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We investigate overlap fluctuations of the Sherrington-Kirkpatrick mean field spin
glass model in the framework of the Random Overlap Structure (ROSt). The con-
cept of ROSt has been introduced recently by Aizenman and co-workers, who
developed a variational approach to the Sherrington-Kirkpatrick model. Here we
propose an iterative procedure to show that, in the so-called Boltzmann ROSt,
Aizenman-Contucci polynomials naturally arise for almost all values of the inverse
temperature (not in average over some interval only). These polynomials impose
restrictions on the overlap fluctuations in agreement with Parisi theory. © 2006
American Institute of Physics. [DOI: 10.1063/1.2357995]

I. INTRODUCTION

The study of mean field spin glasses has been very challenging from both a physical and a
mathematical point of view. It took several years after the main model (the Sherrington-
Kirkpatrick, or simply SK) was introduced before Giorgio Parisi was able to compute the free
energy so ingeniously (Ref. 12 and references therein), and it took much longer still until a fully
rigorous proof of Parisi’s formula was found."""* Parisi went beyond the solution for the free
energy and gave an Ansatz about the pure states of the model as well, prescribing the so-called
ultrametric or hierarchical organization of the phases (Ref. 12 and references therein). From a
rigorous point of view, the closest the community could get so far to ultrametricity are identities
constraining the probability distribution of the overlaps, namely, the Aizenman-Contucci (AC) and
the Ghirlanda-Guerra identities (see Refs. 1 and 9, respectively). For further reading, we refer to
Refs. 6, 7, and 13, but also to the general references.>!> Most of the few important rigorous results
about mean field spin glasses can be elegantly summarized within a powerful and physically
profound approach introduced recently by Aizenman et al. in Ref. 2. We want to show here that in
this framework the AC identities can be deduced too. This is achieved by studying a stochastic
stability of some kind, similarly to what is discussed in Ref. 6, inside the environment (the
Random Overlap Structure) suggested in Ref. 2, and taking into account also the intensive nature
of the internal energy density. A central point of the treatment is a power series expansion similar
to the one performed in Ref. 3.

The paper is organized as follows. In Sec. II we introduce the concept of Random Overlap
Structure (henceforth ROSt), and use it to state the related Extended Variational Principle. In Sec.
IIT we present the main results regarding the ac identities and similar families of relations. Section
IV is left for a few concluding remarks.

YElectronic mail: Adriano_Barra@romal.infn.it
YElectronic mail: lde_sanc@ictp.it
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Il. MODEL, NOTATIONS, PREVIOUS BASIC RESULTS

The Hamiltonian of the SK model is defined on Ising spin configurations o:i—o;=+=1 of N
spins, labeled by i=1,...,N, as

LN
=
Hy(o:))=- =2, Jijoi0;
VN

i<j

where J;; are i.i.d. centered unit Gaussian random variables. We will assume there is no external
field. Being a centered Gaussian variable, the Hamiltonian is determined by its covariance,

BHAO) HA(0)) =SNG

where

N
1
doo’ = N% O-io-i,

is the overlap, and here I denotes the expectation with respect to all the (quenched) Gaussian
variables.

The partition function Zy(f), the quenched free energy density fy(8), and pressure ay(B) are
defined as

ZyN(B) = E exp(= BH\(0)),

- BB = 1B Z0(8) = an(B).

The Boltzmann-Gibbs average of an observable O(o) is denoted by w and defined as

w(0) = Zy(B)™' 2 O(0)exp(~ BHN(0)),

but we will use the same w to indicate, in general (weighted) sums over spins or nonquenched
variables, to be specified when needed, and with () we will mean the product (replica) measure of
the needed number of copies of w.

Let us now introduce an auxiliary system.

Definition 1: A Random Overlap Structure R is a triple (X,q, &), where

* 3 = yis a discrete space (set of abstract spin configurations);

e §:32—[0,1] is a positive definite kernel (overlap kernel), with |G| <1 (and G=1 on the
diagonal of 2?);

o £:3— R, is a normalized discrete positive random measure, i.e., a system of random weights
such that there is a probability measure u on [0, 1T* so that 2, exé, < almost surely in the
M sense.

The randomness in the weights £ is independent of the randomness of the quenched variables
from the original system with spins o. We equip a ROSt with two families of independent and

centered Gaussians h; and H with covariances

E[EI('}’)E](’Y’)] = 5ij£jy'y' s (1)
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EAMAY)=7,. (2)
Given a ROSt R, we define the trial pressure as
N ~
S, Eexn(- B2 h(no)

2, & exp(- BINL2H(Y)

Gp(R) = zlvE In 3)

where I5 denotes hereafter the expectation with respect to all the (quenched) random variables
(including the randomness in the random weights &) but spins ¢ and the abstract spins 7, the sum
over which is, in fact, written explicitly.

