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In these notes, we continue our investigation of classical toy models of disordered
statistical mechanics, through techniques recently developed and tested mainly on the
paradigmatic Sherrington-Kirkpatrick spin glass. Here, we consider the p-spin-glass
model with Ising spins and interactions drawn from a normal distribution N [0, 1].
After a general presentation of its properties (e.g., self-averaging of the free energy,
existence of a suitable thermodynamic limit), we study its equilibrium behavior
within the Hamilton-Jacobi framework and the smooth cavity approach. Through the
former we find both the RS and the 1-RSB expressions for the free-energy, coupled
with their self-consistent relations for the overlaps. Through the latter, we recover
these results as irreducible expression, and we study the generalization of the overlap
polynomial identities suitable for this model; a discussion on their deep connection
with the structure of the internal energy and the entropy closes the investigation.
C© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729233]

I. INTRODUCTION

In these notes, we continue our investigation on the mathematical methods and the physics
underlying many body interactions, namely, we adapt recent mathematical techniques to the study
of equilibrium statistical mechanics of p-spin glasses. In the past, we analyzed p-spin systems with
the simpler ferromagnetic couplings8 and p-spin systems with diluted coupling,2 while now we turn
to p-spin systems with frustrated couplings, which are termed p-spin glasses.14, 17

We first introduce the model, with all the necessary definitions stemmed from statistical mechan-
ics, and then we adapt the Hamilton-Jacobi technique (developed for the Sherrington-Kirkpatrick
model by Guerra18 and later enlarged to a broad validity7, 10, 15, 23) to these systems, so to be able to
solve the model (in some physical approximation, that is, replica symmetric and one-step of broken
replica symmetry, as discussed later), without any relation with the original statistical mechanics
framework.

This has two advantages: the development of a clear and powerful mathematical alternative
to solve the thermodynamics of these many body systems, and a further rigorous confirmation of
results raised in the theoretical physics scenario.

Then, we adapt the method of the smooth cavity to the same problem to obtain another series
of results: in particular, after recovering a clear picture of the thermodynamics in perfect agreement
with the previous part of the work and with existing results, we focus on the polynomial identities
often called Aizenman-Contucci4 and Ghirlanda-Guerra16 relations. We will show how to prove
their validity even for the p-spin glasses considered here and we will try to revise their deep physical
meaning ultimately offering a unifying framework where cavity fields21 and stochastic stability11

merge to work synergically.9 Furthermore, comparison among the results obtained with both the
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methods will provide the reader with a deeper understanding of the techniques themselves as well
as of the physical properties of these models.

In order to be comprehensible for both the communities of theoretical physicists and of math-
ematical physicists, the two methods are exposed with a slightly different approach. In the former
(closer to the first community), results are presented in form of a theorem following the related
proof, which is never explicitly expressed as a “proof,” while in the latter (closer to the second
community) results are first declared and then proved. Finally, in Sec. VI we discuss results and
possible outlooks.

II. THE MODEL AND THE RELATED STATISTICAL MECHANICS PACKAGE

The p-spin glass is the model for a system of spins σ , i.e., dichotomic variables which can take
the values ± 1, interacting together in p-tuples with random couplings Ji1...i p , and, possibly, with an
external field h. The Hamiltonian is the function which defines the model and physically speaking
represents the extensive energy associated with a given configuration of the spins, for a certain value
of the couplings and of the external field.

Definition 1: Given a system of N spins σ i, i = 1, . . . , N, the Hamiltonian associated with a
configuration σ = {σ 1, . . . , σ N} of the spins, interacting in p-tuples and with an external uniform
magnetic field h, is defined as follows:

HN (σ, J, h) = −
√

p!

2N p−1

1,N∑
i1<···<i p

Ji1...i p σi1 . . . σi p − h
N∑

i=1

σi . (1)

The first summation is taken over all the possible choices of indices 1 ≤ i1 <· · · < ip ≤ N and
the couplings J are independent standard Gaussian random variables. This can be considered as a
generalization of the well-known Sherrington-Kirkpatrick model (SK) and its interest lays in the
fact that its low temperature behavior is much simpler than in the SK model. The normalization
factor preceding the first sum ensures that the Hamiltonian is an extensive quantity (i.e., proportional
to the number of spins N) and the 2 at the denominator allows recovering the SK definition when
p = 2.

For the sake of simplicity, we only consider the case of an even number p of interacting spins.
In this case, the system has a gauge symmetry when the external field h is set equal to zero: it is left
invariant under the transformation σik → σik σi p+1 for all k = 1, 2, . . . , p. Moreover, we assume that
the external field vanishes, thus we neglect the second term: in fact, this is a one-body term, which
is simple to deal with.1, 3 In the following, HN(σ , J) has to be interpreted as HN(σ , J, 0).

For this model, the investigation of the free energy and its decomposition via Hamilton-Jacobi
technique or in terms of a cavity function and the energy can still be performed, but the simple
mathematical treatment of the SK, ultimately due to the second order nature of its phase transition
allowing expansions in small overlaps, is lost whenever p > 2 because the transition becomes first
order.

This is an interesting remark because, when using the replica trick, the p-spin models are always
thought of as simpler cases. This has a deep physical counter-part: the covariance of the Hamiltonian
is given by the overlap to the power p, so, for example, the SK Hamiltonian has covariance ∼Nq2,
while a generic p-spin model has a covariance ∼Nqp. Of course, as the overlap is bounded by one,
this means that by increasing the order of interactions p, these correlations become more and more
negligible until, in the limit p → ∞, one recovers an uncorrelated model, i.e., the random energy
model.13 The latter is analytically solvable without either replica tricks or cavity field techniques.

Through a direct calculation (by applying Wick theorem), we can check that the nor-
malization of the Hamiltonian ensures a correct volume scaling for the energy such that
limN→∞〈−HN (σ, J )/N 〉 ≤ c ∈ R.

All physical information is encoded in the free energy density f(β) = limN→∞fN(β).
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Definition 2: The free energy density fN(β) at finite volume N, which is a function of the inverse
temperature β = 1/T, is defined as

fN (β) ≡ − 1

βN
E log Z N (β, J ) ≡ − 1

βN
E log

∑
σ

e−β HN (σ,J ), (2)

where ZN is called the partition function and E stands for the expected value with respect to
all the J’s. As usual, the sum is over the 2N configurations σ = {σ 1, σ 2, . . . , σ N} of the spins.
Sometimes it is more convenient to deal with the “pressure” α(β) = limN→∞αN(β) = limN→∞ −
βfN(β). These are the so-called quenched free energy/pressure, where the disorder is “frozen” and
which are more difficult to compute than the annealed ones, where the expectation is taken directly in
the partition function. Using the property E exp λz = exp λ2/2 valid for a standard random variable
z, the computation of the annealed free energy density fA(β) is in fact straightforward.

Lemma 1: The annealed free energy density is given by

−β f A(β) ≡ lim
N→∞

1

N
logEZ N (β, J ) = log 2 + β2/4. (3)

We notice that when β is sufficiently small, namely, at high temperature, this result coincides
with that obtained for the quenched average. Physically speaking, when the temperature is high
enough, spins are no longer correlated and averaging the disorder directly in the partition function
(which in some way means that it participates to thermodynamic equilibrium) and then taking the
logarithm is the same as averaging log ZN.

Definition 3: If F(σ ) is a (real-valued) physical observable, we denote the Boltzmann average
with

ω(F(σ )) = (1/Z N (β, J ))
∑

σ

F(σ ) exp(−βHN (σ, J )). (4)

This can be generalized by considering two or more independent replicas of the system with the
same disorder, so that if F(σ , σ ′) is an observable depending on the configuration of two replicas σ , σ ′,
its Boltzmann average is �(F(σ, σ ′)) ≡ (1/Z2

N (β, J ))
∑

σ

∑
σ ′ F(σ, σ ′) exp(−βH (σ ) − βH (σ ′)).

Notice that, even if we did not write it explicitly, ω depends on the disorder J, too. We denote the
average over the disorder with brackets: 〈F(σ, σ ′)〉 ≡ E�(F(σ, σ ′)).

III. THERMODYNAMIC LIMIT

The quantity one is typically interested in is actually the thermodynamical limit of the quenched
free energy

f (β) = lim
N→∞

fN (β). (5)

Guerra and Toninelli first were able to find out a mathematical strategy to prove the existence of
the thermodynamic limit for these frustrated systems,19, 20 which, for the sake of completeness, we
briefly outline the following.

Theorem 1: The thermodynamic limit of the free energy density exists and it is equal to its
infimum

lim
N→∞

fN (β) = inf
N

(
− 1

βN
E log Z N (β, J )

)
. (6)

Proof: Let us consider two separated systems, one constituted by N elements and the other one
by two independent subsystems (labeled by 1 and 2) with N = N1 + N2 elements. The Hamiltonian
and free energy density for the first system correspond to expressions (1), (2), while for the second
system, indicating with σ (1) and σ (2) the two subsets {σ1, . . . , σN1} and {σN1+1, . . . , σN }, we have a
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Hamiltonian

HN1 (σ (1), J ′) + HN2 (σ (2), J ′′) = −
√

p!

2N p−1
1

∑
1≤i1<···<i p≤N1

J ′
i1...i p

σi1 . . . σi p , (7)

−
√

p!

2N p−1
2

∑
N1<i1<···<i p≤N

J ′′
i1...i p

σi1 . . . σi p , (8)

where the J′ and J′′ are distributed as the J, and an extensive free energy given by

E log
∑
σ (1)

exp(−βHN1 (σ (1), J ′)) + E log
∑
σ (2)

exp(−βHN2 (σ (2), J ′′)). (9)

Let us introduce a new fundamental quantity, called overlap, which measures the correspondence
between two configurations of spins belonging to different replicas of the system

Definition 4: The overlap qσσ ′ between two configurations σ and σ ′ is defined as

qσσ ′ ≡ 1

N

N∑
i=1

σiσ
′
i . (10)

In the same way, we define overlaps for the two subsystems 1 and 2 making up the second
system as

q (1)
σσ ′ = 1

N1

N1∑
i=1

σiσ
′
i , (11)

q (2)
σσ ′ = 1

N2

N∑
i=N1+1

σiσ
′
i . (12)

Choosing a proper free energy, which for t ∈ [0, 1] interpolates between the free energies of the two
systems presented before,

1

N
E log Z N (t) = 1

N
E log

∑
σ

exp
[
β
√

t HN (σ, J ) + β
√

1 − t(HN1 (σ (1), J ′) + HN2 (σ (2), J ′))
]
,

(13)
we can easily compute its derivative with respect to the parameter t,

d

dt

1

N
E log Z N (t) = −β2

4

(
〈q p

12〉t − N1

N
〈(q (1)

12 )p〉t − N2

N
〈(q (2)

12 )p〉t

)
, (14)

where 〈.〉t is the average over all the disorder J, J′, J′′ of the generalized interpolating Boltzmann
state. Since the function q → qp is convex for even p, and

qσσ ′ = N1

N
q (1)

σσ ′ + N2

N
q (2)

σσ ′ (15)

the derivative of the interpolating free energy is always non-negative

d

dt

1

N
E log Z N (t) ≥ 0. (16)

Integrating this equation between 0 and 1, it is straightforward to show that the thermodynamic
pressure is superadditive

NαN (β) ≥ N1αN1 (β) + N2αN2 (β).

