variables H ,E,p )(O') have a very simple covariance structure, which
depends only on the mutual overlap of the configurations ¢, ¢’:

EH (Y P (0") = (EHY (6 EHY () = qab+ o) (60)

This system, known as p-spin model, was first introduced by Derrida [12], and later has been
widely studied, both in the theoretical and in the mathematical physics literature (see, for instance,
[21-25]).

The contribution of our paper to this model is showing, in a nutshell, some features of the
technique applied to the ferromagnetic counterpart to a network with Gaussian interactions.

For such a model, still the investigation of the free energy and its decomposition in terms of a
cavity function and the energy is available as well as the perturbative streaming.

The symmetry we want to use, 6; — d; 0N+, allows us to express the following cavity function:

W 1) =ElnQeY /N Liriy Ty iy

such that
_ 1 p-1
WP =50 (= lafy )

It is also immediate, by direct derivation over the temperature first and integration by parts over
the noise later, that the energy can be expressed as

(H) _ _dl) B _o»
N dﬁ_ 2(1 (‘hz))

and the cavity function can be evaluated via the p-spin streaming equation

s(s—1)
O (F < (anb _szqa v+1+qup+1lc+2)>
t

being F; a function of s replicas.
Concerning the Hamilton—Jacobi structure again it is possible to work out such an equation for
S(t,x)=wa(t,x)—t/4—x/2 by considering

1p! o V2(p/2)! o g
ot x) = — lnz = 1Zil...i,,J’1-~’p‘7'1""7'p+ NP1 Zil,,,ip/zJ’l“"p/Zg‘l"'g‘p/2) (61)

such that

ot 4

A 2
aS(t,x) 1 ), (osg,x)) :%@ﬂ/z)z (62)
X

Note that in the limit of p =2, from all the formulas above, we recover the Sherrington—Kirkpatrick
picture [5, 25], being the general strategy preserved.

However, the structure of the disordered models is much more complicate to be managed, first
of all because the overlap is not self-averaging in a considerable part of the phase space and hence
the technique of neglecting the potential in the Hamilton—Jacobi method gives us a solution not
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always correct, but we remind deepening our understanding of these techniques in this context to
future works.

7. DISCUSSION

In this paper we showed some features of the p-spin model within the classical theory of ferro-
magnetism. We showed how recent mathematical breakthrough in the spin glass counterpart can
be, once properly adapted, applied to this phenomenology, emphasizing the importance of the
techniques themselves for general mean field models.

By introducing two possible toy-Hamiltonians we tested two different methods, the former being
the interpolating cavity field technique and the latter being the Hamilton—Jacobi framework.

In the first case we formulated the deterministic version of the so-called stochastic stability in
the spin glass theory and we used it to show self-consistency and self-averaging properties of the
order parameter (the magnetization) in a very simple way.

In the second case we extended the Hamilton—Jacobi technique for two-body interactions to
p-spin interaction allowing to obtain self-consistency for the order parameter by imposing its
self-averaging.

To close this general discussion on fully connected mean field models without frustration on a
lattice a formulation of the ferromagnetic version of the REM has been presented.

At the end a brief introduction of the adaptation of these techniques to disordered models has
been outlined.

Future works, still in the field of simple systems, should consider diluted network for the spin
interactions.
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