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a b s t r a c t

A specific type of neural networks, the Restricted Boltzmann Machines (RBM), are implemented for
classification and feature detection in machine learning. They are characterized by separate layers of
visible and hidden units, which are able to learn efficiently a generative model of the observed data. We
study a ‘‘hybrid’’ version of RBMs, in which hidden units are analog and visible units are binary, and we
show that thermodynamics of visible units are equivalent to those of a Hopfield network, in which the
N visible units are the neurons and the P hidden units are the learned patterns. We apply the method of
stochastic stability to derive the thermodynamics of the model, by considering a formal extension of this
technique to the case of multiple sets of stored patterns, which may act as a benchmark for the study of
correlated sets.

Our results imply that simulating the dynamics of a Hopfield network, requiring the update of N
neurons and the storage of N(N − 1)/2 synapses, can be accomplished by a hybrid Boltzmann Machine,
requiring the update of N + P neurons but the storage of only NP synapses. In addition, the well known
glass transition of the Hopfield network has a counterpart in the BoltzmannMachine: it corresponds to an
optimum criterion for selecting the relative sizes of the hidden and visible layers, resolving the trade-off
between flexibility and generality of themodel. The low storage phase of the Hopfieldmodel corresponds
to few hidden units and hence a overly constrained RBM, while the spin-glass phase (too many hidden
units) corresponds to unconstrained RBM prone to overfitting of the observed data.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

A common goal in Machine Learning is to design a device able
to reproduce a given system, namely to estimate the probability
distribution of its possible states (Honavar & Uhr, 1994). When a
satisfactorymodel of the system is not available, and its underlying
principles are not known, this goal can be achieved by the
observation of a large number of samples (Coolen, Kuehn, & Sollich,
2005). A well studied example is the visual world, the problem of
estimating the probability of all possible visual stimuli (Pitkow,
2010). A fundamental ability for the survival of living organisms
is to predict which stimuli will be encountered and which are
more or less likely to occur. For this purpose, the brain is believed
to develop an internal model of the visual world, to estimate
the probability and respond to the occurrence of various events
(Bernacchia & Amit, 2007; Bernacchia, Seo, Lee, & Wang, 2011).

Ising-type neural networks have been widely used as genera-
tivemodels of simple systems (Barra, 2008;Hertz, Krogh, & Palmer,
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1991). Those models update the synaptic weights between neu-
rons according to a specific learning rule, depending on the neural
activity driven by a given set of observations; after learning, the
network is able to generate a sequence of states whose probabil-
ities match those of the observations. Popular examples of Ising
models, characterized by a quadratic energy function and a Boltz-
mann distribution of states, are the Hopfield model (Amit, 1992;
Hopfield, 1982) and Boltzmann Machines (BM) (Hinton, 2007).
BoltzmannMachines (BM) have been designed to capture the com-
plex statistics of arbitrary systems by dividing neurons in two
subsets, visible and hidden units: marginalizing the Boltzmann
distribution over the hidden units allows the BM to reproduce,
through the visible units, arbitrarily complex distributions of
states, by learning the appropriate synaptic weights (Hinton,
2007). State-of-the-art feature detectors and classifiers implement
a specific type of BM, the Restricted BoltzmannMachine (RBM), be-
cause of its efficient learning algorithms (Bengio, 2009). The RBM
is characterized by a bipartite topology in which hidden and visi-
ble units are coupled, but there is no interaction within either set
of visible or hidden units (Hinton & Salakhutdinov, 2006).

All neurons of RBMs are binary, both the visible and the hidden
units. The analog equivalent of RBMs, the Restricted Diffusion
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Fig. 1. Left panel: schematic representation of a Hybrid Boltzmann Machine (HBM) where the hidden units are analog (z, τ variables) and the visible units are binary (σ
variables). The two sets of hidden units, z and τ , represent two feature sets that are both connected to the layer of visible units σ . The layers of hidden and visible units are
reciprocally connected, but there are no intra-layer connections, thus forming a bipartite topology. Right panel: schematic representation of the equivalent Hopfield neural
network built upon the visible units only, with an internal fully connected structure.
Networks, have all analog units and have been described in Bengio
(2009) andMarks andMovellan (2001). Herewe study the case of a
‘‘hybrid’’ BoltzmannMachine (HBM), in which the hidden units are
analog and the visible units are binary (Fig. 1 left). We show that
theHBM,whenmarginalized over the hiddenunits, is equivalent to
a Hopfield network (Fig. 1 right), where the N visible units are the
neurons and the P hidden units are the learned patterns. Although
the Hopfield network can generate probability distributions in a
limited space, it has been widely studied for its associative and
retrieval properties. The exact mapping proven here introduces
a new way to simulate Hopfield networks, and allows a novel
interpretation of the spin glass transition, which translates into an
optimal criterion for selecting the relative size of the hidden and
visible layers in the HBM.