Hence, being α(β) = − βf(β), the quenched free energy is sub-additive in the system size. By
noticing that it is also limited, e.g., by its annealed value α(β) ≤ log 2 + β2/4 (see Eq. (3)),
the existence of its thermodynamic limit is shown, mirroring the original scheme by Guerra and
Toninelli.20 �
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IV. FIRST APPROACH: THE HAMILTON-JACOBI TECHNIQUE

We now consider the analogy between the p-spin glass model and the a proper mechanical
system, obeying a certain Hamilton-Jacobi equation. Interestingly, the potential in this equation is
related to the fluctuations of the order parameter for the corresponding thermodynamic system. As
we will see, neglecting this potential we will be able to reconstruct the free energy density for the
original model.

To this aim, let us consider the interpolating partition function, depending on the non-negative
parameters t and x (which symbolically may be thought of as a fictitious space-time continuum),

Z N (t, x) =
∑

σ

exp

⎛
⎝√ tp!

2N p−1

1,N∑
i1<···<i p

Ji1...i p σi1 . . . σi p + √
x
( p

2
Q p−2(β)

)1/4∑
i

Jiσi

⎞
⎠ . (17)

The Ji’s are independent random variables, with the same distribution as the Ji1...i p , and represent an
external random field, while Q(β) is a regular function of β, which we will later identify with the
average overlap between two replicas of the system endowed with the same disorder. Note that we
omitted to write explicitly the dependence of ZN on β and on the J’s and we will refer to the free
energy both at finite size and in the infinite volume limit when there is no danger of confusion.

We may consequently define an interpolating free energy as the following.

Definition 5: The interpolating free energy density is defined as

αN (t, x) ≡ 1

N
E log Z N (t, x), (18)

where the expectation E is taken with respect to all the J’s, that is with respect to the mutual
interactions between spins as well as on the external random fields. It is immediate to see that the
true physical free energy is obtained by taking t = β2 and x = 0, so our strategy will consist in
computing the interpolating free energy (18) and obtaining the statistical mechanics by choosing the
right values of the parameters t, x.

We may now proceed to compute the derivatives of α with respect to the parameters. With an
integration by parts, and neglecting terms which are unimportant in the thermodynamic limit, we
obtain the following.

Lemma 2: The derivatives of α(t, x) with respect to the parameters t, x are

∂tα(t, x) = 1

4

(
1 − 〈q p

σσ ′ 〉t,x
)
, (19)

∂xα(t, x) = 1

2

( p

2
Q p−2(β)

)1/2 (
1 − 〈qσσ ′ 〉t,x

)
, (20)

where the generalized brackets 〈.〉t, x are meant to weight the observable with the generalized
Boltzmann factor implicitly defined in Eq. (17).

We then define a new function, which will play the role of the bridge with a “mechanical”
description.

Definition 6: The Hamilton principal function S(t, x) is defined as

S(t, x) ≡ 2α(t, x) − x
[ p

2
Q p−2(β)

]1/2
− t

2

[
1 +

( p

2
− 1
)

Q p(β)
]
. (21)

The derivatives of S(t, x) are immediately deduced by (19) and (20),

∂t S(t, x) = −1

2
〈q p

σσ ′ 〉t,x −
(

p

4
− 1

2

)
Q p(β), (22)

∂x S(t, x) = −
( p

2
Q p−2(β)

)1/2
〈qσσ ′ 〉t,x . (23)

Lastly, we introduce a proper potential.
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Definition 7: The potential V(t, x) for the mechanical problem is defined as

V (t, x) ≡ 1

2

(〈q p
σσ ′ 〉t,x − Q p(β)

)+ p

4

(
Q p(β) − Q p−2(β)〈qσσ ′ 〉2

t,x

)
. (24)

With these definitions, we are now able to formulate our problem (solving the thermodynamics
of the p-spin model) as a suitable mechanical model.

Proposition 1: The Hamilton principal function S(t, x), together with the potential V (t, x)
satisfies the Hamilton-Jacobi equation

∂t S(t, x) + 1

2
(∂x S(t, x))2 + V (t, x) = 0. (25)

Now we assume that the variance of the generalized overlap vanishes

〈q2
σσ ′ 〉t,x = 〈qσσ ′ 〉2

t,x (26)

and make the identification

〈qσσ ′ 〉t,x = Q(β). (27)

These assumptions are very important as they imply, in statistical mechanics, the self-averaging
property for the order parameter. Despite we assume them and not prove them, we simply note
that, in order to keep finite the potential V (t, x), even in the p → ∞ limit (which is the interesting
case of the random energy model), the expression in the brackets of the second term at the rhs of
Eq. (24) must vanish, hence recovering our assumption. Under these hypotheses, within the mechan-
ical analogy we are developing, the two terms of the potential V (t, x) vanish allowing the system to
a free motion, and the corresponding solution S̄(t, x) is related to the so-called replica-symmetric
(RS) free-energy, which is the approximation of the free energy density fN(β) obtained by neglecting
overlap fluctuations.

This phenomenology, as it is based on free-field propagation, gives straight lines as equations
of motion

x(t) = x0 −
( p

2
Q p(β)

) 1
2

t, (28)

where x0 is the starting point. When x = 0 and t = β2 (namely, in the point recovering the standard
statistical mechanics framework), we get

x0 = β2
( p

2
Q p(β)

)1/2
. (29)

The trajectories (28) do not intersect, as stated in the following theorem.

Theorem 2: Given a generic point (x, t) with x ≥ 0, t ≥ 0, there exists a unique x0(x, t) such that

x = x0(x, t) − 〈qσσ ′ 〉0,x0(x,t) t, (30)

and a unique q̄(x, t) = 〈qσσ ′ 〉0,x0(x,t) such that

q̄(x, t) =
∫

dz√
2π

e−z2/2 tanh2

[
z
( p

2
Q p−2

)1/4√
x + q̄(x, t)t

]
. (31)

The proof is based on the fact that the point t(x0) at which the free trajectory intersects the t-axis
is a monotonous function of the starting point x0 and can be found in Ref. 18, where the SK case is
studied in detail.
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The Hamilton-Jacobi equation admits both a Hamiltonian H(t, x) and a Lagrangian L(t, x)
description, being, respectively,

H(t, x) = 1

2

(
d S(t, x)

dx

)2

+ V (t, x), (32)

L(t, x) = 1

2

(
d S(t, x)

dx

)2

− V (t, x). (33)

As we are working in the assumption of zero potential, they both correspond to the kinetic energy
only.

Definition 8: The kinetic energy T(t, x) is given by

T (t, x) ≡ 1

2
(∂x S(t, x))2 = p

4
Q p(β). (34)

This definition allows the following proposition.

Proposition 2: The solution S̄(t, x) of the Hamilton-Jacobi problem (25) for V (t, x) = 0 is
obtained by taking the function S(t, x) in one point (e.g., at time t = 0 and space x = x0) and adding
the Lagrangian times t (strictly speaking it should be times (t − t0) but we choose t0 = 0),

S̄(t, x) = S(0, x0) + L(t, x)t = S(0, x0) + T (t, x)t. (35)

Remark 1: The freedom in the assignation of the Cauchy problem plays an important role as,
by choosing t0 = 0, we are left with a one-body problem in the calculation of the starting point and
all the technical difficulties are left in the propagator which, at the replica symmetric level (e.g.,
V (t, x) = 0), simply reduces to the kinetic energy times time.

From (35) and (21), we obtain the corresponding expression for the generalized free energy
ᾱ(t, x) in the replica symmetric (RS) approximation

ᾱ(t, x) = α(0, x0) − 1

2
x0

( p

2
Q p−2(β)

)1/2
+ p

8
Q p(β)t + 1

2
x Q

p−2
2 (β) + t

4

[
1 +

( p

2
− 1
)

Q p(β)
]
.

(36)

Now it is easy to obtain the physical free energy, since the free energy for t = 0 does not contain the
interaction and may be computed straightforwardly

α(0, x0) = log 2 +
∫

dz√
2π

e−z2/2 log cosh

[( p

2
Q p−2(β)

) 1
4 √

x0z,

]
, (37)

so that, using (29), we finally find the expression for the physical (RS) free energy as stated by the
next theorem.

Theorem 3: The replica symmetric free energy ᾱ(β) of the p-spin model, obtained under the
assumption of zero potential V (t, x) in the mechanical analogy, is encoded in the following formula
(which must be extremized over the order-parameter),

ᾱ(β) = log 2 +
∫

dz√
2π

e−z2/2 log cosh

[
β
( p

2
Q p−1(β)

) 1
2

z

]
+ β2

4

[
1 + (p − 1)Q p(β) −pQ p−1(β)

]
.

(38)

This represents the RS free energy, which corresponds to the true free energy only for suffi-
ciently small values of β.21 In fact, assuming a vanishing potential corresponds to neglect overlap
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fluctuations, and the overlap may be identified with a single value (RS approximation) only for high
temperatures.

Proposition 3: Dealing with the overlap, which is related to the initial velocity of the mechanical
system, we obtain the following viscous Burger equation which encodes the standard self-consistency
procedure of the statistical mechanics counterpart

〈qσσ ′ 〉0,x0 = Q(β) =
∫

dz√
2π

e−z2/2 tanh2

[
β
( p

2
Q p−1(β)

)1/2
z

]
. (39)

Note that the correct SK replica symmetric free energy and self-consistence equation are
recovered for p = 2, and both equations predict in this case a phase transition for β = βc = 1. Above
this value the replica symmetric solution ceases to be valid.14

It will be useful for a comparison among results gained within this technique and the next one,
to have a polynomial expansion through Q(β) of the expression (38), hence getting

ᾱ(β) ∼ log 2 + β2

4
+ β2

4
(p − 1)Q p(β) − β4

8
pQ2(p−1) + O(Q2(p−1)). (40)

A. Extension to the broken replica symmetry scenario

We now extend the technique presented before to the case of one step of broken replica symmetry,
which is known to broaden the correctness of the solution to values of β higher than those required
by the previous approximation.14 In general, it is possible to consider even several steps of broken
symmetry, and in fact in the case of the SK model the free energy for β > βc = 1 is obtained in
the limit of infinite iterative steps (this is the so-called full RSB or ∞-RSB scheme21). For higher
β, a broken replica phase is the correct solution even in the case of p > 2, so we want to investigate
deeply even the mathematical architecture beyond the preserved replica symmetry. Following the
approach of Refs. 10 and 18, we see that in order to account for breaking of this symmetry in our
mechanical analogy, we have to enlarge our fictitious space-time by one extra spatial dimension for
each step of replica symmetry breaking that we want to consider.