The following theorem (Ref. 2) can be easily proven by interpolation.

Theorem 1 (Extended Variational Principle): Infimizing for each N separately the trial
function Gy(R) defined in (3) over the whole ROSt space, the resulting sequence tends to the
limiting pressure —Bf(B) of the SK model as N tends to infinity,

a(B) = lim ay(B) = lim infGy(R).
N—oo N—e R

For a given ROSt and a given inverse temperature 3, the trial pressures {Gy} are a well defined
sequence of real numbers indexed by N; a ROSt R is said to be optimal if a=Ilimy_,., ay(B)
=limy_,,, Gy(R) for all B.

An optimal ROSt is the Parisi one (Refs. 12 and 14), another optimal one is the so-called
Boltzmann ROSt R, defined as follows. Take % ={-1, 1M and denote by 7 the points of 3. We
clearly have in mind an auxiliary spin system (and that is why we use 7 as opposed to the previous
v to denote its points). In fact, we also choose

LM 1M
hi=__/—2 Tume H=-—2 Jymm,
VM =1 M7

which satisfy (1) and (2) with g,,=(1/M)Z;7,7,, and J and J are families of i.i.d. random
variables independent of the original couplings J, with whom they share the same distribution (i.e.,
all the 7 and J are centered unit Gaussian random variables). The variables ﬁ_ are called cavity
fields. Let us also choose

LM
N 1 S -
&, =exp(= BHy(7;J)) =eXP(ﬂ = Jk17k77>'
M k4

If we call Rg(M) the structure defined above, we will formally write Rg(M)— Ry as M
—, and we call Ry the Boltzmann ROSt. The reason why such a ROSt is optimal is purely
thermodynamic, and equivalent to the existence of the thermodynamic limit of the free energy per
spin. A detailed proof of this fact can be found in Ref. 2; here we just mention the main point:

1 Zn
a(B) = C lim—E In = = lim C lim Gy(Rg(M)) = Gy(Rg) = G(Ryp),
M N Z M

M N—x

where C lim is the limit in the Cesaro sense. Notice that the Boltzmann ROSt does not depend on
N, after the M limit.

lll. ANALYSIS OF THE BOLTZMANN ROSt

In this section we show that in the optimal Boltzmann ROSt’s the overlap fluctuations obey
some restrictions, namely, those found by Aizenman and Contucci in Ref. 1. In other words, we
exhibit a recipe to generate the ac polynomials within the ROSt approach.
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A. The internal energy term

Let us focus on the denominator of the trial pressure G(Rp), defined in (3), computed at the
Boltzmann ROSt R, defined in the previous section. Let us normalize this quantity by dividing

by Zy and weight H with an independent variable B’ as opposed to B, which appears in the
Boltzmannfaktor .. As in the Boltzmann structure we have actual spins (7) and we do not use the
spins ¢ here; we will still use o (or ) to denote the Boltzmann-Gibbs (replica) measure (at
inverse temperature B) in the space 2 ={-1,1}". Moreover, we will use the notation {-)=EQ(-)
and, if present, a subscript B recalls that the Boltzmannfaktor in () has inverse temperature S.
More precisely, we are computing the left hand side of the next equality to get this.

Lemma 1:

]%I]E anexp(—,B’ \/%ﬁ(ﬂ) =IBT,2(1 —(@p). (4)

Similar calculations have been performed already, but in this specific context the result has been
only stated without proof in Ref. 10, while a detailed proof is given only in the dilute case in Ref.
8. So let us prove the lemma. Let us take M finite. Thanks to the property of the addition of
independent Gaussian variables, the left hand side of (4) is the same as

1 ZyB) M, | BN
VB = @B - an(B). B =B

k]

which, in turn, thanks to the convexity of «, can be estimated as follows:

B = BB = 2 a8 - a(B) = (B - Bra().

Now

M g o B2 (L) e <P -
N(B —ﬁ)—2B+o ) a(ﬂ)—2(1—<q2>ﬁ).

Therefore, when M — o, we get (4) for almost all 3, i.e., whenever a'(8") — a'(8), or, equiva-
lently, whenever -)z— -). Notice that the quantity in (4) does not depend on A
Theorem 2: The following statements hold:

e The left hand side of (4) is intensive (does not depend on N);
e The left hand side of (4) is a monomial of order two in B';
e The Aizenman-Contucci identities hold.

