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Abstract. In this paper we analyze two main prototypes of disordered mean-field systems, namely the
Sherrington-Kirkpatrick (SK) and the Viana-Bray (VB) models, to show that, in the framework of the
cavity method, the transition from the annealed regime to a broken replica symmetry phase can be thought
of as the failure of the saturability property (detailed explained along the paper) of the overlap fluctuations
which act as the order parameters of the theory. We show furthermore how this coincides with the lacking
of the commutativity of the infinite volume limit with respect to a, suitably chosen, vanishing perturbing
field inducing the transition as prescribed by standard statistical mechanics. This is another step towards
a complete theory of disordered systems. As a well known consequence it turns out that the annealed
and the replica symmetric regions must coincide, implying that the averaged overlap is zero in this phase.
Within our framework the finding of the values of the critical point for the SK and line for the VB becomes
available straightforwardly and the method is of a large generality and applicable to several other mean
field models

PACS. 64.60.De Statistical mechanics of model systems – 89.75.-k Complex systems

1 Introduction

In simple second order paramagnetic-ferromagnetic tran-
sitions (i.e. the paradigmatic Curie-Weiss (CW) model
with pairwise Ising interactions [1,2]) the order parameter
is of immediate physical meaning and it is straightforward
to introduce the proper external field to drive the system
into the desired pure state. Then we can check the result-
ing variation in the macroscopic state of the system by
looking at the behavior of the order parameter itself (i.e.
the values taken by the magnetization [2]), by which the
free energy can be expressed.

In disordered systems, where the external field trig-
gering the transition is not known, much effort has
been necessary to describe the “spin glass” transition in
terms of a symmetry breaking; this has been achieved
within the replica formalism by the well known Parisi
RSB scheme [3], recently proved by Guerra [4] and
Talagrand [5].

In this paper we show that without using the “replica
trick”, but dealing only with the simpler global gauge sym-
metry σi → σiσN+1 [6], it is possible to show that the
“spin glass” transition can be depicted by the lacking of
commutativity of the infinite volume limit (known to hold
for a large class of models [7]) against a vanishing per-
turbation, as in standard statistical mechanics [8]. More
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sharply we are going to show that it is possible to for-
mulate a property for the overlap monomials, as the order
parameters, that we call saturability, which is a direct con-
sequence of the gauge symmetry of the models, that stops
holding at the transition point. So investigating this prop-
erty is investigating the transition.

As an ultimate consequence the response to such a field
turns out to be the order parameter, again accordingly
with standard statistical mechanics.

The work is structured as follows: in Section 2
models and fundamental definitions are introduced, in
Sections 3, 4 the general framework and tools for the main
theorem are recalled; Sections 5, 6 deal with the main re-
sults while Section 7 is left for outlook and conclusions.

2 Models of disordered systems

In what follows we will focus mainly on two well known
examples of disordered systems: the first is the SK model,
which is a fully connected network of Ising spins
σ: i → σi = ±1, interacting via a two body Hamiltonian
through interaction matrices Jij distributed according to
i.i.d. Gaussian N (0, 1) [3]. The second is the VB model,
in which the network among the spins is the Poissonian
Erdos-Renyi graph built accordingly to Pζ , that is a
Poisson random variable with mean ζ; the coupling Jν
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are taken to be ±1 with symmetric distribution and an
additional degree of freedom α for connectivity [9,10] is
introduced.

– HSK
N (σ; J) = − 1√

N

∑1,N
i<j Jijσiσj

– HV B
N (σ, α; J) = −∑PαN

ν=1 Jνσiν σjν .

The quantities encoding the thermodynamic properties of
the models are the overlaps, which are defined on several
configurations (replicas) σ(1), . . . , σ(n) by

q1···n =
1
N

N∑

i=1

σ
(1)
i · · ·σ(n)

i . (1)

In the SK model only the two-replica overlap appears; this
is due to the Gaussian nature of the couplings [3].