To this task, let us introduce the recursive generalized partition function Z̃ N (t ; x1, . . . , xK ),
depending on the non-negative real parameters t and x1, . . . , xK,

Z̃ N (t ; x1, . . . , xK ) ≡
∑

σ

exp

⎡
⎣√ tp!

2N p−1

∑
1≤i1<···<i p≤N

Ji1,...i p σi1 . . . σi p

+
K∑

a=1

√
xa

( p

2
Q p−2

a

)1/4 N∑
i=1

J a
i σi

]
. (41)

Here, as before, the J a
i are independent random Gaussian variables with zero mean and unitary

variance, and we denote by Ea the expectation with respect to all the J a
i for i = 1, . . . N. The

Qa(β) are regular functions of β which may be identified with the values around which the overlap
distribution accumulates, and they are ordered in the interval [0, 1],

0 ≡ Q0(β) < Q1(β) < · · · < QK (β) < 1. (42)

We denote the Boltzmann-Gibbs state associated with this partition function with ω̃(.), and observe
that the physical model is recovered by choosing t = β2 and xa = 0 for a = 1, . . . , K.

Given the K + 1 ordered real numbers within the interval [0, 1], the typical nested structure of
the broken replica symmetry is encoded in the generalized partition functions Za, defined recursively
as

Za = (Ea+1 Zma+1
a+1

)1/ma+1
, (43)
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with ZK ≡ Z̃ N and Z0 ≡ exp(E1 log Z1). Note that this last definition is obtained by the general one
(43) in the limit of m1 → 0. The number K of parameters xa (dimensions of our fictitious space-time)
are then related to the number of steps of broken symmetry. It is useful to define the quantities

fa ≡ Zma
a

Ea Zma
a

, (44)

which are all non-negative and not greater than one, and share with the Za the property of depending
on the random fields J b

i only with b ≤ a.
With these definitions, we are now able to introduce the new states.

Definition 9: The generalized Boltmann-Gibbs states are defined as

ωa(.) ≡ Ea+1 . . .EK ( fa+1 . . . fK ω̃(.)), (45)

ωK (.) ≡ ω̃(.). (46)

Again, it is possible to define Boltmann-Gibbs states �a for replicas of the system and, lastly,
introduce the averages

〈.〉a ≡ E0E1 . . .Ea( f1 . . . fa�a(.)). (47)

We now introduce the generalized free energy α̃(t ; x1, . . . , xK ) mirroring Sec. IV.

Definition 10: The generalized free energy associated with the partition function Z0 is defined
as follows:

α̃(t ; x1, . . . , xK ) ≡ 1

N
E0 log Z0 = 1

N
E0E1 log Z1. (48)

We want to use this expression to write down a proper Hamilton-Jacobi equation, generalizing
Eq. (25) and find the physical free energy in this enlarged space. To this aim, we need the derivatives
of the generalized free energy with respect to the interpolating parameters, whose cumbersome
computation is reported in the Appendix.

Lemma 3: The derivatives of the generalized free energy with respect to the interpolating
parameters are given by

∂t α̃N (t ; x1, . . . , xK ) = 1

4

[
1 −

K∑
a=1

(ma+1 − ma)〈q p
σσ ′ 〉a

]
, (49)

∂

∂xa
α̃N (t ; x1, . . . , xK ) ≡ ∂aα̃N (t ; x1, . . . , xK ) = 1

2

( p

2
Q p−2

a (β)
)1/2
[
1−

K∑
b=a

(mb+1 − mb)〈qσσ ′ 〉b

]
,

(50)

where we recall that

〈q p
σσ ′ 〉a = E0E1 . . .Ea( f1 . . . fa�a(q p

σσ ′)) = E0E1 . . .Ea

⎛
⎝ f1 . . . fa

1

N p

∑
i1,...,i p

ω2
a(σi1 . . . σi p )

⎞
⎠ .

(51)
We are now ready to introduce the proper Hamilton principal function in this generalized framework.
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Definition 11: The Hamilton principal function is defined as follows:

S(t ; x1, . . . , xK ) ≡ 2α̃(t ; x1, . . . , xK ) −
K∑

a=1

xa

( p

2
Q p−2

a (β)
)1/2

− t

2

[
1 +

( p

2
− 1
) K∑

a=1

(ma+1 − ma)Q p
a (β)

]
. (52)

Using (49) and (50), we may easily compute its derivatives

∂t S(t ; x1, . . . , xK ) = −1

2

K∑
a=1

(ma+1 − ma)〈q p
σσ ′ 〉a −

(
p

4
− 1

2

) K∑
a=1

(ma+1 − ma)Q p
a (β),

∂a S(t ; x1, . . . , xK ) = −
( p

2
Q p−2

a (β)
)1/2 K∑

b=a

(mb+1 − mb)〈qσσ ′ 〉b,

(53)

and write down the Hamilton-Jacobi equation which implicitly defines the potential V (t ; x1, . . . , xK )
to whom our auxiliary mechanical system is subject

∂t S(t ; x1, . . . , xK ) + 1

2

K∑
a,b=1

∂a S(t ; x1, . . . , xK ) × M−1
ab × ∂b S(t ; x1, . . . , xK ) + V (t ; x1, . . . , xK ) = 0.

(54)
Here M− 1 is the inverse of the mass matrix, which we are going to define in a convenient way
through the kinetic energy T(t; x1, . . . , xK).

Definition 12: The kinetic energy is defined as

T (t ; x1, . . . , xK ) ≡ 1

2

K∑
a,b=1

∂a S(t ; x1, . . . , xK ) × M−1
ab × ∂b S(t ; x1, . . . , xK ). (55)

Using (53), T(t; x1, . . . , xK) may be written as

T (t ; x1, . . . , xK ) = p

4

K∑
a,b=1

(M−1)ab [Qa(β)Qb(β)]
p−2

2

K∑
c≥a

K∑
d≥b

(mc+1 − mc)〈qσσ ′ 〉c(md+1 − md )〈qσσ ′ 〉d

= p

4

K∑
c,d=1

Dcd (mc+1 − mc)〈qσσ ′ 〉c(md+1 − md )〈qσσ ′ 〉d , (56)

where we introduced the matrix D, whose generic entry is defined as

Dcd ≡
c∑

a=1

d∑
b=1

(M−1)ab Q(p−2)/2
a (β)Q(p−2)/2

b (β). (57)

To decouple the overlaps 〈qσσ ′ 〉c and 〈qσσ ′ 〉d , we now pose

Dcd (mc+1 − mc) = δcd Q(p−2)/2
c (β)Q(p−2)/2

d (β), (58)

where δcd is the Kronecker delta, and then

T (t ; x1, . . . , xK ) = p

4

K∑
a=1

(ma+1 − ma)〈qσσ ′ 〉2
a Q p−2

a (β). (59)
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Definition 13: Within this mechanical analogy, the potential V (t ; x1, . . . , xK ) is, again, directly
related to the fluctuations of the overlaps and can be introduced as follows:

V (t ; x1, . . . , xK ) = 1

2

K∑
a=1

(ma+1 − ma){〈q p
σσ ′ 〉a − Q p

a (β) + p

2

[
Q p

a (β) − 〈qσσ ′ 〉2
a Q p−2

a (β)
]}. (60)

The condition (58) completely determines the elements of M− 1. These are all vanishing except
on the diagonal and the terms whose indexes differ only by one, which are symmetric

(M−1)aa = 1

ma+1 − ma
+ 1

ma − ma−1

(
Qa(β)

Qa+1(β)

)p−2

a ≥ 2,

(M−1)a,a+1 = (M−1)a,a+1 = − 1

ma+1 − ma

(
Qa(β)

Qa+1(β)

)(p−2)/2

a ≥ 2,

(61)

and with

(M−1)11 = 1

m2
. (62)

The matrix M− 1 clearly admits an inverse, its determinant being non-null

det M−1 =
K+1∏
a=2

(ma − ma−1) 
= 0. (63)

Notice that the elements of M− 1 and consequently M depend on the overlaps qa, differently from
the case p = 2.10 In this case, in fact, the system energy is no longer a quadratic form in the overlap
averages, and this has deep physical consequences; in particular, the phase transition is first order
for p > 2, meaning that the order parameter changes discontinuously at the critical temperature.

B. The first step of broken replica symmetry

Using results from Sec. IV A, here we find out the expression of the free-energy corresponding
to the first step of broken replica symmetry (1-RSB).

Definition 14: The generalized partition function and free-energy are defined as

Z̃ N (t ; x1, x2) =
∑

σ

exp

⎡
⎣√ tp!

2N p−1

∑
1≤i1<···<i p≤N

Ji1,...i p σi1 . . . σi p +
2∑

a=1

√
xa

( p

2
Q p−2

a

)1/4 N∑
i=1

J a
i σi

⎤
⎦ ,

α̃N (t ; x1, x2) = 1

Nm
E0E1 logE2 Zm

2 , (64)

where we took m2 ≡ m and we remind that in this case

Z2 ≡ Z̃ N ,

0 = Q0(β) < Q1(β) < Q2(β) < 1,

0 = m1 < m2 < 1 = m3.

(65)

The principal Hamilton function S(t, x1, x2) can be introduced as follows:

Definition 15: The principal Hamilton function for the associated 1-RSB mechanical problem
is

S(t, x1, x2) = 2α̃(t, x1, x2) −
( p

2
Q p−2

1 (β)
)1/2

x1 −
( p

2
Q p−2

2 (β)
)1/2

x2

− t

2

[
1 +

( p

2
− 1
)

(m Q p
1 (β) + (1 − m)Q p

2 (β))
]
.

(66)
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As shown in the general case in Sec. IV A we must now evaluate its derivatives

∂t S(t, x1, x2) = −1

2
m〈q p

σσ ′ 〉1 − 1

2
(1 − m)〈q p

σσ ′ 〉2 −
(

p

4
− 1

2

)
(m Q p

1 (β) + (1 − m)Q p
2 (β)),

∂1S(t, x1, x2) = −m
( p

2
Q p−2

1 (β)
)1/2

〈qσσ ′ 〉1 − (1 − m)
( p

2
Q p−2

2 (β)
)1/2

〈qσσ ′ 〉2,

∂2S(t, x1, x2) = −(1 − m)
( p

2
Q p−2

2 (β)
)1/2

〈qσσ ′ 〉2.