We use the method of stochastic stability to study the ther-
modynamics of the system in the case of analog synapses. This
method has been previously described in Aizenman and Contucci
(1998) and Barra, Genovese, and Guerra (2010), and offers an
alternative approach to the replica trick for studying Ising-type
neural networks, including the Hopfield model and the HBM. We
analyze themodel with two non-interacting sets of hidden units in
the HBM, which correspond to two sets of uncorrelated patterns in
the Hopfield network, and study the thermodynamics with the as-
sumption of replica symmetry. We extend the theory to cope with
two sets of interconnected hidden layers, corresponding to sets of
correlated patterns, and we show that their interaction acts as a
noise source for retrieval.

2. Statistical equivalence of HBM and Hopfield networks

We define a ‘‘hybrid’’ Boltzmann Machine (HBM, see Fig. 1
left) as a network in which the activity of units in the visible
layer is discrete, σi = ±1, i ∈ (1, . . . ,N) (digital layer), and
the activity in the hidden layer is continuous (analog layer). The
layers of hidden and visible units are reciprocally connected, but
there are no intra-layer connections, thus forming a bipartite
topology. We assume that the layer of hidden units is further
divided into two sets, both described by continuous variables,
zµ, τν ∈ ℜ, µ ∈ (1, . . . , P), ν ∈ (1, . . . , K). We will consider
the case of interacting hidden units (connections between z and τ )
in the next section. In order to maintain a parsimonious notation,
in this section we consider a single hidden layer, e.g. only the layer
defined by the variables z.

The synaptic connections between units in the two layers are
fixed and symmetric, and are defined by the synaptic matrix ξ

µ

i .
The input to unit σi in the visible (digital) layer is the sum of the
activities in the hidden (analog) layer weighted by the synaptic
matrix, i.e.


µ ξ

µ

i zµ. The input to unit zµ in the hidden (analog)
layer is the sum of the activities in the visible (digital) layer,
weighted by the synaptic matrix, i.e.


i ξ

µ

i σi. In the following, we
denote by z the set of all hidden {zµ} variables, and by σ the set of
all visible {σi} variables.

The dynamics of the activity is different in the two layers; in the
analog layer it changes continuously in time, while in the digital
layer it changes in discrete steps. The activity in thehidden (analog)
layer follows the stochastic differential equation

T
dzµ
dt

= −zµ(t) +


i

ξ
µ

i σi +


2T
β

ζµ(t), (1)

where ζ is a white Gaussian noise with zero mean and covariance
ζµ(t)ζν(t ′)


= δµν δ(t − t ′). The parameter T quantifies the

timescale of the dynamics, and the parameter β determines the
strength of the fluctuations. The first term in the right hand side
is a leakage term, the second term is the input signal and the
third term is a noise source. Since noise is uncorrelated between
different hidden units, they evolve independently. Eq. (1) describes
an Ornstein–Uhlembeck diffusion process (Tuckwell, 1988) and,
for fixed values ofσ , the equilibriumdistribution of zµ is a Gaussian
distribution centered around the input signal, which is equal to

Pr(zµ|σ) =


β

2π
exp

−
β

2


zµ −


i

ξ
µ

i σi

2
 . (2)

In order for this equilibrium distribution to hold, the activity of
digital units σ must be constant, while in fact it depends on
time. However, we assume that the timescale of diffusion T is
much faster than the rate at which the digital units are updated.
Therefore, a different equilibrium distribution for z, characterized
by different values of σ , holds between each subsequent update of
σ . Since hiddenunits are independent, their joint distribution is the
product of individual distributions, i.e. Pr(z|σ) =

P
µ=1 Pr(zµ|σ).

The activity in the visible (digital) layer follows a standard
Glauber dynamics for Ising-type systems (Amit, 1992). At a
specified sequence of time intervals (much larger than T ), the
activity of units in the digital layer is updated randomly according
to a probability that depends on their input. While updating
the digital units σ , the analog variables z are fixed, namely the
update of digital units is instantaneous. The activity of a unit σi is
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independent of other units, and the probability is a logistic function
of its input, i.e.

Pr(σi|z) =

exp


βσi


µ

ξ
µ

i zµ



exp


β

µ

ξ
µ

i zµ


+ exp


−β


µ

ξ
µ

i zµ

 . (3)

Note that this distribution is normalized, namely Pr(σi = +1|z) +

Pr(σi = −1|z) = 1. Since visible units are independent, their
joint distribution is the product of individual distributions, i.e.
Pr(σ |z) =

N
i=1 Pr(σi|z).

Given the conditional distributions of either layers, Eqs. (2) and
(3), we can determine their joint distribution, Pr(σ , z), and the
marginal distributions Pr(z) and Pr(σ ), apart from a normalization
factor. We use Bayes’ rule, Pr(σ , z) = Pr(z|σ)Pr(σ ) = Pr(σ |z)
Pr(z), and we use the fact that marginal distributions depend on
single layer variables. The result is, for the joint distribution

Pr(σ , z) ∝ exp


−

β

2


µ

z2µ + β

i,µ

σiξ
µ

i zµ


. (4)

The marginal distribution of the visible units is equal to

Pr(σ ) ∝ exp


β

2


i,j


µ

ξ
µ

i ξ
µ

j


σiσj


. (5)

As explained in more detail in the next section, this probability
distribution is equal to the distribution of a Hopfield network,
where the synaptic weights of the Hopfield network are given
by the expression in round brackets. The stored patterns of
the Hopfield model corresponds to the synaptic weights of the
HBM, described by the ξ variables, and the number of patterns
corresponds to the number P of hidden units.

