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Abstract

Following an original idea of F. Guerra, in this notes we analyze the Sherrington-Kirkpatrick model from
different perspectives, all sharing the underlying approach which consists in linking the resolution of the sta-
tistical mechanics of the model (e.g. solving for the free energy) to well-known partial differential equation
(PDE) problems (in suitable spaces). The plan is then to solve the related PDE using techniques involved
in their native field and lastly bringing back the solution in the proper statistical mechanics framework.
Within this strand, after a streamlined test-case on the Curie-Weiss model to highlight the methods more
than the physics behind, we solve the SK both at the replica symmetric and at the 1-RSB level, obtaining
the correct expression for the free energy via an analogy to a Fourier equation and for the self-consistencies
with an analogy to a Burger equation, whose shock wave develops exactly at critical noise level (triggering
the phase transition).
Our approach, beyond acting as a new alternative method (with respect to the standard routes) for tackling
the complexity of spin glasses, links symmetries in PDE theory with constraints in statistical mechanics
and, as a novel result from the theoretical physics perspective, we obtain a new class of polynomial identities
(namely of Aizenman-Contucci type, but merged within the Guerra’s broken replica measures), whose in-
terest lies in understanding, via the recent Panchenko breakthroughs, how to force the overlap organization
to the ultrametric tree predicted by Parisi.

1 Introduction

More than thirty years elapsed since Parisi gave his solution for the mean-field spin glass [31], namely the
Sherrington-Kirkpatrick model (SK). During this period, with continuous joined effort from theoretical, numer-
ical and mathematical physics, the community of researchers involved in the field transformed the SK model into
the harmonic oscillator for complex systems and features of glassy phenomenology as multiple time sectors [33],
FTD-violations [19], chaos in temperature [39], weak/strong ergodicity breaking [9, 20] and last but not least
ultrametricity [31] are nowadays considerable building blocks of the scaffold of complexity, whose applications
are spreading over disparate disciplines, ranging from economy [10] and biology [44] to computer science [32]
and artificial intelligence [18].
However, from a rigorous perspective (i.e. avoiding the zero replica limit within the replica trick framework
[22]), only recently, via a series of impressive results achieved by Guerra [27] and Talagrand [47] and/or within
the A.S.S. scheme [2, 3, 41], a crystal-clear formal understanding of the Parisi expression for the free energy has
been achieved, and even more recently [34, 35, 36, 37, 38], Panchenko has been able to link Parisi ultrametricity
with polynomial constraints as Ghirlanda-Guerra [25] and Aizenman-Contucci [1] identities, thus conferring a
central importance to the latter.
Hence, in the actual state of the art, from one side (and mainly for applications) there is a continuous need
for new mathematical techniques able to tackle a glassy problem from multiple perspectives and, from another
(more conceptual) side, a particular focus on the identities (as those we have understood that play a crucial
role in the ultrametric organization of the states in the low-noise limit of the SK model) raised.
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Indeed, despite Panchenko breakthroughs in exploiting their deep links with ultrametricity are very recent,
polynomial identities have a long history in spin glass theory and, since the beginning, the hierarchical flavor
they contain were manifest (as the title of [25] does not hide): Their early developments are by Ghirlanda
and Guerra (GG) [25] and by Aizenman and Contucci (AC) [1, 29] at the end of the Nineties. Following their
seminal approaches, the former based on checking the stability of the thermodynamical states by adding all
possible p-spin terms [20, 21] to the SK Hamiltonian and then sending their strength to zero (self-averaging
of the quenched internal energy), the latter obtained trough a property of robustness of the quenched Gibbs
measure with respect to small stochastic perturbation [1, 12, 13] (stochastic stability), identities for the SK
model have by now been obtained with a number of different techniques, e.g. via smooth cavity field expansion
[4], linear response stability [16], random overlap structures [41] or even as Noether invariants [24].
Beyond the full mean-field panorama, it has been possible to show to validity of these polynomial identities even
in short-range or finite-dimensional models [14, 15, 23, 46], however, already restricting in considering the SK-
model only, the whole identity repertoire is not yet complete and novel techniques to obtain other restrictions,
with the aim of finding a set of constraints on the overlap probability distribution strong enough to enforce the
replica symmetry breaking scheme, are still a central focus in spin glass theory.
As a consequence, by merging the interest in always welcome alternative mathematical approaches to the glassy
phenomenology with the renewed importance of obtaining novel polynomial identities as they are seen nowadays,
we decided to continue the investigation of a way initially paved by F.Guerra in solving the thermodynamics
of the SK-model via well-known PDE techniques, as he first exploited this strand via a bridge connecting the
SK free energy with the Hamilton-Jacobi theory [28] and then it has been continued in various extensions as
for instance in [24][5][7][43].
The plan for the present paper is as follows: For the sake of clearness, in the next section (Sec. Two), we
outline the techniques we develop by using the Curie-Weiss model as a toy example. At first, we show that the
magnetization satisfies a Burger equation whose shock-wave develops exactly at the noise level that triggers the
phase transition in the SM language, then we introduce its Cole-Hopf transform that maps the evolution of the
magnetization versus the noise level into a diffusive problem described by a Fourier PDE, which is finally solved
in a standard way via Green propagator and the Convolution Theorem in the impulse space. As a result of
this procedure self-averaging of the order parameter is obtained as a bypass product. Then, in Section Three,
we introduce the Sherrington-Kirkpatrick model that we solve immediately at the replica symmetric (RS) level
with the same techniques, hence we obtain a Burger equation for the overlap and then we find the shock wave
that spontaneously develops at the phase transition where annealing breaks down. Via Cole-Hopf transform
we map the latter into a diffusive problem, that we solve obtaining, beyond the replica symmetric expression
for the free energy, self-averaging of the order parameter (which is in obvious agreement with the request of a
RS-solution) and linear constraints of the Aizenman-Contucci type.
One step forward, we merge this approach with the classical Guerra’s broken replica construction [27] to go
beyond the RS scheme and we show that there is a one-to-one correspondence among the steps of replica sym-
metry breaking in SM and the spatial dimensions in the equivalent diffusive problem (exactly as happens in the
Hamilton-Jacobi framework [7]) that we then solve in all details at the first step of RSB for highlighting the
power of the method.
Remarkably, as a bypass product of this approach, we obtain new identities which constraint overlap fluctua-
tions on different Guerra measures (roughly speaking constraints between different valleys belonging to various
steps of RSB). We remark that this kind of identities is completely new and carry interesting physics inside,
whose discussion, coupled to general outlooks, constitutes the last section, that closes the present paper.

2 Testing the machinery: The Curie-Weiss model

Once introduced N Ising spins σi = ±1, with i = 1, ..., N , the Hamiltonian of the Curie-Weiss model can be
written as

HN (σ) = − 1

N

∑

i<j

σiσj ∼ −N

2
m2

N , (1)
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where in the last passage (which becomes exact in the thermodynamic limit N → ∞) we introduced the

magnetization mN = N−1
∑N

i σi, namely the order parameter of the theory.
We introduce also the Boltzmann averages as, using the magnetization as a trial function

〈mN 〉 =
∑

σ
1
N

∑N
i σi exp (−βHN (σ))

∑

σ exp (−βHN (σ))
,

where the denominator is called "partition function" ZN (β) and of course limN→∞〈mN 〉 = 〈m〉.
In order to investigate the thermodynamics of the model, we are interested in the mathematical pressure α(β)
or equivalently in the free energy f(β) defined as

α(β) = −βf(β) = lim
N→∞

1

N
lnZN (β), (2)

and we want to achieve an explicit expression for this quantity without following the standard routes of statistical
mechanics.
The approach we want to use is to ”enlarge" the space of the parameters (hence β), and investigate which
PDE are obeyed by the model in such a space, so to import the technology for their resolution from classical
mechanics. In order to exploit our idea, let us introduce the following action S(t, x) as

SN (t, x) = − 1

N
ln
∑

σ

exp





t

2N

∑

ij

σiσj + x
∑

i

σi



 , (3)

where the variables t, x can be thought of as fictitious time and space, and such that limN→∞ SN (t, x) = S(t, x)
and of course S(t, x) = βf(β) = −α(β) whenever evaluated at t = β and x = 0.
In order to highlight our approach we need to work out the derivatives of S(t, x) which read as

∂SN (t, x)

∂t
= −1

2
〈m2

N 〉, (4)

∂SN (t, x)

∂x
= −〈mN 〉, (5)

1

2N

∂2SN (t, x)

∂x2
=

1

2

(

〈m2
N 〉 − 〈mN 〉2

)

. (6)

Following the Guerra prescription [28, 7] and noticing the form of the derivatives (4 − 6), it is possible to
build an Hamilton-Jacobi equation for SN (t, x) as

∂tSN (t, x) +
1

2
(∂xSN (t, x))

2
+ V (t, x) = 0, (7)

where we remark that V (t, x) = −(1/2N)∂2
xxSN (t, x) = (1/2)(〈m2

N〉 − 〈mN 〉2): In the spin-glass counterpart
this will no longer be the case as polynomial constraints will be present (that here simply reduce to e.g.
〈m4〉 = 〈m2〉2, hence are all already accounted by the self-averaging of the magnetization).
Deriving eq.(7) w.r.t. x, and calling uN (t, x) = ∂xSN (t, x) = −〈mN 〉 we get the following Burger equation [42]
for the velocity (i.e. the magnetization in the statistical mechanics framework apart the minus sign)

∂tuN(t, x) + uN(t, x)∂xu(t, x)−
1

2N
∂2
xxuN(t, x) = 0, (8)

and let us point out that such equation becomes naturally inviscid in the thermodynamic limit as S(t, x) admits
the thermodynamic limit thanks to the Guerra-Toninelli scheme [30].
If we now perform the following Cole-Hopf transform

ΨN(t, x) = exp

(

−N

∫

dxuN (t, x)

)

, (9)
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it is immediate to check that ΨN (t, x) satisfies the following diffusion equation

∂ΨN(t, x)

∂t
− 1

2N

∂ΨN(t, x)

∂x2
= 0, (10)

which we now solve, in the Fourier space, trough Green propagator and the Convolution Theorem. In the
Fourier space we deal with Ψ̂N(t, k) defined as

Ψ̂N (t, k) =

∫

dke−ikxΨN (t, x), (11)

and equation (10) in the impulse space reads off as

∂tΨ̂N(t, k) +
k2

2N
Ψ̂N (t, k) = 0, (12)

whose solution is

Ψ̂N (t, k) = Ψ̂N(0, k) exp

(

− k2

2N
t

)

, (13)

and translates in the original space as

ΨN (t, x) =

∫

dyGt(x − y)Ψ0(y), (14)

where the Green propagator is given by

Gt(x− y) =

√

N

2πt
exp

(

−N(x− y)2/(2t)
)

. (15)

Overall we get

S(t, x) = − 1

N
ln

√

N

2πt

∫

dy e−N((x−y)2/(2t)−ln 2−ln cosh(y)), (16)

where we used SN (0, x) = − log 2− ln cosh(x) and the definition of the Cole-Hopf transform (9).
As the exponent in equation (16) is proportional to the volume, for large N , we can apply now the saddle point
argument to get

α(t, x) = sup
y

{

− (x− y)2

2t
+ ln 2 + ln cosh(y)

}

= − (x− ŷ)2

2t
+ ln 2 + ln cosh(ŷ), (17)

with ŷ maximizer. Note that the previous equation can also be written as

α(t, x) +
x2

2t
= sup

y

{

−y2

2t
+ ln 2 + ln cosh(y) +

xy

t

}

= sup
y

{

Φ0(y) +
xt

y

}

, (18)

hence we obtained the solution also as a Legendre transform of the initial condition1[26].
The extremization procedure implies

x = ŷ − t tanh(ŷ) = ŷ + u(t, x)t = ŷ − 〈m〉t, (19)

where the second equality holds because the Burger equation becomes inviscid in the thermodynamic limit
and which, for x = 0 (where statistical mechanics is recovered) implies ŷ0 = 〈m〉t so to obtain the well-known
Curie-Weiss self-consistency (properly evaluated by choosing t = β)

〈m〉 = tanh (β〈m〉) . (20)

1Strictly speaking Φ0(y) = −y2/2t + ln 2 + ln cosh(y), hence is the initial condition plus −y2/2t.
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The free energy of the Curie-Weiss model is then

α(β) = sup
〈m〉

{

ln 2 + ln cosh (β〈m〉)− β

2
〈m〉2

}

. (21)

While it is well known from classical arguments of statistical mechanics that the Curie-Weiss model undergoes
a phase transition from an ergodic (paramagnetic) phase to a ferromagnetic one at β = 1, it is very instructive
to tackle this phenomenon still within our framework, where such a phase transition is obtained as a shock wave
for the Burger equation (8).
In order to see this, it is useful to investigate the mass conservation, whose density is depicted by the variable
ρ, namely by analyzing the mass of the "fictitious particle" whose motion we study in two different positions,
a generic x and the starting point y, as

ρ(x)dx = ρ(y)dy. (22)

By the equation of motion x = y + u(0, y)t = y − tanh(y)t we get

dx

dy
= 1 + ∂yu(0, y)t = 1− (1− tanh2(y))t, (23)

thus, for the mass density in a generic point x, we get

ρ(x) = ρ(y)
1

1− (1− tanh2(y))t
. (24)

At y = 0, ρ(x) = ρ(0)/(1 − t) which diverges for t = 1, thus, as t = β, exactly where the phase transition
happens in statistical mechanics.
Note further that in the Hamilton-Jacobi equation (7), the potential V (t, x) is vanishing for N → ∞ as V (t, x) =
∂2
xxS(t, x)/2N , and the corresponding Burger equation (8) becomes inviscid: As a result, by definition of V (t, x),

we get self-averaging of the order parameter, namely limN→∞(〈M2
N 〉−〈MN〉2) = 0. In the spin-glass counterpart

this procedure will develop more complex overlap polynomial identities and, while even in that context we will
have limN→∞ V (t, x) = 0 and limN→∞ ∂2

xxS(t, x)/2N = 0, the two results will be in general different, the
former representing overlap self-averaging hence restricted only to the RS scenario, the latter representing more
general polynomial identities (for simple models as the CW, these two results of course do coincide -as they
should- because the model is intrinsically replica symmetric2).

3 The Replica Symmetric Sherrington-Kirkpatrick model within the

Fourier framework.

Once introduced N Ising spins σi = ±1, the Hamiltonian of the SK model is given by

HN (σ; J) = − 1√
N

∑

(i,j)

Jijσiσj (25)

where the quenched disorder in the couplings is given by the N(N − 1)/2 independent and identical distributed
random variable Jij , whose distribution is N [0, 1].
We are interested in an explicit expression for the (quenched) free energy f(β) (or the mathematical pressure
α(β)) defined as

α(β) = −βf(β) = lim
N→∞

αN (β) = − lim
N→∞

βfN (β) = lim
N→∞

1

N
E lnZN (β), (26)

where E averages over the quenched couplings and ZN(β) = exp(−βHN (σ; J)) is the partition function.
Through ZN (β) we define the Boltzmann state ω(.) =

∑

σ . exp(−βHN (σ; J))/(ZN (β)), the product state

2For the sake of completeness, note that the Parisi-like representation of the CW model is shown in [5].
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Ω(.) = ω(.)× ...× ω(.) and the averages 〈.〉 = EΩ(.).
Now, mirroring the previous section, we introduce two fictitious variables x, t, which can be though of as space
and time coordinates, by which we write the Guerra’s interpolating function as

αN (t, x) =
1

N
E ln

∑

σ

exp





√

t

N

∑

i<j

Jijσiσj +
√
x
∑

i

J1
i σi



 , (27)

where the J1
i ’s are i.i.d. unitary gaussian random variables, and the pressure is recovered whenever evaluating

αN (t, x) at t = β, x = 0. Further, as α is not directly connected to an Hamilton-Jacobi equation; we need a
linear transformation in the t, x plan to introduce the Guerra’s action SN (t, x) as

SN (t, x) = 2αN (t, x)− x− t/2. (28)

By direct calculation, we can see the following relations holding [28]

∂tSN (t, x) = −1

2

〈

q212
〉

,

∂xSN (t, x) = −〈q12〉 ,
(29)

where we implicitly introduced the overlap, e.g the order parameter of the theory, defined as q12 = N−1
∑N

i σ1
i σ

2
i ,

whose N -dependence has been omitted for the sake of simplicity. By direct construction it is immediate to check
that

∂SN (t, x)

∂t
+

1

2

(

∂SN (t, x)

∂x

)2

= −1

2

(

〈q212〉 − 〈q12〉2
)

≡ −V0(t, x). (30)

If we add a vanishing (in the thermodynamic limit) potential, containing the second derivative of SN(t, x)

lim
N→∞

1

2N

d2SN (t, x)

dx2
≡ V1(t, x) = 0 (31)

and within the replica symmetric scheme, where limN→∞
(

〈q212〉 − 〈q12〉2
)

= 0, SN (t, x) satisfies

lim
N→∞

(∂tSN(t, x) +
1

2
(∂xSN(t, x))

2 − 1

2N
∂2
x2SN(t, x)) = 0, (32)

that we can solve easily with the usual Cole-Hopf transform (see the next section).
A remark is in order here: As discussed in detail in [7], and as of course the overlap is not self-averaging in the
true solution of the SK model [31], we force V0(t, x) to be zero in order to get straightforwardly the replica-
symmetric solution (which is the goal of the present section), while V1(t, x) is always zero in the thermodynamic
limit (and of course reduces to an elementary identity once read in the RS framework).
Note that, while it is not strictly necessary to solve this problem where V0(t, x) and V1(t, x) are pasted in
the same equation as we could split the standard Hamilton-Jacobi equation for the Guerra action from the

constraint 1
2N

∂2SN (t,x)
∂x2 = 0, however, such a ”compact procedure” allows to obtain the RS free energy solving a

Fourier problem (with all its related know-now) for its Cole-Hopf transform.
To compute explicitly V1(t, x) it is convenient to introduce the x-streaming relative to a generic observable F
which depends on s replicas as [28]

∂x 〈Fs〉 = N〈F
(

s
∑

ab

qab − s

s
∑

a

qas+1 +
s(s+ 1)

2
qs+1,s+2

)

〉, (33)

hence, remembering that, from (29), ∂xS(x, t) = −〈q12〉, we get

lim
N→∞

−1

N
∂2
x2 SN(t, x) = lim

N→∞
(
〈

q212
〉

− 4 〈q12q23〉+ 3 〈q12q34〉) = 0. (34)
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The latter is a constraint between overlap’s polynomials known as AC identities [1] and in particular it coincides
with eq.s (47, 48) of [29], where this kind of identities appeared for the first time, previa elimination of 〈q12〉2
to reduce to a single expression. Hence, as a difference with the CW, V0(t, x) 6= V1(t, x) but they both vanish
in the N → ∞ limit (V0 only in the RS framework) and they carry different physics inside (as we are going to
deepen later, in the broken replica framework).
As we did for the CW model, we can solve the Burger-like equation for the action

∂tSN (t, x) +
1

2
(∂xSN (t, x))2 − 1

2N
∂2
x2SN(t, x) = 0 (35)

mapping the latter into a Fourier equation via the following Hopf-Cole transform, namely

ΨN (t, x) = exp (−NSN(t, x)) (36)

by which it is straightforward to check that ΨN(t, x) obeys:

∂Ψ(t, x)

∂t
− 1

2N

∂2Ψ(t, x)

∂x2
= 0. (37)

By calling Ψ̂N (t, k) the transform of ΨN (t, x), in the impulse space we get

∂tΨ̂N (t, k) +
k2

2N
Ψ̂N(t, k) (38)

hence, using the label Ψ0(k) to denote the Cauchy condition, we get the solution in the k-space as

Ψ̂N (t, k) = Ψ̂0(k) exp(−
k2

2N
t). (39)

We can obtain the solution in the original space by the Convolution Theorem, hence writing

Ψ(t, x) =

∫

dy Gt(x− y)Ψ0(y) =

√

N

2πt

∫

dy e−N (x−y)2

2t Ψ0(y) (40)

where Gt(x − y) is the Green propagator, i.e. the solution of (37) with the initial condition G0(x) = δ(x) and
where

Ψ0(y) = exp
[

−NS0(y)
]

. (41)

From the definition of the interpolating function (27) and from the definition (28) one can directly get the
expression for S0(y), namely

S0(y) = 2 ln 2 + 2

∫

dµ(z) ln cosh(
√
yz)− y,

and by direct substitution we get

SN (t, x) = − 1

N
logΨ(t, x) = − 1

N
log

√

N

2πt

∫

dy e
−N

(

(x−y)2

2t +2 ln 2+2
∫

dµ(z) ln cosh(
√
yz)−y

)

(42)

that in the thermodynamic limit reads

S(t, x) = inf
y

{

(x− y)2

2t
+ S0(y)

}

= inf
y

{

(x− y)2

2t
+ 2 ln 2 + 2

∫

dµ(z) ln cosh(
√
yz)− y

}

, forN → ∞.

(43)

We denote by ŷ(t, x) the location where the infimum in (43) is achieved and refer to this function as inverse

Lagrangian function [26]. As we are going to show, its inverse x(t, y) is the usual Lagrangian function, or rather,
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the location at time t of the fictitious particle initially at y. We observe that the previous maximizing condition
can also be expressed as:

S(t, x)− x2

2t
= − sup

y
[φ0(y) +

xy

t
] (44)

where φ0(y) = −y2/2t−S0(y). Hence, the solution of the Burgers-like equation can be expressed again in terms
of a Legendre transform of φ0(y). From the extremization condition we get

x = ŷ − t

∫

dµ(z) tanh2(
√

ŷz) = ŷ + t u(t, x), (45)

with ŷ maximizer. The last equality is allowed because in the thermodynamic limit the Burger equation
becomes inviscid, hence trajectories represent Galilean motion with a velocity u(t, x) given explicitly by the
previous expression.
Under the replica symmetric assumption, from equation (29) and the definition of u(t, x) = ∂xS(t, x), in the
thermodynamic limit we can finally recover the self-consistent equation for the overlap

u(t, x) = ∂xS(t, x) = −〈q12〉 (t, x) = −q̄(t, x) = −
∫

dµ(z) tanh2(
√

ŷ(t, x)z). (46)

To recover statistical mechanics we need evaluating observables at x = 0 (e.g. in equation (45)) and the value
of ŷ0 = tq̄ that maximizes the expression (44) is then

ŷ0 = t q̄ = t

∫

dµ(z) tanh2(
√
tq̄z). (47)

By considering equation (43), with ŷ maximizer, we have

S(x, t) =
(x− ŷ)2

2t
+ 2 ln 2 + 2

∫

dµ(z) ln cosh(
√

ŷz)− ŷ, (48)

and when evaluating everything at x = 0 and t = β2 (thus we use the relation ŷ0 = q̄ β2) we finally get

α(β) = ln 2 +

∫

dµ(z) ln cosh(
√
q̄ βz) +

β2

4
(1− q̄)2 (49)

which is the expression of the pressure for the SK model in the RS approximation.
As in the Curie-Weiss model, we want to investigate the shock waves in the Burgers equation and figure

out some correspondences with the phase transition in statistical mechanics (which is known to happen at
β = 1). To achieve this result, mirroring the corresponding section for the ferromagnetic case, we consider the
conservation of the mass for a particle which starts the motion in position y and arrives at position x after a
time t:

ρ(x)dx = ρ(y)dy. (50)

Reminding the equation of motion x = y + u(0, y)t, from mass conservation we get

ρ(x) = ρ(y)
(dx

dy

)−1

=
ρ(y)

1 + t ∂yu(0, y)
. (51)

From equation (45) we get

dx

dy
= 1 + t ∂yu(0, y) = 1− t

1√
y

∫

dµ(z)z
tanh(

√
y z)

cosh2 (
√
yz)

(52)

If we want to find a shock we can evaluate miny

[

− 1√
y

∫

dµ(z)z
tanh(

√
y z)

cosh2 (
√
yz)

]

, which can be achieved simply

observing parity and monotony in y ∈ [0,∞) hence obtaining ȳ = 0. Then if we expand the tanh for small y
we obtain

min
y

[

− 2

∫ ∞

0

dµ(z)
z2

cosh2 (
√
yz)

+
2

3
y

∫ ∞

0

dµ(z)
z4

cosh2 (
√
yz)

]

= −1, (53)
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where the final result is obtained computing the argument inside the brackets for y = ȳ = 0. We can then
conclude that ∂yu(0, y)|ȳ = −1. If we now substitute this last result in eq (51) we get

ρ(x) =
ρ(ȳn)

1 + ∂yu(0, y)|ȳt
=

ρ(0)

1− t
(54)

which diverges at the shock time t = β2 = 1, i.e. the critical noise level at which the phase transition occurs in
statistical mechanics.

4 Beyond the replica symmetric scenario: Multiple diffusion and bro-

ken replica constraints.

In this section we want to go beyond the replica-symmetric scenario and investigate features of the broken replica
phase by merging the PDE approach, in particular the Fourier technique, with the broken replica interpolation
scheme developed by Guerra in [27]. The result will be a mapping between the SK free energy with some steps
of RSB (that we are going to analyze in full detail for the 1−RSB test-case for the sake of simplicity, mirroring
the work developed in [7] for the Hamilton-Jacobi procedure), and a multi-dimensional diffusion equation, with
as spatial dimensions as the number of RSB steps plus one, hence two spatial dimensions in order to tackle the
1−RSB solution.
To accomplish this task let us introduce the following interpolating partition function

ZN(t, x1, x2) =
∑

σ

exp

(

√
tHN (σ; J) +

√
x1

N
∑

i

J1
i σi +

√
x2 − x1

N
∑

i

J2
i σi

)

, (55)

where J1
i , J2

i are all i.i.d. Gaussian variables, sharing the same distribution N [0, 1] as the original Jij but
independent from them, whose averages will be denoted with the pertinent subscript for the sake of clearness,
hence E2, E1. Moreover we have to think at m ∈ [0, 1] as the expected parameter of the 1-RSB overlap’s
distribution, i.e. we assume its shape to be the weighted sum of two delta functions, P (q) = mδ(q − q̄1) + (1−
m)δ(q − q̄2).
Let us introduce recursively the ”partially averaged" partition functions as

Z2 ≡ ZN , Zm
1 = E2(Z

m
2 ),

by which we can express the 1-RSB SK free-energy (or pressure strictly speaking) in the space (t, x1, x2) as

α(t, x1, x2) = lim
N→∞

αN (t, x1, x2) = lim
N→∞

1

N
EE1 logZ1(t, x1, x2) = lim

N→∞

1

Nm
EE1 logE2Z

m
N (t, x1, x2). (56)

Trough the interpolating structure defined by the extended partition function (55) and the partial averages Ej ,
we can introduce also the following weights f and the corresponding extended states ω as

f1 = 1, f2 =
Zm
2

E2Zm
2

, (57)

ω1(.) = E2[f2ω2(.)], ω2(.) = ωN (.), (58)

while the standard product state remains Ωa(.) = ωa(.)× ...× ωa(.) and finally the quenched averages read

〈.〉a = E (f1...faΩa(.)) , (59)

hence 〈.〉1 = E[Ω1(.)], and 〈.〉2 = E[f2Ω2(.)].
If we now define

SN (t, x1, x2) = 2αN(t, x1, x2)− x2 − t/2, (60)
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we can see that the following relations hold:

∂tSN (t, x1, x2) = −(m/2)〈q212〉1 − ((1−m)/2)〈q212〉2,
∂x2SN (t, x1, x2) = −(1−m)〈q12〉2,
∂x1SN (t, x1, x2) = −m〈q12〉1,

by which we can see that SN (t, x1, x2) satisfies

∂tSN +
1

2m
(∂x1SN )

2
+

1

2(1−m)
(∂x2SN )

2
= −1

2

[

m
(

〈

q212
〉

1
− 〈q12〉21

)

+ (1−m)
(

〈

q212
〉

2
− 〈q12〉22

)]

. (61)

In the 1-RSB approximation we can neglect the r.h.s. of (61), moreover, if we add a vanishing term containing
the second derivatives of SN (t, x1, x2) we can write down a Burger equation for S(t, x1, x2) as

∂tSN +
1

2m
(∂x1SN )

2
+

1

2(1−m)
(∂x2SN )

2
=

1

2Nm
∂2
x2
1
SN +

1

2N(1−m)
∂2
x2
2
SN (62)

that we can solve by mapping it into a Fourier equation via the usual Cole-Hopf transform

ΨN(t, x1, x2) = exp (−NSN(t, x1, x2)) , (63)

by which it is straightforward to check that ΨN(t, x1, x2) obeys

lim
N→∞

(∂tΨN(t, x1, x2)−
1

2Nm
∂2
x2

1

ΨN(t, x1, x2)−
1

2N(1−m)
∂2
x2

2

ΨN(t, x1, x2)) = 0, (64)

i.e. a diffusion equation with two different diffusion coefficients on the two spatial axes x1, x2, namely D1 =
(1/2Nm) and D2 = 1/(2N(1−m)).
Now we want to solve the heat-equation (64) in the Fourier space, where, calling Ψ̂N (t, k1, k2) the transform of
ΨN (t, x1, x2) we can write

∂tΨ̂N (t, k1, k2) +
k21

2mN
Ψ̂N(t, k1, k2) +

k22
2(1−m)N

Ψ̂N(t, k1, k2) = 0, (65)

hence, using the label Ψ0(k1, k2) to denote the Chauchy condition, we get

Ψ̂N (t, k1, k2) = Ψ̂0(k1, k2) exp

(

−
(

k21
2mN

+
k22

2(1−m)N

)

t

)

. (66)

Finally we can obtain the solution in the original space by the Convolution Theorem, hence writing

ΨN (t, x1, x2) =

∫

dk1√
2π

∫

dk2√
2π

Ψ̂0(t, k1, k2) exp

(

−
(

k21
2mN

+
k22

2(1−m)N

)

t

)

exp(ik1x1 + ik2x2) (67)

=

∫

dy1

∫

dy2Ψ0(t, y1, y2)Gt(x1 − y1, x2 − y2), (68)

where Gt(x1−y1, x2−y2) is the Green propagator, i.e. the solution of (64) with the initial condition G0(x1, x2) =
δ(x1)δ(x2).

Gt(x1, x2) =

∫

dk1
2π

∫

dk2
2π

e
−
(

k2
1

2mN
+

k2
2

2(1−m)N

)

t
e(ik1x1+ik2x2) =

N

2πt
e−N(m

2tx
2
1+

(1−m)
2t x2

2), (69)

by which the solution of eq. (64) is

SN (t, x1, x2) = − 1

N
logΨ(t, x1, x2) = − 1

N
log

∫

dy1

∫

dy2e
−N(S0(y1,y2)+

m
2t (x1−y1)

2+ (1−m)
2t (x2−y2)

2). (70)
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In the thermodynamic limit we can use the saddle point method to get

S(t, x1, x2) = inf
y1,y2

{

S0(y1, y2) +
m

2t
(x1 − y1)

2 +
(1−m)

2t
(x2 − y2)

2

}

, (71)

and finally, keeping in mind the definition (60)

α(t, x1, x2) = inf
y1,y2

{

1

2
S0(y1, y2) +

m

4t
(x1 − y1)

2 +
(1−m)

4t
(x2 − y2)

2 +
x2

2
+

t

4

}

. (72)

At t = 0 we have

S0(y1, y2) = 2α(0, y1, y2)− y2 = 2 log 2 +
2

m

∫

dµ(z1) log

∫

dµ(z2) cosh
m
(√

y1z1 +
√
y2 − y1z2

)

− y2. (73)

If the minimum of the equation (71) is achieved in (y1, y2) = (ŷ1, ŷ2), we can write

dS

dx1
(t, x1, x2) = −m〈q12〉1 = m

x1 − ŷ1(t, x1, x2)

t
, (74)

dS

dx2
(t, x1, x2) = −(1−m)〈q12〉2 = (1−m)

x2 − ŷ2(t, x1, x2)

t
, (75)

by which we get the physical meaning of the variables ŷ1, ŷ2 as

ŷ1(t, x1, x2) = x1 + 〈q12(x1, x2, t)〉1t, (76)

ŷ2(t, x1, x2) = x2 + 〈q12(x1, x2, t)〉2t. (77)

This means that, at t = β2 and x1 = x2 = 0, where we come back to the original SK model, (ŷ1, ŷ2) =
β2(〈q12〉1, 〈q12〉2) = β2(q̄1, q̄2).

Now we want to extremize the expression inside the brackets of (72). Taking the derivatives w.r.t. y1 and
y2, by straightforward calculation we get

x1 − ŷ1(t, x1, x2)

t
=

∫

dµ(z1)

[

D−1(z1, ŷ)

∫

dµ(z2) cosh
m(Θ(ŷ, z1, z2)) tanh(Θ(ŷ, z1, z2))

]2

x2 − ŷ2(t, x1, x2)

t
=

∫

dµ(z1)D
−1(z1, ŷ)

∫

dµ(z2) cosh
m(Θ(ŷ, z1, z2)) tanh

2(Θ(ŷ, z1, z2)), (78)

where we defined

D(z1) =

∫

dµ(z2) cosh
m(
√

ŷ1z1 +
√

ŷ2 − ŷ1z2)

Θ(ŷ, z1, z2) =
√

ŷ1z1 +
√

ŷ2 − ŷ1z2, (79)

and by which we can reconstruct the function α(t, x1, x2) as

α(t, x1, x2) = ln 2 +
m

4t
(x1 − ŷ1(t, x1, x2))

2 +
1−m

4t
(x2 − ŷ2)

2 +
x2 − ŷ2

2
+

t

4

+
1

m

∫

dµ(z1) ln

∫

dµ(z2) cosh
m
(

√

ŷ1z1 +
√

ŷ2 − ŷ2z2

)

. (80)

At t = β2, x1 = x2 = 0 and identifying (ŷ1, ŷ2) = β2(q̄1, q̄2) we find the following well known [27][7] self-
consistent equations

q̄1 =

∫

dµ(z1)

[

D−1(z1, q̄)

∫

dµ(z2) cosh
m(β

√
q̄1z1 + β

√
q̄2 − q̄1z2) tanh(β

√
q̄1z1 + β

√
q̄2 − q̄1z2)

]2

q̄2 =

∫

dµ(z1)D
−1(z1, q̄)

∫

dµ(z2) cosh
m(β

√
q̄1z1 + β

√
q̄2 − q̄1z2) tanh

2(β
√
q̄1z1 + β

√
q̄2 − q̄1z2) (81)
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and the 1−RSB free energy of the SK model as

α(β) = ln 2+
β2

4

(

mq̄21 + (1−m)q̄22 − 2q̄2 + 1
)

+
1

m

∫

dµ(z1) ln

∫

dµ(z2) cosh
m
(

β
(√

q̄1z1 +
√
q̄2 − q̄1z2

))

. (82)

Earlier, in writing the equation (62), we added a vanishing (in the thermodynamic limit) term concerning
the second derivatives of S(t, x1, x2):

− 1

Nm
∂2
x2
1
S =

1

N
∂x1〈q12〉1

N→∞→ 0, (83)

1

N(m− 1)
∂2
x2
2
S =

1

N
∂x2〈q12〉2

N→∞→ 0. (84)

These terms are vanishing because S(t, x1, x2) is a continuous function in its parameters and its thermodynamic
limit exists due to the Guerra-Toninelli argument [30] or, from a more practical point of view, as we have found
the correct 1-RSB free energy, they necessarily have to be vanishing in the thermodynamic limit. Analyzing the
equations (83, 84) allows us to find some overlap constraints that generalize the AC like identities found inside
the RS scheme (equation (34)). Let us start exploiting the meaning of the first equation. Let us stress that
Ω2(.) = ω2(.)× ...× ω2(.) = Ω(.), while Ω1(.) = ω1(.)× ...× ω1(.), furthermore, for the sake of clearness, let us
remember that 〈.〉2 = E[f2Ω2(.)] and 〈.〉1 = E[Ω1(.)]. We need further the introduction of the state

Ω̃1 = E2[f2Ω(.)],

that is not a replicated state because couples different replicas with the E2 average. Finally we have to define
composite states: without using an unnecessarily general notation, we will define for example

〈.〉Ω̃1×Ω1
= E[(Ω̃1 × Ω1)(.)] (85)

and similarly for any other possible combination of replicated states. It is convenient to introduce the following
preliminary results:

∂x2f2 = ∂x2

Zm

EZm
=

1

2
√
x2 − x1

∑

k

mf2
(

J2
kω(σk)− E2[J

2
kf2ω(σk)]

)

, (86)

∂J2
i
f2 = m

Zm

EZm
Z−1∂J2

i
Z = mf2ω(

√
x2 − x1σi), (87)

∂J2
i
ω(F ) =

√
x2 − x1 (ω(Fσj)− ω(F )ω(σj)) , (88)

∂x2ω(F ) =
1

2
√
x2 − x1

∑

k

J2
k (ω(Fσk)− ω(F )ω(σk)) . (89)

With these premises, the evaluation of the streaming of 〈q12〉2 over x2 can be written as

∂x2〈q12〉2 = E (∂x2f2Ω(q12)) + E (f2∂x2Ω(q12)) = A+B, (90)

where

A = N

(

m〈q12q23〉2 +
m(m− 3)

2
〈q12q34〉2 +

1

2
m(1−m)2〈q12q34〉Ω̃1×Ω̃1

)

, (91)

B = N((m− 4)〈q12q23〉2 + 〈q212〉2 + (3−m)〈q12q34〉2), (92)

hence, finally the first constraint reads off as

lim
N→∞

1

N
∂x2〈q12〉2 = 0 = 〈q212〉2+2(m−2)〈q12q23〉2+

1

2
(m−3)(m−2)〈q12q34〉2+

1

2
m(1−m)2〈q12q34〉Ω̃1×Ω̃1

. (93)

12



In the same way we get the other constraint that follows from equation (84) by which, overall, we get

0 = 〈q212〉2 + 2(m− 2)〈q12q23〉2 +
1

2
(m− 2)(m− 3)〈q12q34〉2 +

1

2
m(1−m) 〈q12q34〉Ω̃1×Ω̃1

, (94)

0 = 〈q212〉1 − 4m〈q12q23〉1 + 3m2〈q12q34〉1 + 2(m− 1) 〈q12q13〉ω1×Ω̃1

+ 4m(1−m) 〈q13q24〉Ω1×Ω̃1
+ (1 −m)2 〈q13q24〉Ω̃1×Ω̃1

+ 2m(m− 1) 〈q12q34〉Ω1×Ω̃1
(95)

Note that, as expected, when m = 0 the first constraint becomes as the AC like identity (34), derived using the
RS interpolating scheme, but concerning the state 〈.〉1, i.e. averaging only inside the first ensemble of valleys.
On the contrary, when m = 1, the second constraint becomes the AC like identity (34) but with the state
〈.〉2, i.e. averaging just inside the second ensemble of valleys. When m ∈ (0, 1) other terms appear to take
into account the relation between the two valleys, hence constraining, for the first time, this kind of overlap
correlations.

5 Conclusion and outlooks

In this paper we highlighted how standard PDE techniques, well consolidated in different fields of mathemat-
ical research (e.g. classical mechanics and hydrodynamics), may work as well once tested on the disordered
statistical mechanics machinery. We extended previous results [28][5][7][24] on this line, showing how to solve
trough Fourier theory for the free energy and via a Cole-Hopf transform by using Burger theory for the order
parameter. Remarkably, as the latter admits shock waves, we found that -within this parallel- those happen
exactly where phase transitions develop in standard statistical mechanics.
Beyond showing the main ideas on the Curie-Weiss model for the sake of clearness, we tested our approach
to the paradigmatic Sherrington-Kirkpatrick model, which has been solved both within a replica symmetric
scenario and within the Guerra broken replica framework, at the first level of replica symmetry breaking for the
sake of simplicity, finding full agreement with the classical theory.
We remark however that, while general K-steps of RSB make the calculations only longer, but work straight-
forwardly, the K → ∞ limit requires still some effort on which we will deserve future investigations.
A main point to highlight is that our procedure is a novel scheme to produce (polynomial) overlap constraints,
which have been recently found to play a crucial role [34, 35] in the ultrametric organization of the states
predicted by Parisi theory [31] and that we obtain as a constraint on the theory. To get an entirely class of new
identities, we used a combination of results: as those which could be derived within the standard Gibbs measure
-in the fully connected topology underlying the SK model- have been already obtained (and we found them
as well in the simpler RS-framework) we worked out this kind of constraints within the Guerra broken replica
weights. This procedure resulted in correlations that link overlap fluctuations between different measures, which
roughly resembles constraints among valleys of different depth (corresponding to different steps of RSB from
an heuristic perspective). We remark that these constraints have been obtained very naturally, from continuity
arguments, as the second (spatial) derivative of the action, once divided by the volume, must go to zero in
the thermodynamic limit: Roughly speaking, this approach resembles self-averaging in older investigations [25],
and, forcing the broken-replica scheme to collapse on the simple Gibbs measure (hence imposing m = 1), results
reduce to those well known polynomial identities (already found in [1, 29, 4]). Interestingly in this way, we
obtained an entirely new class of identities that constraint overlap fluctuations within different levels of RSB:
The implication in possible closure of the SK-repertoire, hence in supporting Panchenko results will be subject
of future investigation as well.
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