(67)

Proposition 4: Choosing the inverse of the mass matrix (and so the mass matrix itself with the
condition (58))

M−1 =
[ 1

m − 1
m ( Q1

Q2
)(p−2)/2

− 1
m ( Q1

Q2
)(p−2)/2 1

1−m + 1
m ( Q1

Q2
)p−2

]
⇒ M =

[
m + (1 − m)( Q1

Q2
)p−2 (1 − m)( Q1

Q2
)(p−2)/2

(1 − m)( Q1
Q2

)(p−2)/2 1 − m

]
.

we can write down explicitly the kinetic term T(t; x1, x2) and the potential V (t ; x1, x2) of the equivalent
mechanical system

T (t ; x1, x2) = p

4
m〈qσσ ′ 〉2

1 Q p−2
1 (β) + p

4
(1 − m)〈qσσ ′ 〉2

2 Q p−2
2 (β),

V (t ; x1, x2) = 1

2
m
[
〈q p

σσ ′ 〉1 − Q p
1 (β) + p

2
(Q p

1 (β) − 〈qσσ ′ 〉2
1 Q p−2

1 (β))
]

+ 1

2
(1 − m)

[
〈q p

σσ ′ 〉2 − Q p
2 (β) + p

2
(Q p

2 (β) − 〈qσσ ′ 〉2
2 Q p−2

2 (β))
]
.

(68)

We can consequently state the following.

Proposition 5: There is a mechanical analogy between the 1-RSB statistical mechanics of the
p-spin-glass and an equivalent mechanical system that moves in a two-dimensional space-time with
equations of motion given by

x1(t) = x0
1 + v1(t ; x1, x2) t,

x2(t) = x0
2 + v2(t ; x1, x2) t.

(69)

The corresponding velocities are defined as

v1(t ; x1, x2) ≡
2∑

a=1

(M−1)1a∂a S(t ; x1, x2) = −
( p

2
Q p−2

1 (β)
)1/2

〈qσσ ′ 〉1,

v2(t ; x1, x2) ≡
2∑

a=1

(M−1)2a∂a S(t ; x1, x2) =
( p

2

)1/2 Q p−2
1 (β)

Q(p−2)/2
2 (β)

〈qσσ ′ 〉1−
( p

2

)1/2
Q(p−2)/2

2 (β)〈qσσ ′ 〉2.

(70)

As discussed before, we are interested in studying the free motion, i.e., the motion in absence
of potential, and deduce the physical free-energy from the solution of the Hamilton-Jacobi equation

∂t S(t ; x1, x2) + 1

2

K∑
a,b=1

∂a S(t ; x1, x2) × M−1
ab × ∂b S(t ; x1, x2).

We stress that here the potential is related to a more complex kind of fluctuations of the overlap as
we are requiring much more than the simple self-averaging: Physically, we can think at each step
of RSB as a refinement, a zoom, in the analysis of the free energy landscape, that allows to see
rugged valleys otherwise averaged out and we are asking for adiabatic thermalization within each of
these (sub)-valleys (“sub” with respect to the macro-ones already encoded in the RS-approximation).
Coherently, a sufficient condition for a vanishing 1-RSB potential is an overlap variance inside the
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bracket denoted with 〈.〉a equal to zero and the identification of the averages of the overlap with the
functions Qa(β),

〈q2
σσ ′ 〉a = 〈qσσ ′ 〉2

a = Q2
a(β), a = 1, 2. (71)

In the absence of a potential, the velocities (and so the kinetic energy) are conserved quantities and
we can then consider their values at the initial instant t = 0, in perfect analogy with the RS case

q̄1 ≡ 〈qσσ ′ 〉1(0; x0
1 , x0

2 ) =
∫

dμ(z1)

[∫
dμ(z2) coshm θ (z1, z2) tanh θ (z1, z2)∫

dμ(z2) coshm θ (z1, z2)

]2

,

q̄2 ≡ 〈qσσ ′ 〉2(0; x0
1 , x0

2 ) =
∫

dμ(z1)

∫
dμ(z2) coshm θ (z1, z2) tanh2 θ (z1, z2)∫

dμ(z2) coshm θ (z1, z2)
,

θ (z1, z2) ≡
√

x0
1

( p

2
Q p−2

1

)1/4
z1 +

√
x0

2

( p

2
Q p−2

2

)1/4
z2,

(72)

where θ will be defined in Eq. (75) and

dμ(z) = exp(−z2/2)dz (73)

is the Gaussian measure. This computation essentially leads us to the 1-RSB self-consistence equa-
tions for overlaps when considering the statistical-physics point t = β2, x1 = x2 = 0. In this point,
and with the condition (71), the equations of motion (69) give

x0
1 = β2

( p

2
Q p

1 (β)
)1/2

,

x0
2 = β2

( p

2

)1/2
Q

p
2
2 (β) − β2

( p

2

)1/2 Q p−1
1 (β)

Q
p−2

2
2 (β)

,

(74)

so that the explicit self-consistence equations contain

θ (z1, z2) ≡ β
( p

2

)1/2
z1 Q

p−1
2

1 (β) + β
( p

2

)1/2
z2

√
Q p−1

2 (β) − Q p−1
1 (β). (75)

Remark 2: In the second term of the rhs of Eq. (75) the two overlaps are decoupled, and in the
limit p → 2 we get the correct 1-RSB self-consistence equation for the SK model too.

To compute the free-energy we use the usual recipe: As we assume that the mechanical potential
is zero, we write (easily) the solution for the Hamilton-Jacobi problem and then we evaluate it in the
point t = β2, xa = 0. First of all, we need the free-energy at the initial instant, which is straightforward
to obtain, since it contains no spin interactions

α̃(0; x0
1 , x0

2 ) = log 2 + 1

m

∫
dμ(z1) log

∫
dμ(z2) coshm θ (z1, z2), (76)

with θ (z1, z2) given by (75). The Hamilton function which is solution of (54) for a vanishing potential
V ≡ 0 is simply given by the function at the initial instant plus the integral of the Lagrangian, (which
corresponds to the kinetic energy only), over time

S(t ; x1, x2) = S(0; x0
1 , x0

2 ) +
∫ t

0
dsT (s; x1, x2) = S(0; x0

1 , x0
2 ) + T (0; x0

1 , x0
2 )t, (77)

where we used the fact that the kinetic energy is a conserved quantity. We obtain in this way

S(t ; x1, x2) =2α̃(0; x0
1 , x0

2 ) −
( p

2
Q p−2

1 (β)
)1/2

x0
1 −

( p

2
Q p−2

2 (β)
)1/4

x0
2

+ tp

4
Q p

1 (β) + tp

4
(1 − m)Q p

2 (β),

(78)
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and from this, the generalized free-energy α̃(t ; x1, x2),

α̃(t ; x1, x2) =1

2
S(t ; x1, x2) + 1

2

( p

2
Q p−2

1 (β)
)1/2

x1 + 1

2

( p

2
Q p−2

2 (β)
)1/2

x2
)

+ t

4

[
1 +

( p

2
− 1
)

(m Q p
1 (β) + (1 − m)Q p

2 (β))
]
.

(79)

Then the physical free-energy is easily computed by taking t = β2, x1 = x2 = 0, and we can state
the next theorem.

Theorem 4: Making the assumption of vanishing potential V (t, x1, x2) in the mechanical
analogy, the corresponding free energy for the p-spin glass model corresponds to the so-called
“1-RSB” and is given by

α(β) = log 2 + 1

m

∫
dμ(z1) log

∫
dμ(z2) coshm

(
βz1 Q(p−1)/2

1 (β) + βz2

√
Q p−1

2 (β) − Q p−1
1 (β)

)

+ β2

4

[
1 + (p − 1)m Q p

1 (β) + (p − 1)(1 − m)Q p
2 (β) − pQ p−1

1 (β) − pQ p−1
2 (β)

]
.

(80)

We skip here any digression on the physics behind these formulas as these are in perfect
agreement with the original investigation by Gardner14 and by Gross and Mezard,17 so to highlight
only the mathematical methods, to which this paper is dedicated.

C. Conservation laws: Polynomial identities

We conclude this section with an analysis of the conserved quantities deriving from the internal
symmetries of the theory. We will approach them as Nöther integrals within the Hamilton-Jacobi
formalism, while at the end of next section we will re-obtain (and discuss more deeply) the same
constraints within a more familiar thermodynamic approach.

Let us restate the Hamilton-Jacobi equation

∂t S(t, x) + H (∂x S(t, x), t, x) = 0,

where the Hamiltonian function reads off as25

H (∂x S(t, x), t, x) = T (t, x) + V (t, x). (81)

Hamilton equations are nothing but characteristics given by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ = v(t, x),

ṫ = 1,

Ṗ = −v(t, x)∂xv(t, x) − ∂x V (t, x),

Ė = −v(t, x)∂x (∂t S(t, x)) − ∂t V (t, x),

(82)

the latter two equations display space-time translational invariance and express the conservation
laws for momentum and energy for our system, further, these can be written in form of streaming
equations as {

D P(t, x) = −∂x V (t, x),

D∂t S(t, x) = −∂t V (t, x).

Since we are interested in evaluating the free motion, bearing in mind that v(x, t) = −〈q p/2
12 〉 and

∂t S(x, t) = − 1
2 〈q p

12〉, so D = ∂ t − 〈qp/2〉∂x, we conclude{
D〈q p/2〉 = 0,

D〈q p〉 = 0,
(83)
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i.e., { 〈q p
12〉 − 4〈q p/2

12 q p/2
13 〉 + 3〈q p/2

12 q p/2
34 〉 = 0,

〈q2p
12 〉 − 4〈q p

12q p
23〉 + 3〈q p

12q p
34〉 = 0.

(84)

Remark 3: The orbits of the Nöther groups of the theory coincide with the streaming lines
of the Hamilton-Jacobi Hamiltonian, and conservation laws along these lines give well-known
identities in the statistical mechanics of the model often known as Ghirlanda-Guerra relations and
Aizenman-Contucci identities.4, 16

We will deserve Secs. V C and V D of the paper to deepen our understanding of these identities
within the smooth cavity field approach, hence we do not investigate them further here.

V. SECOND APPROACH: THE SMOOTH CAVITY FIELD

A. Smooth cavity field and stochastic stability

The main heuristic idea of the cavity field method is to look for an explicit expression of α(β)
= − βf(β) upon increasing the size of the system from N particles to N + 1 (originally the technique
was developed by removing a spin instead of adding, hence “cavity,” but we will follow the approach
recently developed in Ref. 6). As a consequence, within this framework attention will be payed at
the system size and all the N dependencies will be explicitly introduced.