Proof: Recall that H is a centered Gaussian, and so is therefore -H , and the Gibbs measure is
such that the substitution H— H—H' implies

1 N A 1 N ~ .
NE In Q exp(—,@’ \/2H> = EV]E In Q exp(— B’ \/;(H—H’)).

Expand now in powers of B’ the exponential first and then the logarithm:
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1 N . 12
]T]E InQ exp(— B \/;H) = 'BT(I (@)
IB/ZN I8/4N2

1
=—Ean( +——(H H)2+——(H H')* + )
2N 2 41 4

_ 1 (N 2 oo )
_ZNE{( QO(HY) - 20%(H))

2

%Z[m(m) SQH)Q(HP) + 6QX(HY)]

2B74
-5 E10X@8?) + Q4H) - 2Q(HH QX)) + - }

A straightforward calculation yields

QHY =3, EQE)QUH)]=3F5), EQXHY) =1+2(7}),

E[QUEP) QA (H)] = (1) + 2T hdts),  EQHH) = T35

and so on. All quantities of this sort can be computed in the same way. As an example, let us
calculate E[Q(Hz)QZ(H)]=]E[w(Hf)w(H2)w(H3)]. Like, for overlaps, subscripts denote replicas.
In order to evaluate the expectation of products of Gaussian variables, we can use Wick’s theorem:
we just count all the possible ways to contract the four Gaussian terms H,, H;, H,, Hy and sum
over every nonvanishing contribution,

[y

(HiH:H H3) = (Gi,G53)
/. R
(HiH HyHz) = (1-47,) ,
NN 9 -2
(HiH3H Hs) = (G12Go3) -

The sum of all the terms gives the exactly (73,)+2(75,353)- Now Eq. (4) is therefore expressed in
terms of an identity for all 8’ of two polynomials in 3': one is of order two; the other is a whole
power series. We can then equate the coefficient of the same order, or equivalently put to zero all
the terms of order higher than two in B’. The consequent equalities are exactly the Aizenman-
Contucci ones (Ref. 1); an example of these is

(@12 = M@ 1d13) + X34 =0,

which arises from the lowest order in the expansion above. U

B. The entropy term

In the same spirit as in the previous section, let us move on to the normalized numerator of the
trial pressure G(Rp), defined in (3), computed at the Boltzmann ROSt Ry, defined in the previous
section. If we define

ci=2 cosh(= Bhy) = 2 exp(- Bhor);

i

then
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N
1 ~ 1
K]E InQ, exp(— B, h,-a',-) = ;/F In Q(c; -+ cy) (5)
o i=1

8,10

does not depend on N,” " if we consider the infinite Boltzmann ROSt, where M — .

Again, assume we replace the B in front of the cavity fields h (but not in the state Q) with a
parameter V¢, and define, upon rescaling,

h -
V() =EInQD, expw—%z h;o;. (6)
o VIV =1

We want to study the flux (in 7) of Eq. (6) to obtain an integrable expansion. The 7 flux of the
cavity function WV is given by

1
(1) = 5(1 —{q12812))» (7)

which is easily seen by means of a standard use of Gaussian integration by parts. The subscript in
(-),=EQ), means that such an average includes the 7-dependent exponential appearing in (6), be-
yond the sum over o.

Theorem 3: Let F; be measurable with respect to the o algebra generated by the overlaps of
s replicas of {o} and {7}. Then the cavity streaming equation is

Ls
s(s+1) B
‘9[<Fs>t= (E qy, 5q7 5~ SE qu+1qys+1 +— 2 qs+1,s+2Qs+1,s+2) . (8)
t

Proof: We consider the Boltzmann ROSt Rg(M) with any value of M. The proof relies on the
repeated application of the usual integration by parts formula for Gaussian variables:

>, FseXp(—BHM(T))eXp< LE“E 717-7,707)
ﬁt<Fs>t= ﬁt]E
> exp(- BHM(T))eXp( Vv E > Jﬂ,’ﬂ’)

= vahlzl J,j%: Q[F,707]- Q[FJQ[70]))

- Y, S &
2MNE (% Q,[FSO' 77 g T] 2 Q[F) O'V]Q [0} ] sw,[ﬁaj]za (QF, 7' a; %]

QLFIO[ o) - sQF](1 - wf[fiaj]>>)
1
= §E<E ‘Q’Z[qu%ﬁ’qu,é‘] - 52 QI[F.sqy,.s+lqy,s+1]
7.6 b
+ SSQI[FSqS+l,S+2Fq~S+1,s+2] - SQt[Fs]Qz[FsQHI,s+2‘7s+],s+2])’

where in (), we have included the sum over o and 7, the Boltzmannfaktor in 7, and the t-dependent
exponential. At this point, remembering that g,,=1, we can write
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> QLF qysd,5] =22 QUF,5G,s) + sSQULF]
7.6 V.0

which completes the proof. O

Now the way to proceed is simple: we have to expand the ¢ derivative of W(¢) [the right hand
side of (7)] using the cavity streaming equation (8), and we will stop the iteration at the first
nontrivial order (that is expected to be at least four, being the first ac relation of that order). Once
a closed-form expression is in our hands, we can write down an order by order expansion of the
(modified) denominator of the Boltzmann ROSt (that is, the function N~'¢(r) evaluated for ¢