The expectation with respect to all the (quenched) ran-
dom variables defined so far will be denoted by E, and
the Gibbs expectation of an observable O(σ) at inverse
temperature β with respect to these Hamiltonian will be
denoted by ω and defined as

ω(O) = ZN(β)−1
∑

σ

O(σ) exp(−βHN (σ)), (2)

and depends clearly on α (for the VB) and β (both for
VB and SK), while the normalization factor ZN (β) =∑

σ exp(−βHN (σ)) is the partition function. We define
Ω = ω1...ωn the Boltzmann product state among n inde-
pendent replicas (of course if we deal with just one replica
n = 1 and Ω = ω) and the total average 〈·〉 = EΩ(·). The
pressure, i.e. minus β times the free energy, is

PN (α, β) =
1
N

E ln
∑

σ

exp(−βHN (σ, α)), (3)

and the whole thermodynamics can be obtained once this
is explicitly evaluated.

3 Perturbing the measure randomly

For the simpler CW model, the proper way to look at the
transition is to menage the infinite volume limit and a
vanishing magnetic field, which has the scope of making
the system collapse into a minima of the broken ergodicity
phase. The two operations do not commute in that region.
At the contrary, in the ergodic phase, where there is just
one minimum of the pressure, given by zero magnetiza-
tion, the two operations do commute. The breaking of the
commutativity can then be used to fix the transition.

In the broken ergodicity phase, even though the
Hamiltonian shows invariance with respect to a class of
transformations (i.e. the Z2 group [1]), in the presence
of at least an infinitesimal external field, the Boltzmann
state shares no longer this symmetry and just a subgroup
of the original Z2 group survives (i.e. the linear invariance
driven by the deterministic magnetic field).

Dealing with spin glasses and replica trick, the Parisi
RSB scheme [3] offers a picture in which a symmetry (the
replica symmetry) becomes broken at the critical point
and, thanks to the peculiar property of the Parisi ansatz,
such breaking can be iterated several times, paving the
way to ultrametricity. In other words, the subgroup ob-
tained with a step of replica symmetry breaking has the
same structure of the original group itself [3,11].

Incidentally and in opposition to the CW model, in our
way of looking at the transition, the perturbation applied
to obtain the correct order parameter and behavior at crit-
icality, shares the same property of the Hamiltonian (i.e.
for the SK is a Gaussian perturbation). So while trying
to formulate in a classical sense the spin glass transition
(breaking of the commutativity of the limits as discussed)
we modify the standard external field inspired, also if in a
complete different approach, by the Parisi scheme.

The key idea of our speculation is considering the ad-
dition of a new spin, thanks to the randomness of the cou-
pling, as an external random field vanishing in the thermo-
dynamic limit. By the interpolation method [7] the N + 1
spin can be added to the N -spin system smoothly via a
properly defined cavity function Ψ(t), t ∈ [0, 1], which
reads off as:

ΨSK(t) = E lnω
(
eβ
√

t
N

∑N
i Jiσi

)
(4)

ΨV B(t) = E ln ω
(
eβ
∑P2αt

ν Jνσiν

)
. (5)

In the next section, with the use of this function, we will
split the free energy of an N + 1 system in the one of an
N system plus the contribution of the remaining spin: we
can build the thermodynamic state of N + 1 particles by
performing the limit of

√
t → 1 and applying the gauge

symmetry by considering the transformation σi → σiσN+1

(which leaves both the Hamiltonian invariant [12,13]).
Due to the gauge symmetry the above cavity function

turns out to be proper two body interaction, as in the
original Hamiltonian, and the sum on N + 1 spins in the
partition function is trivially twice the sum on N spins
because the N +1 plays the role of an hidden variable (the
consequent factor 2, after the logarithm is taken, takes into
account the high temperature entropy).