On the other hand, in order to formulate stochastic stability, we have to consider the statistical
properties of the system with a Hamiltonian given by the original Hamiltonian H plus a random
perturbation H̃ so to write H ′ = H + ε H̃ . Stochastic stability states that all the properties of the
system are smooth functions of ε around ε = 0, after the appropriate averages over the original
Hamiltonian and the random Hamiltonian have been taken. We stress that, even though initially it
was only postulated,4 stochastic stability has recently11 been rigorously proven for a wide class of
disordered Hamiltonians.

Our idea, to be explored in detail later on, is that for a system with a gauge-invariant Hamiltonian
(like the even p-spin model at zero external field) we can choose, as generic random perturbation H̃
in the stochastic stability approach, a term proportional to

∑
i1<···<i p−1

Ji1,...,i p−1σi1 . . . σi p−1 . Here the
Ji1,...,i p−1 are random fields, taken from the same Gaussian i.i.d. distribution as the original Ji1,...,i p .
The key insight is that this is a “hidden” cavity field: by applying the transformation σ i → σ iσ N+1 ∀i
(which leaves the Hamiltonian H invariant), it is possible to switch the stochastic stability approach
into the standard cavity field approach. As we are going to see, this technique offers more freedom
than the two single, non-interacting, approaches as we can turn one into the other as desired.

To explain the method, we need some preliminary definitions. First, let us introduce an extended
partition function that includes an interaction with an added hidden spin σ N+1 through a control
parameter t ∈ [0, β2] such that for t = 0 we have the classical partition function of N spins, while for
t = β2 we get the partition function (times one half) for the larger system, with a little temperature
shift which vanishes in the thermodynamic limit

Z N (β, t) =
∑

σ

e
−β HN (σ ;J )+

√
tp!

2N p−1

∑
1≤i1<···<i p−1≤N Ji1 ,...,i p−1 σi1 ...σi p−1 . (85)

Indeed, when t = β2, by redefining Ji → Ji, N+1 and making the transformation σ i → σ iσ N+1 ∀i, we
obtain the partition function for a system of N + 1 spins at a shifted temperature β* such that

β∗ = β
(

(N + 1)/N
) p−1

2 → β for N → ∞. (86)

The only other, trivial, difference is that of course the sum over σ N+1 in the partition function for N
+ 1 spins gives an additional factor 2.
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Next, we state the two key symmetries whose breaking we will be concerned with. These apply
to the unperturbed (t = 0) system; recall that 〈.〉 ≡ Eω(.).

Proposition 6: The averages 〈 · 〉 are replica-symmetric, i.e., invariant under permutation of
replicas. In other words, for any function Fs({qab}) of the overlaps among s replicas and any
permutation g of s elements, 〈Fs({qab})〉 = 〈Fs({qg(a)g(b)})〉.

Note that there is no issue with replica symmetry breaking here, as we are concerned with real
replicas.

Proposition 7: The averages 〈 · 〉 are invariant under gauge transformation, i.e., for any assign-
ment of the εa = ± 1 we have

〈Fs({qab})〉 = 〈Fs({εaεbqab})〉. (87)

This second symmetry is a consequence of the fact that the Hamiltonian (in zero field) is even
in the spins, i.e., it remains unchanged when we transform σ a

i → εaσ a
i . Next we will formalize

some terminology and concepts which will be useful for developing our smooth version of the cavity
method.

Definition 16: We define as “filled” a monomial of the overlaps in which every replica appears
an even number of times.

Definition 17: We define as “fillable” a monomial of the overlaps in which the above property
is obtainable by multiplying with exactly one two-replica overlap.

Definition 18: We define as “unfillable” a monomial which is neither filled nor fillable.

Polynomials that are sums of filled monomials will themselves be called filled, etc. We give a
few examples:

• The monomials q p
12 and q p

12q p
34 are filled (as p is even by definition).

• The monomial q p−1
12 is fillable: multiplication by q12 gives the filled monomial q p

12. Similarly,
q p

12q p−1
34 is fillable: it is filled by multiplication with q34.

• The following monomials are unfillable: q p−1
12 q p−1

34 , q12q23q45.

Now the plan to gain information on the p-spin-glass free energy as follows: First, we define the
cavity function and we prove some properties (related stochastic stability) of the classes of overlap
monomials defined above. Then, we show that the free energy can be written as the internal energy
plus the cavity function, and lastly, we expand the cavity function through the overlap monomials.
Merging all together we have an irreducible expression of the free energy in terms of overlap
monomials (which physically correspond to overlap correlation functions).

Definition 19: We define the cavity function 
N(β, t) as


N (β, t) = E[ln ω(e
√

tp!
2N p−1

∑
1≤i1<···<i p−1≤N Ji1 ,...,i p−1 σi1 ...σi p−1 )] = E

[
ln

Z N (β, t)

Z N (β)

]
. (88)

Definition 20: We define the generalized Boltzmann state that corresponds to the partition
function (85) as

ωt (F) = ω(Fe
√

tp!
2N p−1

∑
1≤i1<···<i p−1≤N Ji1 ,...,i p−1 σi1 ...σi p−1 )

ω(e
√

tp!
2N p−1

∑
1≤i1<···<i p−1≤N Ji1 ,...,i p−1 σi1 ...σi p−1 )

, (89)

where F is a generic function of the N-spin configuration σ .
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The next step is to motivate why we have introduced these definitions. We will first state two
Theorems (5 and 6) that show that the filled and the fillable monomials have peculiar properties.
Monomials in the first class do not depend on the perturbation (i.e., they are stochastically stable),
while those in the second class become filled (via the σ i → σ iσ N+1 gauge transformation) in the
thermodynamic limit.

Theorem 5: In the N → ∞ limit, the averages 〈Q〉 of the filled monomial Q are t-independent
for almost all values of β, such that

lim
N→∞

∂t 〈Q〉t = 0.

Proof: We will prove the theorem in a key case, namely, for Q = q p
12, and refer to Ref. 6 for

further generalizations. Let us write the cavity function as


N (β, t) = E[ln Z N (β, t)] − E[ln Z N (β)] (90)

and take its derivative with respect to β (writing again 〈.〉t ≡ Eωt (.)), we have

∂β
N (β, t) = βN

2
(〈q p

12〉 − 〈q p
12〉t ). (91)

We want to show now that the function ϒN (β, t) = 〈q p
12〉 − 〈q p

12〉t vanishes for N → ∞. From
Eq. (91), we have

ϒN (β, t) = 4

N
∂β2
N (β, t) (92)

and integrating this in a generic interval [β2
1 , β2

2 ] gives

∫ β2
2

β2
1

ϒN (β, t)dβ2 = 4

N
[
N (β2, t) − 
N (β1, t)]. (93)

To finish the proof, we show that 
N(β, t) is of order unity. The simplest way to do this is by looking
at its “streaming,” i.e., its variation with t. By a direct calculation, one finds

d
N (β, t)

dt
= 1

2
E

⎡
⎣1 − 1

N

∑
1≤i1<···<i p−1≤N

ω2
t (σi1 . . . σi p−1 )

⎤
⎦ = 1

2
(1 − 〈q p−1

12 〉t ). (94)

Hence, since 〈q p−1
12 〉t ∈ [−1, 1], and with 
N(β, 0) = 0 (due to ZN(β, t = 0) = ZN(β)), we have

0 ≤ 
N(β, t) ≤ t. Therefore, the rhs of (93) goes to zero for N → ∞, and the same holds for
the average of ϒN(β, t) over any small temperature interval (with the exception of singularities).
Consequently, ϒN(β, t) itself goes to zero, implying the claimed t-independence of the filled overlap
monomials 〈q p

12〉t → 〈q p
12〉. �

The next theorem is crucial for this section, so we first prove a lemma which contains the core
idea. We temporarily introduce subscripts on the Boltzmann states to clearly distinguish the different
quantities considered.

Lemma 4: Let ωN, β(.) and ωN, β, t(.) be the Boltzmann states defined, on a system of N spins,
respectively, by the canonical partition function and by the extended one (85). Consider a set of r
distinct spin sites {i1, .., ir} with 1 ≤ r ≤ N. Then for t = β2, the extended state becomes comparable
to the canonical state of an N + 1 spin system, in that the following relation holds:

ωN ,β,t=β2 (σi1 · · · σir ) = ωN+1,β∗ (σi1 · · · σir σ
r
N+1). (95)
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Note that the r in the last factor is an exponent, not a replica index, so that σ r
N+1 = 1 if r is even and

σ r
N+1 = σN+1 if r is odd.

Proof: The proof is based on an application of the gauge symmetry, i.e., the substitution σ i →
σ iσ N+1. Let us write out explicitly the lhs of Eq. (95), abbreviating π ≡ σi1 · · · σir ,

ωN ,β,t=β2 (π ) = E

∑
σ πe

−β HN (σ,J )+β
√

p!
2N p−1

∑
1≤i1<···<i p−1≤N Ji1 ,...,i p−1 σi1 ...σi p−1

∑
σ e

−β HN (σ,J )+β
√

p!
2N p−1

∑
1≤i1<···<i p−1≤N Ji1 ,...,i p−1 σi1 ...σi p−1

. (96)

Introducing a sum over σ N+1 into the numerator and the denominator (which is the same as multi-
plying and dividing by 2 because there is no dependence on σ N+1) and making the transformation
σ i→σ iσ N+1, the factor π in the numerator is transformed into πσ r

N+1. The exponential becomes
the extended Boltzmann factor of an (N + 1)-spin system at the modified temperature (86), so that

ωN ,β,t=β2 (π ) = ωN+1,β∗ (πσ r
N+1) (97)

as claimed. �
Using this lemma, it is straightforward to prove the following theorem, whose proof we omit as

it is identical to the one shown in Ref. 6.

Theorem 6: Let Q be a fillable overlap monomial, such that qabQ is filled. Then for N → ∞,

〈Q〉t=β2 = 〈qab Q〉, (98)

where the average on the right is evaluated in the canonical Boltzmann state (t = 0). We will refer
to this property as saturability.

To motivate physically why Theorem 5 should indeed be true for all filled monomials, let us
make a clear example: Suppose that such a monomial Q is a function of overlaps among s replicas.
Consider as before the Boltzmann measure perturbed by a smooth cavity field and call σ a the
N-spin configuration of the replica a. We apply the gauge transformation σ a

i → σ a
i σ a

N+1, calling
σ a

+ = (σ a
1 , . . . , σ a

N+1) the enlarged spin vector obtained. The key feature of a filled monomial Q is
that it is left invariant by this transformation, so that (all sums run over a = 1. . . s and i = 1. . . N)

〈Q〉t = E

∑
{σ a

N+1}
∑

{σ a} Q({q (N )
ab })e−∑a β H (σ a )+

√
tp!

2N p−1

∑
i1<···<i p−1

Ji1 ...i p−1 σ a
i1

...σ a
i p−1

∑
{σ a

N+1}
∑

{σ a} e
−∑a β H (σ a )+

√
tp!