=NB%).
We have

IKG12412): = <Q%2¢ﬁ2 = 4412312923923 + 3412312934334):-
After the first iteration:

5:(‘1%267%2% = <‘l?2‘ﬁ2 - 4‘1%2‘7%267231723 + 361%2‘7%2‘734%

‘9z<67126]126723%3>z = <671261126723C]2367136113 + 267%2‘1%2‘723‘123 = 641291242392334934 = 34129129139139 149 14
+6412912G34934G45G45):

‘9r<67126112‘7346134>r = <4571261|26723Q23€7346134 + 257%2‘1%2534‘]34 = 16G12912G34934G 45945
+ 104129 12334934956956) -

The higher orders can be obtained exactly in the same way, so we can write down right away the
expression for {(g;»q,), referring to Refs. 1 and 3 for a detailed explanation of this iterative
method:

_ _ _ _ 1 2 2 3, _
(0128120 = {G0@1 )t = 264 12312923823013813)1 — g(fffzﬁﬁp — 2 g @)t + 5<qf2q%2q§4q§4)t3

+ 6(‘1126712%35236]34‘73461146714>f3- 9)

Notice that the averages no longer depend on t. In this expansion we considered both g overlaps
and g overlaps, but as the sum over the spins o can be performed explicitly, we can obtain an
explicit expression at least for the g overlaps, and get

1 1
2 2
(g1 = NZ]E,‘EJ' w (Uia'j) = ]T],

1 1
(9129239310 = N3EE w(0;0) 0(0,0) w(007) = e
ijk

! 1
(ahd39) = N4E2k1 w*(0,0) 0’ (0y0) = Ve
ij

1 1
(9129239349 14) = ]\_,4“-32 w(Uin)w(UjUk)w(UkUz)w(UJUi) = ]?’
ijkl

1 3(N=-1) 1
4
= —E O o =5 + =,
<5I12> N ?kl w(UlUJUkUZ)w(UquUkUI) N3 3
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1
(q%zq;) = IFEE w(0,0) w(0;0;000) w(0,0)) = N
ijkl
Moreover, as the ¢ overlaps have been calculated explicitly, we can use a graphical formalism.""
In such a formalism we use points to identify replicas and lines for the overlaps between them. So,
for example,

=@z O =@, DN = (Gudnds)

and so on. Now we can integrate (7) thanks to the polynomial expansion based on (9) and to the
expressions for the ¢ fluctuations. We obtain

1 t
V(1) = Ef [1-{q12G12)r]dt’,
0

1o _ P B g ge
sue=ngy =2 OF L AL <©>5—

O
338 1 @
% vk ) - L0y 20y (10)
This expression, though truncated at this low order, already looks pretty much alike the expansion
found using the internal energy part of the Boltzmann pressure.

We stress, however, two important features of expression (10). The first is that within this
approach we do not have problems concerning the Replica Symmetry Anzatz (RS),'” and this can
be seen by the proliferating of the overalaps fluctuations, via which we expand the entropy (a RS
theory does not allow such fluctuations). Second, we note that not all the terms inside the equa-
tions (10) are intensive: the last three graphs are all multiplied by a factor N. Recalling that this
expansion does not depend on N, and physically a density is intensive by definition, we put to zero
all the terms in the squared bracket, so to have

O
<@_4DQ+30>=0,

Again we can find the AC identities.

IV. CONCLUSIONS AND OUTLOOK

We have shown how some constraints on the distribution of the overlap naturally arise within
the Random Overlap Structure approach. As our analysis of the Boltzmann ROSt is similar to the
study of stochastic stability, it is not surprising that the constraints coincide with the Aizenman-
Contucci identities. In the ROSt context, such identities are easily connected with the existence of
the thermodynamic limit of the free energy density (which is equivalent to the optimality of the
Boltzmann ROSt) and with the physical fact that the internal energy is intensive. We also showed
that, as expected, the entropy part of the free energy yields the same constraints as the other part
(i.e., the internal energy).

The hope for the near future is that the ROSt approach will lead eventually to a good under-
standing of the pure states and the phase transitions of the model. A first step has been taken in
Ref. 10, and our present results can be considered as a second step in this direction. (Other more
interesting results regarding the phase transition at S=1 can also be obtained with the same
techniques employed here, including the graphical representation.4) A further step should bring the
Ghirlanda-Guerra identities, and then hopefully a proof of ultrametricity.
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