With F as a generic function of the spins, we can in fact
define a generalized Boltzmann measure (denoted by the
subscript 〈.〉t) respectively for the SK and for the VB as,

ωt(F )SK =
ω
(
Feβ

√
t
N

∑N
i=1 Jiσi

)

ω
(
eβ
√

t
N

∑N
i=1 Jiσi

) , (6)

ωt(F )V B =
ω
(
Feβ

∑P2αt
ν=1 Jνσiν

)

ω
(
eβ
∑P2αt

ν=1 Jνσiν

) . (7)

Note that in the
√

t = 0 case we always recover the unper-
turbed Boltzmann measure of an N -spin system and in the√

t = 1 case we recover the unperturbed Boltzmann mea-
sure of an N+1-spin system with a little shift, respectively
in the temperature for the SK and in the connectivity for
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the VB, which becomes negligible in the thermodynamic
limit.

As they will be of precious help soon, let us now
briefly describe the property of stochastic stability for a
large class of averaged overlap correlation functions (OCF)
〈q2n〉t (proven in [6,12,14]) by splitting them in two main
categories, with two different peculiarities: filled OCF,
showing robustness with respect to a stochastic perturba-
tion, and fillable OCF, showing saturability with respect
to the same perturbation.

Definition 1. Filled OCF are overlap monomials among
s replicas such that each replica appears an even number
of times.
Examples are 〈q2

12〉, 〈q2
1234〉 or 〈q12q23q13〉.

Definition 2. Fillable OCF are overlap monomials
among s replicas which become filled when multiplied by
an overlap among exactly the lacking replicas to be filled.
Examples are 〈q12〉, 〈q1234〉 or 〈q12q13〉.

Remark 1. For completeness we stress that there exist
also non-fillable OCF (but they do not play any role here):
in the SK, due to the Gaussian nature of the couplings,
OCF as 〈q12q34〉 which are fillable for the VB model, are
non-fillable (being filled by q1234 which is zero for the SK
model). Furthermore all the OCF built by different num-
bers of replicas are non-fillable (i.e. 〈q12q123〉), but, work-
ing with zero external field as we do, they are zero by
symmetry, being zero all the multi-overlaps built by an
odd number of replicas.

Proposition 1. In the thermodynamic limit the averaged
filled OCF are stable with respect to the perturbing field
induced by the cavity function. We refer to this property
as robustness

∂t〈filled OCF 〉t = ∂t〈filled OCF 〉 = 0.

Proposition 2. In the thermodynamic limit, in the whole
region of temperature where the gauge symmetry holds (i.e.
in the ergodic phase), the fillable OCF become filled

lim
N→∞

〈fillable OCF 〉t = 〈filled OCF 〉.

We refer to this last property as saturability.

Examples are limN→∞〈q12〉t = 〈q2
12〉, limn→∞〈q1234〉t =

〈q2
1234〉.
We just sketch the proof of the above propositions

and we remaind to [6,12,14] for a detailed discussion and
proofs.

Sketched proof. Let us show how the fillable OCF turn
out to be filled OCF in the N → ∞ limit, then the stability
of the filled OCF will be a straightforward consequence:
defining Qab as a fillable OCF and using Qij for the prod-
uct of the filled replicas inside Qab, and leaving a, b as the
non filled replicas we have that

〈Qab〉t =

〈⎛

⎝
∑

ij

(
σa

i σb
j

)
/N2

⎞

⎠Qij(σ)

〉

t

.

Factorizing the state Ω we obtain

〈Qab〉t =
E
N2

⎛

⎝
∑

ij

Ωt

(
σa

i σb
jQij(σ)

)
⎞

⎠ (8)

=
E
N2

⎛

⎝
∑

ij

ωt (σa
i )ωt

(
σb

j

)
Ωt(Qij)

⎞

⎠ . (9)

Now we rewrite the last expression for
√

t = 1 and use
the hypothesis of preserved gauge symmetry: by applying
this symmetry (σi → σiσN+1), the states acting on the
replicas a and b are ωt=1(σa

i ) → ω(σa
i σa

N+1) + O(N−1)
while the remaining product state Ωt continue to work
on a even number of replicas and is not modified (giving
rise to the saturability of the filled OCF). Putting all the
replicas in a unique product state we have:

ω
(
σa

i σa
N+1

)
ω
(
σb

i σ
b
N+1

)
Ω(Qij) =

Ω
(
σa

i σb
jσ

a
N+1σ

b
N+1Qij

)
. (10)

By the gauge symmetry again we can think of the index
N + 1 as a dumb hidden variable k and multiplying by
1 = N−1

∑N
k=1 in the thermodynamic limit we have the

proof.

4 A simple application of the fundamental
theorem of calculus

As preannounced in the previous section, once defined the
perturbing parameter it is always possible, via the funda-
mental theorem of calculus, to relate the free energy with
its derivative with respect to the chosen parameter, the
missing term being the cavity function, so to obtain.

Theorem 1. In the thermodynamic limit the following
relations hold

PSK(β) +
β

2
(∂PSK/∂β) = ln 2 + ΨSK(t = 1, β) (11)

PV B(α) + α(∂PV B/∂α) = ln 2 + ΨV B(t = 1, α). (12)

Sketched proof. Focusing just on the VB (as the SK
case can be obtained by the infinite connectivity limit), it
was proven in [15] that

PV B(α) = lim
N

[

E lnΩ

(
∑

σN+1

exp

(

β

P2α∑

ν=1

J ′
νσkν σN+1

))

− E lnΩ (exp−β (H ′
N (α/N)))

]

(13)

where the quenched variables in H ′ are independent of
those in Ω, just like for the first term in the right hand
side. The second term of the right hand side is easy to
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compute, and it is the derivative of PV B multiplied by α,
because

E
N

ln Ω(exp−β(H ′
N (α/N))) =

PV B(α(1 + 1/N)) − PV B(α). (14)

This leads to the result to prove, as the gauge invariance
of Ω allows to take out the sum over σN+1 as ln 2, and
therefore the first term in the right hand side of (13) is
precisely Ψ .

One may note that there is not a complete symme-
try between the version of Theorem (1) for the SK and
for the VB, because in the first the term multiplying the
derivative of the pressure with respect to β is β/2 while
the corresponding term for the VB is α and not α/2.
This is because the simplest version of the Viana-Bray
Hamiltonian has a Poisson variable per bond as HN =
−∑ij

∑Pα/N

ν=0 Jν
ijσiσj , while in our VB Hamiltonian each

link gets a bond with probability close to α/N for large N
(the probabilities of getting two, three, ..., bonds scale as
1/N2, 1/N3, ... so can be neglected in the thermodynamic
limit).

Working with directed links (as we do) the probability
of having a bond on any undirected link is twice larger
as large as for directed link (i.e. 2α/N) and so, for large
N , each site has therefore an average of 2α bonds con-
necting to it and this explains the reason. We stress how-
ever that in this way we allow self-loop but they add just
σ-independent constant to HN and are irrelevant, but we
take the advantage of dealing with an HN which is the
sum of i.i.d.

Back to Theorem 1, let us work out the explicit ex-
pression of the derivatives with respect to the interpolated
parameter (β, α) as this is achievable analytically:

dPSK/dβ = β2
(
1 − 〈q2

12〉
)
/2 (15)

dPV B/dα = 2α

∞∑

n

(
tanh2n(β)/2n

) (
1 − 〈q2

1...2n〉
)

(16)

and let us consider the same derivatives performed on the
cavity functions

∂tΨ
SK(t) = β2(1 − 〈q12〉t)/2 (17)

∂tΨ
V B(t) = 2α

∞∑

n

(
tanh2n(β)/2n

)
(1 − 〈q1...2n〉t) . (18)

The two operation give similar results but as the deriva-
tives of the free energy (Eqs. (15), (16)) offer only filled
OCF, the derivatives of the cavity function (Eqs. (17),
(18)) offer only fillable OCF. The two being related by
saturability. Furthermore we can expand both the overlap
and the multi overlaps via the streaming equations [12,14],
in terms of filled OCF obtaining as first steps

– SK: 〈q12〉t = 〈q2
12〉β2t + 〈q12q23q13〉β4t2/2 + ...

– VB: 〈q1234〉t = 〈q2
1234〉2α tanh2(β)t

−3〈q1234q12q34〉4α2 tanh4(β)t2/2 + ...

and so on. All the OCF of the right hand sides show ro-
bustness (i.t. they are filled or stochastically stable) such
that, once pasted into the derivative expression of the cav-
ity functions, the integration is straightforward as it turns
out to be polynomial.

5 Validity and failure of saturability

In this section we want to show how by applying blindly
the saturability property we are not able to go beyond the
replica symmetric region. This can be observed as follows:
If we consider the expressions of the cavity functions (4, 5)
and apply saturability we fill the OCF and the two terms,
cavity function and free energy derivative, can be pasted
together allowing us to rewrite Theorem 1 as

PSK(β) = ln 2 + (β/2)(∂PSK(β)/∂β) (19)
PV B(α, β) = ln 2 + α(∂PV B(α, β)/∂α). (20)

It is straightforward to check that the solutions of these
simple ODE are the well known annealed solutions.

This implies that the saturability property becomes
broken in the broken replica symmetric phase. Not sur-
prisingly this property is ultimately related to the gauge
symmetry of the model which is preserved in the annealed
or replica symmetric region and broken otherwise.

To obtain a behavior of the free energy below the crit-
ical point we must bypass saturability by expanding the
order parameters via the filled OCM around the values
q2n ∼ 0. Defining τ = 2α tanh2(β) we obtain

PSK(β) = ln 2 + (β2/4)
[
1 − (1 − β2)〈q2

12〉
]

+ (β6/3)〈q12q23q13〉 + O
(〈q4

ij〉
)

(21)

PV B(α, β) = ln 2 +
[τ

2
+

τ

4
(1 − τ)〈q2

12〉
]

+
τ3

3
〈q12q23q13〉

+ (〈q4
ij〉 + (2α)−1

[τ

4
+

τ

8
(
1 − τ(2α)−1

) 〈q2
1234〉

]

− (3τ3/4
) 〈q1234q12q34〉 + O

(〈q4
ijkl〉

)
. (22)

The stochastic stability of the filled monomials, holding at
every temperature, makes the above expansion meaning-
ful also where the previous fails. Is in fact immediate to
recognize the expansions of the broken replica symmetry
regime [12,13].

Remark 2. Using the above expansions (21, 22) for the
free energy we can argue immediately that the critical
point for the SK must be βc = 1 and the critical line for
the VB must be 2α tanh2(β) = 1: this can be seen as fol-
lows: let us note that ASK(β) = (β2/4)(1 − β2) is the
coefficient of the second order of the expansion in power
of the order parameter q2 for the SK model (and let us
restrict our argument to it as there is complete analogy to
the VB). In the ergodic phase (with preserved symmetry)
the minimum of the free energy corresponds to a zero or-
der parameter (i.e. q2 = 0). This implies that A(β) ≥ 0.
Anyway, immediately below the critical point values of
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the order parameter different from zero are possible if and
only if A(β) ≤ 0 and consequently at the critical point
A(β) must be zero.

This identifies the critical point for the SK and the
critical line for the VB.

6 Lacking of the volume limit commutativity

Let us explain in other terms the concept of the previ-
ous section: we are going to prove now that the transi-
tion annealed-RSB phase can be thought of as the lacking
of the commutativity of the two operations of fixing the
modulus of the external strength (

√
t = 1) and letting

limN→∞. Let us rewrite Theorem 1 as

PSK(β) = ln 2 +
β2

2
(1 − 〈q2

12〉) +
1
2

∫ ∞

0

dt(1 − 〈q12〉t)

PV B(α, β) = ln 2 +
∑

n

α

n
tanh2n(β)(1 − 〈q2

2n〉)

+
∫ ∞

0

∑

n

α

n
tanh2n(β)(1 − 〈q12〉t)dt) (23)

when performing the infinite volume limit first, we have
that all the fillable OCF turn out to be filled OCF so
〈q2n〉t → 〈q2

2n〉 and there is nor streaming to be applied
neither integration to be done because higher order OCF
are killed, being 〈q2

2n〉 filled; setting
√

t → 1 to free the
measure we get the replica symmetric solution for both
the system

PSK(β) = ln 2 +
β2

4
(
1 − 〈q2

12〉
)

(24)

PV B(α, β) = ln 2+α

∞∑

n=1

1
2n

tanh2n(β)(1 − 〈q2n〉). (25)

In the region where this solution holds, saturability holds
too, as it is used to get the solution: this implies 〈q2n〉 = 0
because, always in the large N -limit 〈q2n〉t = 〈q2

2n〉 such
that the only possible solution is 〈q2n〉 = 0 as 〈q2n(β =
0)〉 = 0 and this result must be stable in the whole
β-region where saturability holds, such that the replica
symmetric solution coincides with the annealed expression
(i.e. ln 2 + β2/4 for the SK).

6.1 The order parameter

As the last remark, focusing just on the SK for the sake
of simplicity, we want to show that the order parameter
coupled with our perturbing field is exactly the overlap be-
tween two replicas. Let us think at the cavity field as to an
external field of strength h ≡ √t/N . This is not surpris-
ing as the tuning parameter

√
t can be thought of as the

amplitude of the Gaussian perturbation carried by the Ji,
in the interesting regime in which it vanishes in the ther-
modynamic limit thanks to the

√
N as its denominator.

Let us see what the response to this external field is:

(

∂√
t

(

β−1E ln
∑

σ

e−βHSK(σ;J)+
√

β t
N

∑
i Jiσi

))

t=1

=

(
E
√

t
∑

i

βN
(1 − ω2(σi))

)

t=1

= β−1(1 − 〈q12〉). (26)

So, again as in standard statistical mechanics [8], the re-
sponse to our kind of perturbation is the order parame-
ter, which, in order to bound (1 − 〈q12〉) ∈ [0, 1] must live
on [0, 1] too, according to Parisi theory.

7 Conclusions and outlook

In this paper we analyzed the stability of the quenched-
Boltzmann state, for mean field spin glasses, with re-
spect to a fundamental invariance of a huge class of
Hamiltonian: the global gauge symmetry.

We tried to perform an approach as close as possi-
ble to the standard receipt of statistical mechanics but
the natural choice for the external field has been a ran-
dom field with the same symmetry of the coupling of the
Hamiltonian: this is due in our framework to the equiva-
lence of stochastic perturbation and cavity field, which are
two concept directly interchangeable for gauge-invariant
models. This seems a generalization for the phase transi-
tion triggered by a vanishing external field.

We tested our procedure focusing of the fully con-
nected Gaussian model (Sherrington-Kirkpatrick) and on
the Poissonian diluted model (Viana-Bray) obtaining a
complete agreement with replica-theory [3,9] and previ-
ous rigorous results [5,10,12].

We proved that the transition from the annealed
regime to a broken replica phase coincide with the break-
ing of the this invariance by the quenched Boltzmann state
encoded in the failure of a suitable property of the order
parameters: saturability. As a consequence the annealing
and the replica symmetric solution must be the same and
in this phase the order parameters 〈q2n〉 must be zero.

As a first result the transition can be managed dealing
with the infinite volume limit and the strength of the ex-
ternal perturbation obtaining the RS scenario or the RSB
one depending on when N is send to infinity. As a second
result the derivative of the free energy with respect to the
strength of this perturbation gives the overlap, as the cou-
pled order parameter. Both the results are standard in non
disorder statistical mechanics, shorting our understanding
of disordered systems by such a viewpoint.
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