2N p−1

∑
i1<···<i p−1

Ji1 ...i p−1 σ a
i1

...σ a
i p−1

= E

∑
{σ a+} Q({q (N )

ab })e−∑a β H (σ a )+
√

tp!
2N p−1

∑
i1<···<i p−1

Ji1 ...i p−1 σ a
i1

...σ a
i p−1

σ a
N+1

∑
{σ a+} e

−∑a β H (σ a )+
√

tp!
2N p−1

∑
i1<···<i p−1

Ji1 ...i p−1 σ a
i1

...σ a
i p−1

σ a
N+1

= E

∑
{σ a+} Q({q (N+1)

ab + O(N−1)})e−∑a β H (σ a )+√
t/N

∑
i,a Ji σ

a
i σ a

N+1∑
{σ a+} e−∑a β H (σ a )+√

t/N
∑

i,a Ji σ
a
i σ a

N+1

= E

∑
{σ a+} Q({q (N+1)

ab })e−∑a β∗ H+(σ a
+)∑

{σ a+} e−∑a β∗ H+(σ a+)
+ O

(
1

N

)
, (99)
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with β* defined as before and

H+(σ a
+) = −

√
tp!

2(N + 1)p−1

∑
1≤i1<···<i p≤N

Ji1,...,i p σi1 . . . σi p

−
√

tp!

2(N + 1)p−1

∑
1≤i1<···<i p−1≤N

√
t

β2
Ji1...i p−1σi1 . . . σi p−1σN+1. (100)

For t = β2, we have an N + 1 spin system at the slightly shifted temperature β*, and for N → ∞
this will give the same result as for an N spin system at the original temperature up to vanishingly
small corrections: 〈Q〉t=β2 = 〈Q〉 + O(1/N ). For generic nonzero t one has in addition a modified
strength of the interaction of one spin (σ N+1) with all others. Also, this should only give O(1/N)
corrections because to produce a non-vanishing perturbation, one expects that a finite fraction of
spins should have non-standard interaction strengths.

As a final ingredient for later developments, let us show the streaming of a generic observable,
i.e., its variation with respect to the parameter t ruling the strength of the smooth cavity perturbation,
that we state without the proof as it is a long but straightforward generalization of the once given for
instance in Refs. 2 and 6.

Proposition 8: Let Fs be a monomial of overlaps among s replicas; then for any N the following
streaming equation for Fs holds:

〈Fs〉t

dt
= 〈Fs(

∑
1≤a<b≤s

q p−1
ab − s

∑
1≤a≤s

q p−1
a,s+1 + s(s + 1)

2
q p−1

s+1,s+2)〉t . (101)

B. Stochastically stable expansions

For the sake of clearness, let us outline briefly the plan for this section: first, we link the free
energy, the internal energy, and the cavity function (which carries the information about the entropy).
As we are interested in the free energy and an explicit expression for the internal energy is obtained
through a direct calculation as

〈HN (σ, J )〉 = −β

2

(
1 − 〈q p

12〉
)
,

our attention is focused on the cavity function: We show that it is possible to represent it in terms
of filled overlap monomials. These are evaluated initially in the perturbed Boltzmann state ωt but
because they are stochastically stable according to Theorem 5, we can also evaluate them in the
unperturbed state. Adding the internal energy part then gives us the desired expansion of the free
energy in terms of overlap correlation functions as stated by the following theorem.

Theorem 7: Assuming that the infinite volume limit of the cavity function


(β, t = β2) = lim
N→∞


N (β, t = β2)

is well behaved, the following relation holds in the thermodynamic limit:

α(β) + β

2
(p − 1)∂βα(β) = ln 2 + 
(β, t = β2). (102)

Proof: Let us consider the partition function of a system of N + 1 spins and at an inverse
temperature β*, which is slightly larger than the “true” inverse temperature β according to (86).
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Then, using the gauge transformation σ i→σ iσ N+1 in reverse, we get

Z N+1(β∗) =
∑

{σ },σN+1

e
β∗√

p!√
2(N+1)p−1

∑
1≤i1<···<i p≤N+1 Ji1 ,...,i p σi1 ...σi p

∼ 2
∑

σ

e
β
√

p!√
2N p−1

∑
1≤i1<···<i p≤N Ji1 ,...,i p σi1 ...σi p e

β
√

p!√
2N p−1

∑
1≤i1<···<i p−1≤N Ji1 ,...,i p−1 σi1 ...σi p−1

= 2Z N (β)ωN ,β (e
β
√

p!√
2N p−1

∑
1≤i1<···<i p−1≤N Ji1 ,...,i p−1 σi1 ...σi p−1 ). (103)

Taking logarithms and averaging over the disorder, the last term just becomes the cavity function
(as the Ji, N+1 have the same distribution as the Ji in the original definition)

[E ln Z N+1(β∗) − E ln Z N+1(β)] + [E ln Z N+1(β) − E ln Z N (β)]

= ln 2 + 
N (β, t = β2).

The first combination in square brackets on the lhs can now be expanded in the small difference

β∗ − β = β

[(
N + 1

N

) (p−1)
2

− 1

]
= (p − 1)

β

2N
+ O(

1

N 2
), (104)

according to

E ln Z N+1(β∗) − E ln Z N+1(β) = (p − 1)
β

2N
∂βE ln Z N+1(β) + O(1/N )

= (p − 1)
β

2
∂βαN+1(β) + O(1/N ).

The difference in the second set of square brackets will give the pressure α(β) for large N, and taking
N → ∞ therefore directly gives the statement of the theorem. �

Strictly speaking, the existence of the thermodynamic limit is not sufficient to guarantee that
the free energy increments converge, as assumed above. This technical difficulty can be avoided by
taking a Cesàro limit (see, for instance, Ref. 9) rather than a standard limit N → ∞, and the large-N
value of the cavity function then should be understood in this sense. This theorem states that we
need to study the cavity function to extrapolate properties of the free energy. To do this, let us recall
its streaming with respect to t, as given in (94),

d
N (β, t)

dt
= p

4
(1 − 〈q p−1

12 〉t ). (105)

Since the cavity function vanishes for t = 0, it can then be written as


N (β, t) = p

4

∫ t

0
dt ′ (1 − 〈q p−1

12 〉t ′). (106)

The plan now is to expand 〈q p−1
12 〉t in t, by evaluating successive t-derivatives via the streaming

equation (Proposition 8). A key insight that makes this expansion possible is that at t = 0 all
averages of monomials that are not filled must vanish because they would otherwise acquire a minus
sign under a gauge transformation (Proposition 7).

Applying the streaming equation first to 〈q p−1
12 〉t gives

d〈q p−1
12 〉t

dt
= 〈q p−1

12

(
q p−1

12 − 4q p−1
13 + 3q p−1

34

)
〉t , (107)

where we have also exploited the permutation symmetry among replicas. As a consequence, because
filled monomials do not depend on t in the thermodynamic limit and in β-average, we can write
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〈q p−1
12 〉t ∼ 〈q p

12〉t + O(q2p), such that the first terms of the cavity function read off as


(t = β2) = β2

4
p − β4

8
p〈q2(p−1)

12 〉 + O(q2(p−1)
12 ). (108)

Hence, we can write the representation of the free energy in terms of irreducible overlap correlation
functions as stated in the next proposition.

Proposition 9: The leading terms of the free energy of the p-spin glass model are given by the
following expression in terms of overlap correlation functions:

α(β) = ln 2 + β2

4

(
1 + (p − 1)〈q p〉 − β2

2
p〈q2(p−1)〉 + O(〈q2(p−1)

12 〉)
)
. (109)

Note that this expression coincides with the corresponding expression for the SK model when
p = 2, in fact in this case 〈qp〉 = 〈q2(p − 1)〉 and the coefficient for the second moment, i.e., 〈q2

12〉,
is given by (1 − β2), which when equal to zero, i.e., at β = 1, reverses the concavity of the
term, implying a second-order phase transition, so that criticality is restored, as expected. Note
further that this coincides with the expansion (40) of the free energy previously obtained with the
Hamilton-Jacobi technique.

1. Locking of the order parameters

The free energy expression above has an interesting interpretation if we regard the pressure as
a function of temperature and of all the averages of filled overlap monomials. To emphasize this
we write in the following discussion α(β, 〈 · 〉) instead of α(β); here 〈 · 〉 refers to the collection of
all (averages of) filled monomials and we associate with any combination of monomials a graph
where each node represents a different replica and each link corresponds to an overlap between
the connected nodes/replicas.6 We will show that the total temperature derivative of α equals its
partial derivative; in the latter, the graphs are taken as constant, i.e., their temperature dependence
is not accounted for. This is reminiscent of the situation where a free energy is expressed as an
extremum over some order parameters, and the first order variation with temperature can be found
while keeping the order parameters constant. The result we prove shows that the filled graphs in
our framework behave similar to such order parameters, even though of course their values are not
determined via an extremization.

In order to prove our statement, it is convenient to work with derivatives with respect to β2; of
course β-derivatives can be recovered trivially by multiplying by 2β. From Theorem 7, we have for
the pressure the expression

α(β, 〈.〉) = ln 2 + 
(β, t = β2) − β

2
(p − 1)∂βα(β). (110)

Its total derivative with respect to β2 is

d

dβ2
α(β, 〈.〉) = ∂β2α(β, 〈.〉) +

∑
〈.〉

∂α(β, 〈.〉)
∂〈.〉

∂〈.〉
∂β2

, (111)

where the sum
∑

〈.〉 runs over all filled graphs. Of course, we already know the value of this total
derivative as it is proportional to the internal energy

d

dβ2
α(β, 〈.〉) = 1

2β

dα(β)

dβ
= 1

4
(1 − 〈q p

12〉). (112)

But we can also calculate the partial β2 derivative: from (110),

∂β2α(β, 〈.〉) = ∂β2
(β, t = β2) − (p − 1)

4
(1 − 〈q p

12〉). (113)

To understand how to calculate the partial derivative of the cavity function, where all filled monomials
are held constant, recall the expression (109). We need to substitute t = β2 there as we are concerned
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with 
(β, t = β2). The explicit dependence on β2 of the result then comes only from the prefactors
of the filled graphs, i.e., from the original t-dependence of the cavity function. The latter is already
known (see Eq. (105)), and so we get

∂β2
(β, t = β2) = ∂t
(β, t) |t=β2= p

4
(1 − 〈q p−1

12 〉t=β2 ) = p

4
(1 − 〈q p

12〉), (114)

where in the last step we have exploited Theorem 6. Inserting the previous expression into (113)
shows that the total and partial derivatives of α are indeed the same, as claimed

d

dβ2
α(β, 〈.〉) = ∂β2α(β, 〈.〉). (115)

As a consequence, the second term in the rhs of Eq. (111) has to be identically zero∑
〈.〉

∂α(β, 〈.〉)
∂〈.〉

∂〈.〉
∂β2

= 0. (116)

We will see in Sec. V D how this relates to the well-known polynomial identities that we revise in
Sec. V C.