Therefore, we have shown that the HBM and Hopfield network
admit the same probability distribution, once the hidden variables
of the HBM are marginalized, and the HBM and Hopfield network
are statistically equivalent. In other words, a configuration σ
in the Hopfield network has the same probability as the same
configuration σ in the HBM, when averaged over the hidden
configurations z. Retrieval in the Hopfield network corresponds to
the case in which the HBM learns to reproduce a specific pattern
of neural activation. The maximum number of patterns P that can
be retrieved in a Hopfield network is known (Amit, 1992), and is
equal to 0.14 · N . If the number of patterns exceeds this limit, the
network is not able to retrieve any of them.On the other hand, if the
HBM has a very large number P of hidden variables, this provokes
over-fitting in learning the observed patterns, and the HBM is
not able to reproduce the statistics of the observed system. The
correspondence between the Hopfield network and HBM allows
us to recognize that the maximum number of hidden variables in
the HBM is 0.14 · N .

We check this prediction by numerical simulations of the HBM.
We pick each element of the synaptic matrix ξ

µ

i independently
from a Bernouilli distribution, ξµ

i = 1/
√
N or ξ

µ

i = −1/
√
N with

50% probability (the scaling with N is imposed for comparison to
the original Hopfield model). We set the number of neurons in the
visible layer as N = 1000, the timescale of dynamics of hidden
units is T = 1, and we use T as a reference time unit. In each
simulation, we update the visible units every 1T and we run the
simulation for 1000T , therefore performing one thousand updates
of the visible units. We simulate the dynamics of hidden units by
standard numerical methods for stochastic differential equations
and using a time step of 0.01T . In different simulations we vary the
values of the noise amplitude by manipulating β = 0.5, 2, 10, and
the number of hidden units P = 50, 100, 150, 200.We observe the
overlap of the activity of visible units with each one of the patterns
µ by computing


i ξ

µ

i σi/
√
N , such that an overlap equal to one

for some value of µ implies that visible units precisely align to
that pattern µ. In each simulation, we initialize the hidden units
at random and the visible units are exactly aligned to one of the
patterns.

Fig. 2 shows the results of simulations, the dynamics of the
overlap of visible units with all patterns for different values of
the parameters β and P . For high noise, β = 0.5, no retrieval is
possible and all overlaps are near zero regardless of the number of
hidden units P . For intermediate noise, β = 2, retrieval is possible
provided that the number of hidden units is not too large. The
prediction of the Hopfield network is that retrieval is lost at about
P ≃ 0.06N = 60 (Amit, 1992), accurately matching our findings.
For low noise, β = 10, retrieval is maintained up to large values
of P . In the low noise regime, the Hopfield network can retrieve
a number of patterns near its maximum, i.e. P = 0.14N = 140,
which again matches well with the results of our simulations.

3. Thermodynamic theory of HBM

In canonical statistical mechanics, a system is described by the
probability distribution of each one of its possible states. In the
HBM, a given state is associated with its probability according
to the Boltzmann distribution. This distribution is expressed by
Eq. (4), which we rewrite while reintroducing the variables τ
dropped in the previous section and by defining the Hamiltonian
function

Hhbm(σ , z, τ ; ξ, η) =
1
2


µ

z2µ +


ν

τ 2
ν



−


i

σi


µ

ξ
µ

i zµ +


ν

ην
i τν


. (6)

We denote by ξ the set of all {ξµ

i } variables, and by η the set of all
{ην

i } variables, where ην
i is the synaptic matrix for the connections

with the τ layer. The Boltzmann distribution depends on the
parameters β, ξ, η, and its expression includes the normalization
factor Z:

Pr(σ , z, τ ) = exp [−βHhbm(σ , z, τ ; ξ, η)] Z(β, ξ, η)−1. (7)

The partition function Z corresponds to the normalization factor of
the Boltzmann distribution, and is defined as

Z(β, ξ, η) =


σ

 P
µ=1

dzµ

 K
ν=1

dτν

× exp(−βHhbm(σ , z, τ ; ξ, η)). (8)

Using this definition of the partition function, it is straightforward
to show that the Boltzmann distribution, Eq. (7), is normalized. In
order to marginalize the hidden variables, we use the following
identity, the Gaussian integral:

+∞

−∞

dz exp

−β


z2

2
− az


=


2π
β

exp


β
a2

2


. (9)

Using this identity, we marginalize the analog variables z and τ in
Eq. (8), and we obtain

Z(β, ξ, η) =


2π
β

 P+K
2 

σ

exp(−βHhop(σ ; ξ, η)), (10)

where we define the following Hamiltonian:

Hhop(σ ; ξ, η) = −
1
2

N
i,j


P

µ=1

ξ
µ

i ξ
µ

j +

K
ν=1

ην
i η

ν
j


σiσj. (11)
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Fig. 2. Dynamics of the overlap of visible units with all patterns for different values of the parameters β and P . Simulations run for 1000 units of time, which corresponds
to 1000 updates of the visible units. Thick blue line in each panel shows the overlap of visible units with the pattern imposed by the initial condition; other lines show the
overlaps with all other patterns. No retrieval is observed (overlap ∼ 0) for high noise, β = 0.5, while for intermediate β = 2 and low noise β = 10 retrieval is possible
(overlap ∼ 1) for a small number of hidden units (patterns) P . Results of simulations match with the theory of Hopfield networks. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
This is the Hamiltonian of a Hopfield neural network. This result
connects the two Hamiltonians of the Hopfield network and the
Boltzmann Machine and states that thermodynamics obtained by
the first cost function, Eq. (6), is the same as the one obtained by
the second one, Eq. (11). This offers a connection between retrieval
through free energy minimization in the Hopfield network and
learning through log-likelihood estimation in the HBM (Amit,
1992; Bengio, 2009). Note that observable quantities stemming
from HBM are equivalent in distribution, and not pointwise, to the
corresponding ones in the Hopfield network.

Next, we calculate the free energy, which allows us to
determine the value of all relevant quantities and the different
phases of the system. The thermodynamic approach consists in
averaging all observable quantities over both the noise and the
configurations of the system. Therefore, we define two different
types of averaging, the average ω over the state configurations
σ , z, τ , and the average E over the synaptic weights (quenched
noise) ξ, η. Note that a given HBM is defined by a fixed and
constant value of the synaptic weights ξ, η. However, those
synaptic weights are taken at random from a given distribution,
and different realizations of the synaptic weights correspond to
different HBMs. Sincewe are interested in determining the average
behavior of a ‘‘typical’’ HBM, we average the relevant quantities
over the distribution of synaptic weights.

The average ω of a given observable O under the Boltzmann
distribution is defined as

ω(O) = Z(β; ξ, η)−1


σ

 P
µ=1

dzµ

 K
ν=1

dτν O(σ , z, τ )

× exp(−βHhbm(σ , z, τ ; ξ, η)). (12)
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The average E of a given observable F over the distribution of
synaptic weights is defined as

E[F(ξ , η)] =


dµ(ξ)


dµ(η)F(ξ , η), (13)

where µ is the standard Gaussian measure, dµ(ξ) = dξ exp
(−ξ 2/2)/

√
2π . Note that the standard Hopfield network is

built with random binary patterns ξ , while we use Gaussian
patterns here: Despite retrieval with the former choice has been
extensively studied, we have chosen the latter in order to show
a novel technique, stochastic stability, for studying the related
thermodynamics. For finiteN , this is known to be equivalent to the
former case, despite for infinite neurons a complete picture of the
quality of the retrieval is still under discussion.

We define the free energy as

A(β) =
1
N

E [log Z(β; ξ, η)] . (14)

Since the free energy is proportional to the logarithm of the
partition function, and due to the additive properties of the
logarithm, log(A · B) = log A + log B, we neglect the factor
(2π/β)(P+K)/2 in Z(β; ξ, η) (see Eq. (10)), as it gives a negligible
contribution to the free energy in the thermodynamic limit. We
also neglect the factor in the Boltzmann average ω as it appears
both in the numerator and denominator and therefore it cancels
out. Thermodynamics can be described by the standard Gaussian
measure.

In the HBM, parameters P and K determine the number of
neurons in the hidden layers, while in the Hopfield model they
represent the number of patterns stored in the network, or the
number of stable states that can be retrieved. We consider the
‘‘high storage’’ regime, in which the number of stored patterns is
linearly increasing with the number of neurons (Amit, 1992). In
HBM, this corresponds to the case in which the sizes of the hidden
and visible layers are comparable. Their relative size is quantified
by defining two control parameters α, γ ∈ R+ as

α = lim
N→∞

P
N

γ = lim
N→∞

K
N

. (15)

We further introduce the order parameters q, p, r , called overlaps,
as

qab =
1
N

N
i=1

σ a
i σ b

i , pab =
1
P

P
µ=1

zaµz
b
µ,

rab =
1
K

K
ν=1

τ a
ν τ b

ν .

(16)

These objects describe the correlations between two different
realizations of the system (two different replicas a, b). We also
define the averages of these overlaps with respect to both state
configurations and synaptic weights (quenched noise). Since the
overlaps involve two realizations of the system (σ a, σ b), the
Boltzmann average is performed over both configurations. With
some abuse of notation, we use the symbol ω to also represent the
Boltzmann average over two-system configurations. Therefore, the
average overlaps are defined as

q̄ = E ω(qab), p̄ = E ω(pab), r̄ = E ω(rab). (17)

The goal of the next section is to find an expression for the free
energy in terms of these order parameters.While all configurations
of the system are possible, only a subset of them has a significant
probability to occur. In canonical thermodynamics, those states
are described by the minima of the free energy with respect to
the order parameters. The free energy is the difference among
the energy and the entropy, and its minimization corresponds to
energy minimization and entropy maximization.
3.1. Multiple-layer stochastic stability

By the definition of HBM, we assume that no external field acts
on the network; inputs to all neurons are generated internally by
other neurons. The overall stimulus felt by an element of a given
layer is the sum, synapticallyweighted, of the activity of neurons in
the other layers. Note that neurons are connected in loops, because
a neuron receiving input from a layer also projects back to the
same layer. Therefore, the HBM is a recurrent network, and this
makes the calculation of the free energy complicated. However,
the free energy can be calculated in specific cases by using a novel
technique that has been developed in Barra et al. (2010), which
extends the stochastic stability developed for the analysis of spin
glasses (Aizenman & Contucci, 1998). This technique introduces
an external field acting on the system which ‘‘imitates’’ the
internal, recurrently generated input, by reproducing its average
statistics. While the external, fictitious input does not reproduce
the statistics of order two and higher, it represents correctly the
averages. These external inputs are denoted as η̃ (one for each
neuron in each layer) and are distributed following the standard
Gaussian distribution N [0, 1].

In order to recover the second-order statistics, the free energy
is interpolated smoothly between the case in which all inputs are
external, and all high order statistics is missing, and the case in
which all inputs are internal, describing the original HBM. We use
the interpolating parameter t ∈ [0, 1], such that for t = 0 the
inputs are all external and the calculation straightforward, while
for t = 1 the full HBM is recovered.

Therefore, we define the interpolating free energy as

Ã(β, t) =
1
N

E log


σ

 P
µ=1

dzµ

 K
ν=1

dτν

× exp


−

β

2


P

µ=1

z2µ +

K
ν=1

τ 2
ν



· exp
√
t


β

i,µ

σiξ
µ

i zµ −


i,ν

σiη
ν
i τν



· exp
√
1 − t


a

N
i=1

η̃iσi + b
P

µ=1

η̃µzµ + c
K

ν=1

η̃ντν



× exp


(1 − t)


h
2

P
µ=1

z2µ +
ϵ

2

K
ν=1

τ 2
ν


. (18)

In addition to the fictitious fields η̃, we have introduced the
auxiliary parameters a, b, c , which serve to weight the external
fields. We also introduced an additional leakage (second-order)
term, parameterized by h and ϵ. Those parameters are chosen once
for all in Appendices A and B in order to separate the contribution
of mean and fluctuations of the order parameters in the final
expression of the free energy. This technique is called multiple
layer stochastic stability because each of the three layers are
perturbed by external fictitious inputs to simplify the expression
of the free energy.

The free energy at t = 0 is characterized by one-body terms and
is calculated in Appendix A. The result is Eq. (41) and is equal to

Ã(β, t = 0) = log 2 +


dµ(η) log cosh(


β(αp̄ + γ r̄)η)

+
α + γ

2
log(1 − β(1 − q̄))−1

+
β(α + γ )

2
q̄

1 − β(1 − q̄)
. (19)
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In order to derive the expression of the free energy for the HBM,
namely for t = 1, we use the sum rule

Ã(β, t = 1) = Ã(β, t = 0) +

 1

0
dt ′

dÃ(β, t)

dt


t=t ′

. (20)

Therefore, we need to compute the derivative of the interpolating
free energy in order to recover the free energy of the HBM (t = 1).
We calculate the derivative in Appendix B (Eq. (50)), and the
result is

dÃ
dt

= S(α, β, γ ) +
β

2
(q̄ − 1)(αp̄ + γ r̄) −

β(α + γ )

2
, (21)

where the function S is the source of the fluctuations of the order
parameters, and is equal to

S(α, β, γ ) = −
β

2
⟨(q12 − q̄)[α(p12 − p̄) + γ (r12 − r̄)]⟩. (22)

In the following, we neglect the contribution of fluctuations,
therefore we set S = 0. The integral in Eq. (20) is calculated
by substituting the derivative in Eq. (21) with S = 0 and, since
the latter does not depend on t , it can be integrated simply by
multiplying by one. Further, we substitute the expression of the
free energy at t = 0, Eq. (19), and we obtain the final expression
for the free energy of the HBM (t = 1). The resulting expression is
called ARS, since it does not include fluctuations of the overlaps,
and this corresponds to the replica symmetric (RS) solution in
statistical mechanics

ARS
= log 2 +


dµ(η) log cosh(


β(αp̄ + γ r̄)η)

+
α + γ

2
log(1 − β(1 − q̄))−1

+
β(α + γ )

2
q̄

1 − β(1 − q̄)

+ β(q̄ − 1)(αp̄ + γ r̄)/2 − β(α + γ )/2. (23)

In Appendix C, we derive the free energy in the case in which an
additional external input is applied to the HBM, in order to force
the retrieval of stored patterns. In the next section, we minimize
the free energy with respect to the order parameters, in order to
study the phases of the system.

3.2. Free energy minimization and phase transition

We minimize the free energy (23) with respect to the order
parameters q̄, p̄, r̄ . This is accomplished by imposing the following
equations

∂q̄ARS
= 0, ∂p̄ARS

= 0, ∂r̄ARS
= 0.

This gives the following system of integro-differential equations to
be simultaneously satisfied

∂q̄ARS
=

β

2


αp̄ + γ r̄ −

(α + γ )q̄β
(1 − β(1 − q̄))2


= 0, (24)

∂p̄ARS
=

αβ

2


q̄ −


dµ(η) tanh2


η


β(αp̄ + γ r̄)


= 0, (25)

∂r̄ARS
=

γ β

2


q̄ −


dµ(η) tanh2


η


β(αp̄ + γ r̄)


= 0. (26)

Note that, since the two hidden layers act symmetrically on
the visible layer, in the sense that the synaptic weights are
distributed identically, one of the above equations is redundant
and the minimization condition is summarized by the following
two equations

αp̄ + γ r̄ =
q̄(α + γ )β

(1 − β(1 − q̄))2
, (27)

q̄ =


dµ(η) tanh2


β
√

(α + γ )q̄η
1 − β(1 − q̄)


. (28)

These equations describe a minimum of the free energy, as can
be checked by calculating the second-order derivatives of the free
energy and verifying that the Hessian has a positive determinant.
The minima of free energy in the case of imposed retrieval are
discussed in Appendix C.

Next, we study the phase transitions of the system by looking
at divergences of the rescaled order parameters. If the overlap
q̄ is zero, then all neurons in the visible layer are uncorrelated,
implying that all neurons have random activity and the system has
no structure. The value of parameters for which the transition to
q̄ = 0 occurs corresponds to the case in which the fluctuations
of

√
Nq diverge, and this defines the critical region. To evaluate

the critical region, we study for which values of the parameters
α, β, γ the squared order parameterNq̄2 diverges. This is obtained
by expanding the hyperbolic tangent in Eq. (28) to the second
order, which gives a meromorphic expression for the overlap. This
expression diverges at the critical region, which is characterized by

β =
1

1 +
√

α + γ
. (29)

The above equations are consistent with and generalize the
results obtained in Amit (1992). Since the hidden layers are
not connected, and z, τ are conditionally independent, they are
equivalent to a single hidden layer of P+K neurons. Therefore, the
equivalent Hopfield network stores P + K independent patterns.
The case of interacting (correlated) patterns is studied in the next
section.

3.3. Analysis of interacting hidden layers

In this section we study the case in which the two hidden
layers are connected by mild interactions. When the hidden units
in the two separate layers interact, the performance of the network
may change. We study this case for small interaction strengths,
within a mean field approximation, in order to be able to obtain
approximate results. We show that the two hidden layers act
reciprocally as an additional noise source affecting the retrieval of
stored patterns in the visible layer, i.e. the retrieval of the activities
σ .

We introduce the interacting energy of the HBM, denoted byHI ,
where I stands for ‘‘interacting layers’’:

HI(σ , z, τ ; ξ, η) =
−1
√
N


iµ

ξ
µ

i σizµ +
−1
√
N


ik

ξ k
i σiτk

+
−ϵ
√
N


µk

ξµkzµτk, (30)

where the last term accounts for the interaction between hidden
layers, and its strength is controlled by the parameter ϵ, which is
assumed to be small.

The rigorous analysis of this model is complicated and still
under investigation (Barra, Genovese, Guerra, & Tantari, in press).
However, for small ϵ, exact bounds can be obtained by first-
order expansion. We will proceed as follows: first we marginalize
over one layer (either τ or z) and we find an expression of the
interacting partition function depending on the two remaining
ones. Then, because of the symmetry between the hidden layers,
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we perform the same operation marginalizing the interacting
partition function with respect to the other hidden layer. Last, we
sum the two expression and divide the result by two: this should
represent the average behavior of the neural network, whose
properties are then discussed.

The interacting partition function ZI , associated to the energy
(30), can be written as

ZI =


σ

 P
µ=1

dµ(zµ)

 K
ν=1

dν(τν)

× exp


−β


−1
√
N


iµ

ξ
µ

i σizµ +
−1
√
N


iν

ξ ν
i σiτν

+
−ϵ
√
N


µν

ξµνzµτν


. (31)

We start integrating over the τ variables, and we find

ZI =


σ

exp


β

2N

N
ij


αN
ν

ξ ν
i ξ ν

j


σiσj

 P
µ=1

dµ(zµ)

× exp


γN
µ

zµΦµ + ϵ2
γN
µµ′

zµΨµµ′zµ′


, (32)

where the effective inputs Φ and Ψ are given by

Φµ =

√
β

√
N


i

ξ
µ

i σi + ϵ
β

N


i

σi


ν

ξ ν
i ξ ν

µ


, (33)

Ψµµ′ =
β

2N


ν

ξ ν
µξ ν

µ′


. (34)

Next, we use the mean field approximation by which


µ′ Ψµµ′

zµ′ ∼ −(αβ2/2)zµ. Therefore, we can bound the expression above
with the partition function

ZI ∼


σ

exp


β

2N

N
ij


αN
ν

ξ k
i ξ

k
j

+

γN
µ

ξ
µ

i ξ
µ

j
1

1 + ϵαβ2


σiσj


. (35)

If we perform the same procedure, integrating first on z and then
on τ , we obtain the specular result

ZI ∼


σ

exp


β

2N

N
ij


γN
µ

ξ
µ

i ξ
µ

j

+

αN
ν

ξ ν
i ξ ν

j
1

1 + ϵγ β2


σiσj


. (36)

To obtain the final equation for the partition function, we sum the
two Hamiltonians and divide by two, to find

ZI ∼


σ

exp


β

4N

N
ij


αN
ν

ξ ν
i ξ ν

j


1 +

1
1 + ϵβ2γ



+

γN
µ

ξ
µ

i ξ
µ

j


1 +

1
1 + ϵβ2α


.

Retaining only the first-order terms in ϵ, we obtain an equivalent
Hamiltonian for a HBM where the hidden layers interact. This
corresponds to a Hopfield model with an additional noise source,
characterized by the Hamiltonian

H(σ ; ξ, η) =
β

2N

N
ij


αN
ν

ξ ν
i ξ ν

j [1 − ϵβ2γ /4]

+

γN
µ

ξ
µ

i ξ
µ

j [1 − ϵβ2α/4]


. (37)

Note that for ϵ = 0 we recover the standard Hopfield model. The
effect of the additional noise source on the retrieval of patterns
corresponding to one layer depends on the load of the other layer:
the larger the number of neurons in one layer, the larger the
perturbation on the retrieval of the other layer.

4. Conclusions

We demonstrate an exact mapping between the Hopfield
network and a specific type of Boltzmann Machine, the Hybrid
Boltzmann Machine (HBM), in which the hidden layer is analog
and the visible layer is digital. This type of structure is novel, since
previous studies have investigated the cases inwhich both types of
layers are either analog or digital. The thermodynamic equivalence
demonstrated in our study paves the way to a novel procedure
for simulating large Hopfield networks: In particular, Hopfield
networks require updating N neurons and storing N(N − 1)/2
synapses, while HBM require updating N + P neurons and storing
only NP synapses, where P is the number of stored patterns.

In addition, the well known phase transition of the Hopfield
model has a counterpart in the HBM. In Boltzmann Machines,
the ratio between the sizes of the hidden and visible layers is
arbitrary and needs to be adjusted in order to obtain the optimal
generative model of the observed data. If the number of hidden
units is too small, the generative model is over-constrained and is
not able to learn, while if it is too big then the model ‘‘overlearns’’
(overfits) the observed data and is not able to generalize (Bengio,
2009). Interestingly, these two extrema correspond in the Hopfield
model to, respectively, the low storage phase, in which only a
few patterns can be represented, and the spin glass phase, in
which there is an exponentially increasing number of stable states.
Therefore, the corresponding phase transition in the HBM can
be understood as the optimal trade-off between flexibility and
generality, thus effectively representing a statistical regularization
procedure (Bernacchia & Pigolotti, 2011).

Furthermorewe showed that, if hidden layers are disconnected,
the corresponding patterns contribute linearly to the capacity of
theHopfield network. Therefore, conditional independence among
layers corresponds to linearity of the energy function. Instead, if
the hidden layers interact, we show that they affect retrieval by
acting as an effective noise source. Although the replica trick has
represented a breakthrough for studying the thermodynamics of
the Hopfield model, we argue that the ‘‘natural’’ mathematical
backbone required for studying the thermodynamics of the Boltz-
mannmachine is the stochastic stability, whose implementation is
tractable.

Our work further contributes on connecting scientific commu-
nities quite far apart, such as themathematical physicists studying
spin glasses (see i.e. Bovier & Picco, 1998) and the computer sci-
entists studying machine learning and artificial intelligence (see
i.e. Mezard & Montanari, 2007).
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Appendix A

In this appendix, we calculate the interpolating free energy
Ã(β, t) for t = 0. This calculation involves only one-body terms
and is equal to

Ã(β, t = 0)

=
E
N

log


σ

 P
µ=1

dµ(zµ)

 K
ν=1

dµ(τν)

× ea
N

i η̃iσi+b
P

µ=1 η̃µzµ+c
K

ν η̃ντν e
h
2
P

µ=1 z2µ+
ϵ
2
K

ν=1 τ2
ν .

Due to the additive properties of the logarithm (i.e. log(A · B ·

C) = log A + log B + log C) and the one-body factorization within
each layer, the equation above can be rewritten as a sum of three
separate terms, one for each layer:

Ã(β, t = 0) =
E
N

log


σ

ea
N

i η̃iσi (38)

+
E
N

log
 P

µ=1

dµ(zµ)eb
P

µ=1 η̃µzµe
h
2
P

µ=1 z2µ (39)

+
E
N

log
 K

ν=1

dµ(τν)ec
K

ν η̃ντν e
ϵ
2
K

ν=1 τ2
ν . (40)

We show in Appendix B shows that the following choice of
the parameters substantially simplifies the calculations, a =√

β(αp̄ + γ r̄), b =
√

β q̄, c =
√

β q̄, h = ϵ = β(1 − q̄). Using
these values of the parameters, and performing the integrals and
sums in the above expression, we find

Ã(β, t = 0) = log 2 +


dµ(η) log cosh(


β(αp̄ + γ r̄)η)

+
α + γ

2
log(1 − β(1 − q̄))−1

+
β(α + γ )

2
q̄

1 − β(1 − q̄)
. (41)

Appendix B

In this appendix we focus on the t-derivative of Ã(β, t).
Since the interpolating parameter t appears seven times in the
exponential, this derivative includes seven different terms. Their
derivation is long but straightforward; here we report the result
for each of the seven terms

−
αβ

2
⟨q12p12⟩ +

β

2N
E


µ

ω(z2µ), (42)

−
γ β

2
⟨q12r12⟩ +

β

2N
E


ν

ω(τ 2
ν ), (43)

−
a2

2
(1 − ⟨q12⟩), (44)
αb2

2
⟨p12⟩ −

b2

2N
E


µ

ω(z2µ), (45)

γ c2

2
⟨r12⟩ −

c2

2N
E


ν

ω(τ 2
ν ), (46)

h
2N


µ

E


µ

ω(z2µ), (47)

ϵ

2N


µ

E


ν

ω(τ 2
ν ). (48)

Pasting the various terms together we obtain

dÃ
dt

= E


µ

ω(z2µ)


β

2N
−

b2

2N
−

h
2N


+ E


ν

ω(τ 2
ν )


β

2N
−

c2

2N
−

ϵ

2N


−

αβ

2
⟨q12p12⟩

−
γ β

2
⟨q12r12⟩ −

a2

2
(1 − ⟨q12⟩)

+
αb2

2
⟨p12⟩ +

γ c2

2
⟨r12⟩. (49)

We are left with the freedom of choosing the most convenient
parameters; we see that with the particular choice

a =


β(αp̄ + γ r̄), b =


β q̄, c =


β q̄,
h = ϵ = β(1 − q̄),

we can express the whole derivative as the source of the overlap
fluctuations

dÃ
dt

= −
β

2
⟨(q12 − q̄)[α(p12 − p̄) + γ (r12 − r̄)]⟩

+
β

2
(q̄ − 1)(αp̄ + γ r̄) −

β(α + γ )

2
. (50)

The first term in the right hand side represents the fluctuations
of each order parameter around its average (i.e. q̄, p̄, r̄), and
we neglect this term within a replica symmetric approach. The
second term includes only averages and does not depend on t . Its
integration in t on the interval 0, 1 coincides with multiplication
by one.

Appendix C

In this appendix, we calculate the free energy in the presence
of an external field designed to force retrieval of the stored
patterns. When the stored patterns are Gaussians, and in the
thermodynamic limit, retrieval is not a spontaneous emergent
feature of the network. However, it is possible to force retrieval
by adding a proper Lagrange multiplier in the interpolating free
energy as tm2

1 + (1 − t)m1M1, where m1 = N−1N
i ξ 1

i σi is the
Mattis magnetization of the first condensed pattern (we chose
the first because there is full permutational invariance among
patterns) and M1 is its replica symmetric approximation.

In analogy with the calculation performed in Section 4, we find
the following expression

1
N

E(log Z(β, ξ, η))

+
β

2

 1

0
dt⟨(q12 − q̄)[α(p12 − p̄) + γ (r12 − r̄)]⟩

=
β

2

 1

0
dt⟨(m1 − M)2⟩ + ARS(p̄, q̄, r̄,M; α, β, γ ). (51)
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Fluctuations of m1 around M1 are now present. The final replica
symmetric free energy can be written as

ARS(p̄, q̄, r̄,M; α, β, γ )

= log 2 +


dµ(η) log cosh


η


β(αp̄ + γ r̄) + β2M2


+
α + γ

2
log


1

1 − β(1 − q̄)


+

(α + γ )β

2
q̄

1 − β(1 − q̄)

−
β

2
(αp̄ + γ r̄)(1 − q̄) −

(α + γ )β

2
−

β

2
M2. (52)

We have to minimize the free energy (52) with respect to the
replica symmetric order parameters q̄, p̄, r̄,M , namely we impose
that

∂q̄ARS(β; α, γ ) = 0, ∂p̄ARS(β; α, γ ) = 0,

∂r̄ARS(β; α, γ ) = 0, ∂MARS(β; α, γ ) = 0.

This gives the following system of integrodifferential equations to
be simultaneously satisfied

∂q̄ARS
=

β

2


αp̄ + γ r̄ −

(α + γ )q̄β
(1 − β(1 − q̄))2


= 0, (53)

∂p̄ARS
=

αβ

2


q̄ −


dµ(η) tanh2


η


β(αp̄ + γ r̄) + β2M2


= 0, (54)

∂r̄ARS
=

γ β

2


q̄ −


dµ(η) tanh2


η


β(αp̄ + γ r̄) + β2M2


= 0, (55)

∂MARS
=


dµ(η) tanh


η


β(αp̄ + γ r̄) + β2M2


, (56)

which can be solved numerically.
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