C. A digression on Ghirlanda-Guerra and Aizenman-Contucci identities

In the p = 2 case (namely, the paradigmatic SK model26), Parisi went beyond the solution
for the free energy and gave an ansatz about the pure states of the model as well, prescribing the
so-called ultrametric or hierarchical organization of the phases (see Ref. 21 and references therein).
From a rigorous point of view, the closest the community has so far got to ultrametricity is in the
proof of identities constraining the probability distribution of the overlaps, namely, the Aizenman-
Contucci (AC) and the Ghirlanda-Guerra identities (GG) (see Refs. 4 and 16, respectively). These
are consistent with, but weaker than, Parisi’s ultrametric structure, despite recent fundamental step
forward have been achieved.22

In a nutshell, here, we summarize what the GG or AC identities state for the p = 2 case. Consider
the overlaps among s replicas. Add one replica s + 1; then the overlap qa, s + 1 between one of the
first s replicas (say a) and the added replica s + 1 is either independent of all other overlaps, or it is
identical to one of the overlaps qab, with b ranging across the first s replicas except a. Each of these
cases has equal probability s− 1.

This property is very close to the relation obtained within the Parisi picture: Integrating over
q23 in this equation, the joint probability distribution for the overlaps q12 and q13 corresponding to
the case s = 2, a = 1 above becomes

P(q12, q13) = P(q12)

[
1

2
δ(q12 − q13) + 1

2
P(q13)

]
, (117)

where P(.) is the probability distribution of the overlap between any two replicas. Dividing by P(q12)
gives the conditional probability P(q13|q12), and the formula above then says precisely that the two
overlaps are independent with probability one half and identical with the same probability. Even
when we consider two overlaps between two distinct pairs of replicas the correlation remains strong;
in fact, still following Parisi

P(q12, q34) = 2

3
P(q12)P(q34) + 1

3
P(q12)δ(q12 − q34). (118)

D. Zero average polynomials at even p

Let us now see how to prove these properties in p-spin glasses (or at least the equality of the
second moments of the relevant distributions) following Ghirlanda and Guerra argument.16 Denote
by e(σ ) = HN(σ )/N the energy density; the dependence on N will be left implicit below. This quantity
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is self-averaging

lim
N→∞

(〈e(σ )2〉 − 〈e(σ )〉2) = 0. (119)

Let us sketch an euristic proof of (119),

〈e(σ )2〉 − 〈e(σ )〉2 = Eω(e(σ )2) − [Eω(e(σ ))]2 = E[ω(e(σ )2) − ω2(e(σ ))]

+ [Eω2(e(σ )) − (Eω(e(σ )))2]. (120)

The second term is the variance with the disorder of the Boltzmann average of the energy density
and, as N → ∞, it goes to zero. The first term is equal to −N−1∂βEω(e(σ )) and, since Eω(e(σ )) is
finite, the prefactor N− 1 forces also this contribution to go to zero as N → ∞. A rigorous proof for
the p = 2 case can be found in Refs. 12 and 24 for a generic even p.

The property (119) is fundamental because it implies, for any function Fs of overlaps among s
replicas,

lim
N→∞

(〈e(σ a)Fs〉 − 〈e(σ )〉〈Fs〉) = 0, (121)

where by e(σ a) we mean e(σ ) calculated on replica a, taken to be one of the replicas that appear in
Fs. Equation (121) can be obtained easily from the Schwartz inequality

lim
N→∞

(〈e(σ a)Fs〉 − 〈e(σ )〉〈Fs〉)2 (122)

= lim
N→∞

〈(e(σ a) − 〈e(σ )〉)Fs〉2 (123)

≤ lim
N→∞

〈(e(σ a) − 〈e(σ )〉)2〉〈F2
s 〉 = 0. (124)

The first term in (121) can be evaluated again using Gaussian integration by parts

〈e(σ a)Fs〉 = −
√

p!

2N p−1

∑
i1<···<i p

EJi1,...,i p �(Fsσ
a
i1

. . . σ a
i p

) = −β

2
〈Fs(

∑
1≤b≤s

q p
ab − sq p

a,s+1)〉, (125)

while the second term is simply

〈e(σ )〉〈Fs〉 = −β

2
(1 − 〈q p

12〉)〈Fs〉. (126)

Combining Eqs. (125) and (126), we obtain the first type of GG relation

lim
N→∞

〈Fs

( ∑
1≤b≤s

q p
ab − sq p

a,s+1 − (1 − 〈q p
12〉)
)
〉 = 0. (127)

Since Fs is a generic function, this result implies16 that, conditionally on all the overlaps qcd with 1
≤ c < d ≤ s,

〈q p
a,s+1〉 = 1

s
〈q p

12〉 + 1

s

∑
1≤b≤s,b 
=a

q p
ab. (128)

This is consistent with our description above of the physical content of the GG relations; the particular
example s = 2, a = 1 corresponds to the second moment of (117).

In the same way it is possible to derive a constraint for averages involving s + 2 replicas by
using

E�(e(σ ))�(Fs) − E�(e(σ ))E�(Fs) = 0, (129)

which is based on the vanishing of the second term of Eq. (120). One obtains the second type of GG
identity,

〈Fs

( ∑
1≤b≤s

q p
b,s+1 + 〈q p

12〉 − (s + 1)q p
s+1,s+2

)
〉 = 0. (130)
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Again, invoking the arbitrariness of Fs, this tells us that conditional on the overlaps among the first
s replicas

〈q p
s+1,s+2〉 = 1

s + 1

∑
1≤b≤s

〈q p
b,s+1〉 + 1

s + 1
〈q p

12〉

= 2

s + 1
〈q p

12〉 + 2

s(s + 1)

∑
1≤a<b≤s

q p
ab, (131)

where the second equation follows by inserting (128). The specific case s = 2 corresponds to the
second moment of (118) as expected.

Finally, subtracting (129) from (121), which is equivalent to exploiting the vanishing of the first
term in Eq. (120), leads to the self-averaging relation

E[�(e(σ a)Fs) − �(e(σ a))�(Fs)] = 0, (132)

from which it is possible to obtain, again for some fixed 1 ≤ a ≤ s,

〈Fs

( ∑
1≤b≤s,b 
=a

q p
ab − sq p

a,s+1 −
∑

1≤b≤s

q p
b,s+1 + (s + 1)q2

s+1,s+2

)
〉. (133)

Summing over a and dividing by two, this last relation becomes

〈Fs

( ∑
1≤a<b≤s

q p
ab − s

∑
1≤a≤s

q p
a,s+1 + s(s + 1)

2
q p

s+1,s+2

)
〉 = 0, (134)

which is the general form of the AC relations. It is interesting to note that the lhs of Eq. (134) equals
2Nβ∂β〈Fs〉, as one verifies by direct calculation: As the β-derivative must be O(1) we can then
directly argue that (134) vanishes for large N and does so generically as 1/N.

Moving on to concrete examples, the most famous GG relations are those obtained from
Fs = q p

12, where the exponent p makes us focus on the energy term of the p-spin model. They are
typically written in the form

〈q p
12q p

13〉 = 1

2
〈q2p

12 〉 + 1

2
〈q p

12〉2, (135)

〈q p
12q p

34〉 = 1

3
〈q2p

12 〉 + 2

3
〈q p

12〉2. (136)

Eliminating 〈q p
12〉2, we get, as expected, the AC relation for Fs = q p

12 ,

〈q2p
12 〉 − 4〈q p

12q p
13〉 + 3〈q p

12q p
34〉 = 0. (137)

1. Overlap constraint generators

We now show that within our smooth cavity field framework these relations can be obtained
very simply from the stochastic stability of filled monomials (Theorem 5). Specifically, we claim
that the AC identities follow from the t-independence that obtains for averages of such monomials
when N → ∞, and specifically from the vanishing of the t-derivative at t = β2: if Fs is a filled
monomial, then

lim
N→∞

∂t 〈Fs〉|t=β2 = 0. (138)

This property, for generic t, has already been used in our smooth cavity expression, where we did
not evaluate the streaming of filled graphs like q p

12 because they are independent of t.
To see that we can also generate constraints for the overlaps, we combine t-independence with

the fact that for t = β2, by Theorem 6, the perturbed Boltzmann state effectively reverts to the
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unperturbed state of an enlarged system. Explicitly, we have by evaluating the t-derivative in (138)
using the streaming equation (Theorem 8),

lim
N→∞

〈Fs

( ∑
1≤a<b≤s

q p−1
ab − s

∑
1≤a≤s

q p−1
a,s+1 + s(s + 1)

2
q p−1

s+1,s+2

)
〉t=β2 = 0. (139)

Now, given that Fs is filled, all the terms here are fillable. Because we are evaluating at t = β2,
then from Theorem 6 their averages reduce to unperturbed averages of the corresponding filled
expressions. Filling in this case just means squaring all the overlaps inside the brackets, and so we
get directly

lim
N→∞

〈Fs

( ∑
1≤a<b≤s

q p
ab − s

∑
1≤a≤s

q p
a,s+1 + s(s + 1)

2
q p

s+1,s+2

)
〉 = 0. (140)

This is nothing but the general AC relation (134), as claimed.
From the streaming of the simplest filled monomial (i.e., 〈q p

12〉) we find the first AC relation

lim
N→∞

∂t 〈q p
12〉t=β2 = lim

N→∞
〈q2p

12 − 4q p
12q p

23 + 3q p
12q p

34〉 = 0, (141)

which denotes overall a perfect agreement among results from our approach and previous knowledge
on p-spin models.

VI. CONCLUSIONS

In recent years, spin-glasses have attracted a growing interest raised as, day after day, these
systems are becoming the bricks for building models to describe behavior of complex systems,
ranging from biology to economics. As a consequence, there is a need for stronger and stronger
analytical methods possibly related with the numerical and experimental findings. This paper was
written with the intention of offering a detailed analysis of a well-known model, namely, the p-spin-
glass, through two recent methods: the Hamilton-Jacobi technique and the smooth cavity expression.
We first provide a picture of the behavior of the p-spin-glass, from a perspective which is intermediate
between that of the pure theoretical physicist and that of the rigorous mathematician, hoping to help
in bridging the gap between these two approaches. Then, we explain the methods and use them with
abundance of details, so to allow the reader to learn them. Indeed, our focus is more on techniques
and on their versatility rather than on results themselves, which are mostly already known.14, 17, 24

Summarizing, after a streamlined introduction to the basic properties of the model (expression
for the internal energy and convergence of the infinite volume limit), within the Hamilton-Jacobi
technique, we obtained analytical expressions for both the RS and the 1-RSB free energies and
we gain a clear mathematical control of the underlying physical assumptions. Within the smooth
cavity method, we showed how to build the expression of the free energy through overlap correlation
functions and we analyzed the polynomial identities, that always develop in frustrated systems,
derived as consequences of the stability of the measure limN→∞

∑
σ with respect to small (negligible)

random stochastic perturbations.
It is interesting to note that in the mean field techniques we developed, there is a certain degree

of complementary between the two approaches as within the former we use a trial overlap coupled
with a single particle free spin, while in the latter we use p − 1 spins for the cavity: both methods
essentially work by reducing the problem to a single-body one, the Hamilton-Jacobi in a direct way,
the smooth cavity in a complementary way.

Further investigations should be addressed to the study of the diluted frustrated p-spin model
and its relation with K-satisfiability problems and P/NP completeness.
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APPENDIX: DERIVATIVES OF THE GENERALIZED PARTITION FUNCTION RESPECT
TO THE INTERPOLATING PARAMETERS

We show here the derivation of expressions (49) and (50). Let us start with the first one

∂t α̃N = 1

N
E0 Z−1

0 ∂t Z0. (A1)

It is easy to see that

Z−1
a ∂t Za = Ea+1 fa+1 Z−1

a+1∂t Za+1, (A2)

so that

E0 Z−1
0 ∂t Z0 = E0E1 . . .EK f1 . . . fK Z−1

K ∂t ZK ≡ E f1 . . . fK Z−1
K ∂t ZK (A3)

and, remembering that ZK ≡ Z̃ N ,

E0 Z−1
0 ∂t Z0 = 1

2
√

t

√
tp!

2N

∑
1≤i1<···<i p≤N

E( f1 . . . fK Ji1...i p ω̃(σi1 . . . σi p )). (A4)

Integrating by parts the Ji1...i p inside the expectation becomes a derivative

1

2
√

t

√
tp!

2N

∑
1≤i1<···<i p≤N

[
K∑

a=2

E( f1 . . . ∂Ji1 ...i p
fa . . . fK ω̃(σi1 . . . σi p )) +E( f1 . . . fK ∂Ji1 ...i p

ω̃(σi1 . . . σi p ))

]
.

(A5)
We now proceed by computing separately the two addends in the square brackets. for the second
term we easily find

∂Ji1 ...i p
ω̃(σi1 . . . σi p )) =

√
tp!

2N p−1
(1 − ω̃2(σi1 . . . σi p )), (A6)

while for the first term we have

∂ Ji1...i p fa = ma fa Z−1
a ∂ Ji1...i p Za − ma fa Ea( fa Z−1

a ∂ Ji1...i p Za). (A7)

Now, using the analogous of (A2), one has

Z−1
a ∂ Ji1...i p Za = Ea+1 . . .EK ( fa+1 . . . fK Z−1

K ∂ Ji1...i p ZK ) (A8)

=
√

tp!

2N p−1
ωa(σi1 . . . σi p ) (A9)

and then for a ≥ 2 (remind that f1 = 1 so its derivative is zero)

∂ Ji1...i p fa =
√

tp!

2N p−1
ma fa(ωa(σi1 . . . σi p ) − ωa−1(σi1 . . . σi p )). (A10)

Putting together the terms computed, we find

E0 Z−1
0 ∂t Z0 =1

4

p!

N p−1

∑
1≤i1<···<i p≤N

[ K∑
a=2

E0 . . .Ea( f1 . . . faωa(σi1 . . . σi p ) fa+1 . . . fK ω̃(σi1 . . . σi p )

−
K∑

a=2

E0 . . .Ea( f1 . . . faωa(σi1 . . . σi p ) fa+1 . . . fK ω̃(σi1 . . . σi p )

+ 1 − E0 . . .EK ( f1 . . . fK ω̃2(σi1 . . . σi p ))

]
(A11)
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and noting that in the thermodynamic limit p!
∑

i1<···<i p
∼∑i1,...,i p

, we have

∂t α̃N = 1

4

[ K∑
a=1

ma(〈q p
σσ ′ 〉a − 〈q p

σσ ′ 〉a−1) + 1 − 〈q p
σσ ′ 〉K

]
(A12)

from which the derivation of (49) is straightforward.
Let us now compute the derivatives of the free energy respect to the “spatial” parameters

∂aα̃N = 1

N
E0 Z−1

0 ∂a Z0

= 1

N
E( f1 . . . fK Z−1

K ∂a ZK )

= 1

N

1

2
√

xa
q

p−2
4 E( f1 . . . fK

N∑
i=1

J a
i ω̃(σi )),

(A13)

where we used the analogous of (A3). Integrating by parts this becomes

∂aα̃N = 1

N
E0

∑
i

[
E1 . . .EK (

K∑
b=2

f1 . . . ∂J a
i

fb . . . fK ω̃(σi ))

+ E1 . . .EK ( f1 . . . fK ∂J a
i
ω̃(σi ))

]
.

(A14)

The derivatives of the state and of fb respect to the random fields are, respectively, given by

∂J a
i
ω̃(σi ) = √

xaq
p−2

4
a (1 − ω̃2(σi ))

∂J a
i

fb =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mb fb(Z−1
b ∂J a

i
Zb − Eb fb Z−1

b ∂J a
i

Zb) if a < b,

mb fb Z−1
b ∂J a

i
Zb if a = b,

0 if a > b.

(A15)

Using again the iterative derivation formula we have

Z−1
b ∂J a

i
Zb = Eb+1( fb+1 Z−1

b+1∂J a
i

Zb+1)

= Eb+1 . . . EK ( fb+1 . . . fK Z−1
K ∂J a

i
ZK )

= √
xaq

p−2
4

a Eb+1 . . . EK ( fb+1 . . . fK ω̃(σi ))

= √
xaq

p−2
4

a ωb(σi ),

(A16)

so that

∂J a
i

fb =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
xaq

p−2
4

a mb fb(ωb(σi ) − ωb−1(σi )) if a < b,

√
xaq

p−2
4

a mb fbωb(σi ) if a = b,

0 if a > b.

(A17)
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Substituting these in the (A14), the first term inside the square brackets becomes

E1 . . .EK (
K∑

b=2

f1 . . . ∂J a
i

fb . . . fK ω̃(σi )) =√
xaq

p−2
4

a
[
maE1 . . .Ea( f1 . . . faω

2
a(σi ))

+
K∑

b=a+1

mbE1 . . .Eb( f1 . . . fbω
2
b(σi ))

−
K∑

b=a+1

mbE1 . . .Eb−1( f1 . . . fb−1ω
2
b(σi ))

]
(A18)

and we find

∂aα̃N = 1

2
q

p−2
2

a
[
ma〈qσσ ′ 〉a +

∑
b>a

mb(〈qσσ ′ 〉b − 〈qσσ ′ 〉b−1) + 1 − 〈qσσ ′ 〉K
]

(A19)

from which, after some manipulations, one can easily obtain the (50).
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(2005).
13 Derrida, B., “Random energy model: limit of a family of disordered models,” Phys. Rev. Lett. 45, 79–82 (1980).
14 Gardner, E., “Spin glasses with p-spin interactions,” Nucl. Phys. B 245, 747–765 (1985).
15 Genovese, G. and Barra, A., “A mechanical approach to mean field spin models,” J. Math. Phys. 50, 365234 (2009).
16 Ghirlanda, S. and Guerra, F., “General properties of overlap probability distributions in disordered spin systems,” J. Phys.

A 31, 9149–9155 (1998).
17 Gross, D. J. and Mezard, M., “The simplest spin glass,” Nucl. Phys. B. 240, 431–452 (1984).
18 Guerra, F., “Sum rules for the free energy in the mean field spin glass model,” Mathematical Physics in Mathematics and

Physics: Quantum and Operator Algebraic Aspects, Fields Institute Communications Vol. 30 (American Mathematical
Society, 2001), p. 161.

19 Guerra, F. and Toninelli, F. L., “The infinite volume limit in generalized mean field disordered models,” Markov Proc. Rel.
Fields 9, 195–207 (2003).

20 Guerra, F. and Toninelli, F. L., “The thermodynamic limit in mean field spin glass models,” Commun. Math. Phys. 230,
71–79 (2002).

21 Mezard, M., Parisi, G., and Virasoro, M. A., Spin Glass Theory and Beyond (World Scientific, Singapore, 1987).
22 Panchenko, D., “Ghirlanda-Guerra identities and ultrametricity: An elementary proof in the discrete case,” C. R. Acad.

Sci. Paris 349, 813 (2011).
23 Starr, S., “Thermodynamic limit for the mallows model on Sn,” J. Math. Phys. 50, 095208 (2009).

Downloaded 08 Oct 2012 to 141.108.19.30. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1088/1742-5468/2008/10/P10003
http://dx.doi.org/10.1016/S0034-4877(11)60024-4
http://dx.doi.org/10.1088/1742-5468/2006/11/P11015
http://dx.doi.org/10.1023/A:1023080223894
http://dx.doi.org/10.1103/PhysRevB.68.214403
http://dx.doi.org/10.1007/s10955-005-9006-6
http://dx.doi.org/10.1007/s10955-008-9567-2
http://dx.doi.org/10.1002/mma.1065
http://dx.doi.org/10.1140/epjb/e2008-00281-y
http://dx.doi.org/10.1088/1742-5468/2010/09/P09006
http://dx.doi.org/10.1007/s10955-009-9887-x
http://dx.doi.org/10.1007/s00023-005-0229-5
http://dx.doi.org/10.1103/PhysRevLett.45.79
http://dx.doi.org/10.1016/0550-3213(85)90374-8
http://dx.doi.org/10.1063/1.3131687
http://dx.doi.org/10.1088/0305-4470/31/46/006
http://dx.doi.org/10.1088/0305-4470/31/46/006
http://dx.doi.org/10.1016/0550-3213(84)90237-2
http://dx.doi.org/10.1007/s00220-002-0699-y
http://dx.doi.org/10.1016/j.crma.2011.06.021
http://dx.doi.org/10.1016/j.crma.2011.06.021
http://dx.doi.org/10.1063/1.3156746


063304-29 Agliari et al. J. Math. Phys. 53, 063304 (2012)

24 Talagrand, M., Spin Glasses: A Challenge for Mathematicians: Cavity and Mean Field Models (Springer Verlag, 2003).
25 Here, we name P our velocity, i.e., the velocity field coincides with the generalized time dependent momentum.
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are the most welcome as the Hamiltonian – even though no longer in classical space-time sense – are still quadratic forms
such that linear response for the forces is still kept. However, especially in disordered system, many real features of glass
forming dynamics seem better reproduced by violation of the linear response and in this sense by p-spin models.

Downloaded 08 Oct 2012 to 141.108.19.30. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions


