Soft glasses, rheology, and trap models

Peter Sollich
A Barra, M E Cates, S M Fielding, P Hébraud, F Lequeux

King’s College London

KING’S
College
LONDON

University of London
Ask me questions before dinner
Though I’d rather stay here...
What’s glassy about foam?

Peter Sollich (King’s College London)

Soft glassy rheology & trap models
What’s glassy about foam?

Peter Sollich (King’s College London)
Complex fluids/soft matter

- **Foams** (shaving foam, mousse au chocolat)
- **Emulsions** (mayonnaise)
- Dense colloidal suspensions (yogurt, paint)
- Most soft things you can eat (cream cheese, ketchup)
- Clays, pastes, surfactant phases ("onions")

Other important examples (not discussed here):
- Polymers (except star polymers \(\approx\) soft colloids)
- Gels
Science of flow and mechanical deformation

Everything flows (Heraclitus παντα ρει, Dali see above)

Important for e.g. industrial processing

Usefulness of materials ("mouth-feel" for foods, spreading of paint/printing ink)
Complex fluids vs simple fluids

- **Simple fluids** (water): only one lengthscale (atomic/molecular), beyond this continuum theory (Navier-Stokes)

- **Complex fluids**: Hierarchy of scales, e.g. in foam = air bubbles surrounded by fluid films stabilized by soap:
 - Water/soap molecules
 - Film thickness, size of channels where films meet
 - Bubble diameter

- Often intermediate behaviour between **fluid** and **solid**: Shaving foam flows out of a spray can, but doesn’t drip off face
Soft glasses

- Emulsions, dense colloidal suspensions, foams, microgels
- **Structural similarities**: made up of squishy “particles”
- Oil droplets [ignore coalescence], colloidal particles, air bubbles [ignore coarsening]
- Typical particle scale μm, larger for foams, smaller for colloids
- Particles have different shapes and sizes (polydisperse)
- Particle packing is amorphous (disordered)
- Metastable: $k_B T$ too small to make system ergodic & reach optimal packing (crystalline, if polydispersity not too strong)
- So glassy (repulsive glass) – but soft, can easily be made to flow
Outline

1. Rheology: A reminder
2. Soft glasses: Phenomenology and SGR model
3. Intermezzo: Trap models
4. SGR predictions and model limitations
5. Comparison with simulations: Virtual strain analysis
6. Effective temperature dynamics, shear banding
7. Outlook
Outline

1. Rheology: A reminder
2. Soft glasses: Phenomenology and SGR model
3. Intermezzo: Trap models
4. SGR predictions and model limitations
5. Comparison with simulations: Virtual strain analysis
6. Effective temperature dynamics, shear banding
7. Outlook
Shear stress and strain

- Shear strain: $\gamma = \frac{d}{h}$, shear stress $\sigma = \frac{F}{A}$ (really tensors)
- Elastic solid: $\sigma = G\gamma$, elastic (shear) modulus G
- Newtonian fluid: $\sigma = \eta \dot{\gamma}$, viscosity η
Linear rheology & viscoelasticity

- Small strain increment (step) $\Delta \gamma$ at $t = 0$ causes stress $\sigma(t) = G(t) \Delta \gamma$
- $G(t) =$ stress relaxation function
 - Constant for solid, spike $\eta \delta(t)$ for fluid
- Most materials are in between: viscoelastic
- For short t, $G(t)$ nearly constant (solid), but eventually $\rightarrow 0$ (fluid)
- Linear superposition of many small strain steps $\Delta \gamma = \dot{\gamma} \Delta t$:
 $$\sigma(t) = \int_0^t G(t - t') \dot{\gamma}(t') \, dt'$$
Maxwell model

- Elastic solid and viscous fluid “in series” (spring & damper)
- Common stress σ, elastic strain obeys $\sigma = G_0 \gamma_{el}$, viscous strain $\sigma = \eta \dot{\gamma}_{visc}$
- Total strain rate $\dot{\gamma} = \dot{\gamma}_{el} + \dot{\gamma}_{visc} = \dot{\sigma}/G_0 + \sigma/\eta$
- Solve for small strain step ($\dot{\gamma}(t) = \Delta \gamma \delta(t)$):

 $$G(t) = G_0 \exp(-t/\tau), \quad \tau = \eta/G_0$$

- Note $\eta = \int_0^\infty G(t) \, dt$, generally true if(!) flow with constant strain rate is a linear perturbation
Another Maxwell model

Peter Sollich (King’s College London)

Soft glassy rheology & trap models
Complex modulus

- Experimentally, oscillatory measurements often easier
- If $\gamma(t) = \gamma_0 \cos(\omega t) = \gamma_0 \text{Re } e^{i\omega t}$, then
 \[
 \sigma(t) = \text{Re} \int_{0}^{t} G(t - t')i\omega \gamma_0 e^{i\omega t'} dt' = \text{Re } G^*(\omega) \gamma(t)
 \]

$$G^*(\omega) = i\omega \int_{0}^{\infty} G(t'') e^{-i\omega t''} dt''$$ for large t

- Write complex modulus $G^*(\omega) = G'(\omega) + iG''(\omega)$, then
 \[
 \sigma(t) = G'(\omega) \gamma_0 \cos(\omega t) - G''(\omega) \gamma_0 \sin(\omega t)
 \]

- Elastic modulus $G'(\omega)$: in-phase part of stress
- Viscous or loss modulus $G''(\omega)$: out-of-phase (ahead by $\pi/2$)
Complex modulus of Maxwell model

\[G^* (\omega) = i\omega \times \text{Fourier transform of } G_0 \exp(-t/\tau) = G_0 \frac{i\omega \tau}{1 + i\omega \tau} \]

\[G' (\omega) = G_0 \frac{\omega^2 \tau^2}{1 + \omega^2 \tau^2}, \quad G'' (\omega) = G_0 \frac{\omega \tau}{1 + \omega^2 \tau^2} \]

- Single relaxation time gives peak in \(G'' (\omega) \) at \(\omega = 1/\tau \)
Creep

- Similar setup can be used when imposing stress and measuring strain
- Step stress: creep compliance $J(t)$

$$\gamma(t) = \int_0^t J(t - t') \dot{\sigma}(t') \, dt'$$

- Oscillatory stress: $\gamma(t) = \text{Re} J^*(\omega) \sigma(t)$
- Consistency with oscillatory strain requires $G^*(\omega) J^*(\omega) = 1$
- Maxwell model: $J^*(\omega) = (1 + i\omega \tau)/G_0$, $J(t) = 1/G_0 + t/\eta$
Nonlinear rheology

- For most complex fluids, steady flow (rate $\dot{\gamma}$) is not a small perturbation, don’t get $\sigma = \eta \dot{\gamma}$
- Flow curve $\sigma(\dot{\gamma})$: stress in steady state
- Often shear-thinning: downward curvature
- Many other nonlinear perturbations:
 - large step stress or strain
 - large amplitude oscillatory stress or strain
 - startup/cessation of steady shear etc
- Most general description: constitutive equation

$$\sigma(t) = \text{some function(al) of strain history } [\gamma(t'), t' = 0 \ldots t]$$
Outline

1. Rheology: A reminder
2. Soft glasses: Phenomenology and SGR model
3. Intermezzo: Trap models
4. SGR predictions and model limitations
5. Comparison with simulations: Virtual strain analysis
6. Effective temperature dynamics, shear banding
7. Outlook
FIG. 2. The frequency dependence of the storage G' (solid points) and loss G'' (open points) moduli of a monodisperse emulsion with $r \approx 0.53 \ \mu m$ for $\phi_{eff} = 0.80$ (diamonds), 0.63 (triangles), and 0.60 (circles). The results for the two larger

- Complex modulus for dense emulsions (Mason Bibette Weitz 1995)
- Almost flat $G''(\omega)$: broad relaxation time spectrum, glassy
Colloidal hard sphere glasses
Mason Weitz 1995

\[G'(\omega) \text{ (dynes/cm}^2) \]

\[G''(\omega) \text{ (dynes/cm}^2) \]

\(\phi \)

\(0.56 \)

\(0.55 \)

\(0.53 \)

\(0.52 \)

\(0.51 \)

\(0.50 \)

(a)

(b)

Colloidal hard sphere glasses
Mason Weitz 1995

\[G'(\omega) \text{ (dynes/cm}^2) \]

\[G''(\omega) \text{ (dynes/cm}^2) \]

\(\phi \)

\(0.56 \)

\(0.55 \)

\(0.53 \)

\(0.52 \)

\(0.51 \)

\(0.50 \)

(a)

(b)
Figure 3. Schematic representation of an onion phase. ξ is the characteristic length of monodomains. Each monodomain is

- Vesicles formed out of lamellar surfactant phase
- Again nearly flat moduli
Microgel particles
Purnomo van den Ende Vanapalli Mugele 2008

FIG. 1 (color online). G' (open symbols) and G'' (solid symbols) of a 7% w/w suspension at 25 °C plotted versus ω (a) or ωt (b) for $t_w = 3$ (○), 30 (□), 300 (△), and 3000 s (△). Lines represent the SGR model ($\chi = 0.55$, $G_p = 410$ Pa).

- $G''(\omega)$ flat but with upturn at low frequencies
- **Aging**: Results depend on time elapsed since preparation, typical of glasses
Nonlinear rheology: Flow curves

- Flow curves typically well fitted by \(\sigma(\dot{\gamma}) - \sigma_y \sim \dot{\gamma}^p \) (0 < \(p < 1 \))
- Herschel-Bulkley if yield stress \(\sigma_y \neq 0 \), unsheared state = “glass”
- Otherwise power law flow curve, unsheared state = “fluid” (but \(\eta = \sigma/\dot{\gamma} \rightarrow \infty \) for \(\dot{\gamma} \rightarrow 0 \))
- Shear thinning: \(\sigma/\dot{\gamma} \) decreases with \(\dot{\gamma} \)
A non-glassy model for foam rheology
Princen 1968

- Ideal 2d foam (identical hexagonal cells), $T = 0$
- Apply shear: initially perfectly reversible response, stress increases
- Eventually interfaces rearrange, bubbles “slide”: global yield
- Process repeats under steady shear
- **We get**: yield stress
- **We don’t get**: broad relaxation time spectrum (Buzza Lu Cates 1995), aging
How do we incorporate structural disorder?

Divide sample conceptually into mesoscopic elements

Each has local shear strain l, which increments with macroscopic shear γ

Assumes strain rate $\dot{\gamma}$ uniform throughout system, but allows for variation in local strain and stress (see Barrat & Falk talks)

When strain energy $\frac{1}{2}kl^2$ reaches yield energy E, element can yield and so reset to $l = 0$

$k =$ local shear modulus

If all elements have same E and k, this would essentially give back the Princen model
New ingredient 1: disorder ⇒ every element has its own E

Initial distribution of E across elements depends on preparation

When an element yields, it rearranges into new local equilibrium structure ⇒ acquires new E from some distribution $\rho(E) \propto e^{-E/\bar{E}}$ (assume no memory of previous E)

New ingredient 2: Yielding is activated by an effective temperature x, to model interactions between elements

x should be of order \bar{E}, $\gg k_BT$ (negligible)

Model implicitly assumes low frequency/slow shear: yields are assumed instantaneous, no solvent dissipation
Sketch

Peter Sollich (King’s College London)

Soft glassy rheology & trap models
Dynamical equation for SGR

- $P(E, l, t)$: probability of an element having yield energy E and local strain l at time t
- Master equation ($\Gamma_0 = \text{attempt rate for yields}$)

$$
\dot{P}(E, l, t) = -\gamma \frac{\partial P}{\partial l} - \Gamma_0 e^{-(E-kl^2/2)/x} P + \Gamma(t) \rho(E) \delta(l)
$$

where $\Gamma(t) = \Gamma_0 \langle e^{-(E-kl^2/2)/x} \rangle = \text{average yielding rate}$

- Macroscopic stress $\sigma(t) = k \langle l \rangle$
- Given initial condition $P(E, l, 0)$ and strain history (input) can in principle calculate stress (output)
- We’ll rescale E, t, l so that $\bar{E} = \Gamma_0 = k = 1$; this means also typical yield strains are 1
Outline

1. Rheology: A reminder
2. Soft glasses: Phenomenology and SGR model
3. Intermezzo: Trap models
4. SGR predictions and model limitations
5. Comparison with simulations: Virtual strain analysis
6. Effective temperature dynamics, shear banding
7. Outlook
Trap model
Bouchaud 1992, also Dean, Monthus ...

- Without shear ($\dot{\gamma} = 0$), can ignore local strains (all $l \to 0$ eventually)
- Master equation for $P(E,t)$

$$\dot{P}(E,t) = -e^{-E/x} P + \Gamma(t) \rho(E)$$

where $\Gamma(t) = \langle e^{-E/x} \rangle$

- Physical (re-)interpretation: “particle hopping” by activation, in landscape of traps of depth E
- Landscape has golfcourse shape: all traps hang off same energy level
- No geometry: every trap connected to every other
Equilibrium & glass transition in the trap model

- Master equation for $P(E,t)$

$$\dot{P}(E,t) = -e^{-E/x}P + \Gamma(t)\rho(E)$$

- $P(E,t)$ approaches equilibrium $P_{eq}(E) \propto \exp(E/x)\rho(E)$ for long t (Boltzmann distribution; E is measured downwards)

- Get glass transition if $\rho(E)$ has exponential tail
 (possible justification from extreme value statistics)

- Reason: for low enough x, $P_{eq}(E)$ cannot be normalized

- For $\rho(E) = e^{-E}$ this transition happens at $x = 1$

- For $x < 1$, system is in glass phase; never equilibrates

- Aging: evolution into ever deeper traps
Aging in the trap model

- Easier in terms of lifetimes $\tau = \exp(E/x)$
- Then $\rho(\tau) \sim \tau^{-x-1}$, $P_{eq}(\tau) \sim \rho(\tau)\tau \sim \tau^{-x}$
- Assume initial condition $P(\tau, 0) = \rho(\tau)$
- At age t_w, particle hasn’t hopped if initial $\tau \gg t_w$; traps with $\tau \ll t_w$ have become equilibrated:

$$P(\tau, t_w) \propto \begin{cases} \tau^{-x} & \text{for } \tau \ll t_w \\ t_w \tau^{-x-1} & \text{for } \tau \gg t_w \end{cases}$$

- Normalization: for $x > 1$, most “mass” for $\tau = O(1)$, $P(\tau, t_w) \to \text{const} \times \tau^{-x}$ for large t_w
- For $x < 1$, in glass phase, most mass for $\tau = O(t_w)$
- Then get scaling form $P(\tau, t_w) = (1/t_w)f(\tau/t_w)$: typical relaxation times $\sim t_w$, simple aging
Aging in the trap model: Sketch

\[P(\tau, t, t) \]

- (a) \(x = 1.3 \)
- (b) \(x = 0.7 \)

Peter Sollich (King’s College London)
Trap model: Interpretations and uses

- Originally proposed by Bouchaud as model for motion in phase space (spin glasses)
- Simple(st?) aging mechanism, controlled by energy barriers and activation
- Distinct from mean-field spin glasses, aging controlled by entropy barriers (rare downhill directions), T not crucial
- Connection with real-space dynamics?
 Small subsystems \approx independent trap models (Heuer et al)
- Intriguing fluctuation-dissipation behaviour (see my webpage)
Outline

1. Rheology: A reminder
2. Soft glasses: Phenomenology and SGR model
3. Intermezzo: Trap models
4. SGR predictions and model limitations
5. Comparison with simulations: Virtual strain analysis
6. Effective temperature dynamics, shear banding
7. Outlook
Linear response in the fluid phase

- Calculation yields average of Maxwell models:
 \[G^*(\omega) = \left\langle \frac{i\omega \tau}{1 + i\omega \tau} \right\rangle, \text{ average is over } P_{eq}(\tau) \]
- For large \(x \), get usual power-law dependences for small \(\omega \)
- But near \(x = 1 \) get \(G' \sim G'' \sim \omega^{x-1} \): both become flat
Linear response: Aging
Sollich PS Cates 2000

- Conceptual issue: with aging, $G^*(\omega) \rightarrow G^*(\omega, t, t_w)$
- $G^*(\omega, t, t_w)$ could depend on final time t
 and start time t_w of shear
- Luckily, dependence on t_w is weak: $G^*(\omega, t)$
- “Inherits” simple aging $1/\omega \sim t$: $G^*(\omega, t) \sim 1 - (i\omega t)^{x-1}$
Linear response: Aging

\[G(\omega) \]

\[\omega \]

- \(x = 1.3 \)
- \(x = 1.0 \)
- \(x = 1.0 \)
- \(x = 0.7 \)
Comparison with experiments on microgel particles
Purnomo van den Ende Vanapallli Mugele 2008

(a) G', G'' (Pa)

T=35 °C
x=0.67±0.03

(b) G', G'' (Pa)

T=37 °C
x=0.87±0.03

(c) G', G'' (Pa)

T=38 °C
x=2.2±0.3

(d) G', G'' (Pa)

T=40 °C
x>3
Calculation: steady state, so set $\dot{P} = 0$ in master equation, integrate differential eqn for l; Γ from normalization (try it)

Three regimes for small $\dot{\gamma}$:

$$\sigma \sim \begin{cases}
\dot{\gamma} & \text{for } 2 < x : \quad \text{Newtonian} \\
\dot{\gamma}^{x-1} & \text{for } 1 < x < 2 : \quad \text{power law} \\
\sigma_y(x) + \dot{\gamma}^{1-x} & \text{for } x < 1 : \quad \text{Herschel-Bulkley}
\end{cases}$$
Relation between flow and aging

- No aging in steady flow
- Driving by shear restores ergodicity
- Flow interrupts aging (Kurchan)
Yield stress

- Yield stress increases **continuously** at glass transition
- Compare MCT prediction: **discontinuous** onset of yield stress
- Physics?
 - Elastic networks/stress chains vs caging?
 - Jamming transition vs glass transition?
- Could e.g. emulsions exhibit both transitions?
General nonlinear rheology: Constitutive equation

PS 1998

- SGR model can be solved: switch variable $l \rightarrow l - \gamma(t)$ to eliminate $\partial P/\partial l$ term, then integrate (try it)

- For simplest initial condition $P(E, l, 0) = \rho(E)\delta(l)$ get constitutive equation (2nd equation determines $\Gamma(t)$)

\[\sigma(t) = \gamma(t)G_\rho(Z(t, 0)) + \int_0^t \Gamma(t')[\gamma(t) - \gamma(t')]G_\rho(Z(t, t')) \, dt' \]

\[1 = G_\rho(Z(t, 0)) + \int_0^t \Gamma(t')G_\rho(Z(t, t')) \, dt' \]

- $G_\rho(t) = \int \rho(E) \exp(-te^{-E/x}) \, dE$ survival probability

- $Z(t, t') = \int_{t'}^t \exp([\gamma(t'') - \gamma(t')]^2/2x)$ effective time,

 $Z(t, t') = t - t'$ for small strains

- Overall interpretation as birth-death process
Example: Large amplitude oscillatory strain

- Close to but above glass transition \((x = 1.1, \omega = 0.01) \)
- Increasing strain amplitude gives stronger **nonlinearities**
- Hysteresis-like loops
Large oscillatory strain: Complex modulus

- G'' first increases with amplitude, becomes larger than G'
- Large strain **fluidizes** an initially predominantly elastic system
- Compare experiments on colloidal hard spheres (right)
- Quantitative comparison for foam
 (Rouyer Cohen-Addad Höhler PS Fielding 2008)
SGR predictions: Summary

- **Flow curves**: Find both Herschel-Bulkley ($x < 1$) and power-law ($1 < x < 2$)
- **Viscoelastic spectra** G', $G'' \sim \omega^{x-1}$ are flat near $x = 1$
- In glass phase ($x < 1$) find rheological aging, loss modulus $G'' \sim (\omega t)^{x-1}$ decreases with age t
- **Steady shear** always interrupts aging, restores stationary state
- Large amplitude G' and G'' show fluidization behaviour similar to experiments
- Stress overshoots in shear startup, linear and nonlinear creep, rejuvenation and overaging (Lequeux, Viasnoff, McKenna, Cloître, Roettler . . .)
Limitations of SGR model

- **Scalar model** with ideal local elasticity up to yield – both can be fixed (Cates PS 2004)
- No spatial information: geometry of stress redistribution might be important, also non-affine flow (Barrat talk)
- **Length scale** of elements: needs to be large enough to allow local strain and stress to be defined, but otherwise unspecified
- Interpretation of effective temperature x? Link to material parameters? Should have own dynamics? (see later)
- What sets fundamental **time scale** (attempt rate for yielding)?
Outline

1. Rheology: A reminder
2. Soft glasses: Phenomenology and SGR model
3. Intermezzo: Trap models
4. SGR predictions and model limitations
5. Comparison with simulations: Virtual strain analysis
6. Effective temperature dynamics, shear banding
7. Outlook
Simulations to the rescue?

- Can we use simulation data to:
 - See how far the SGR model represents physical reality?
 - Get better understanding of model parameters?
 - Tell us where we should improve the model?
 - Need to develop method for explicit coarse-graining of simulation data
Defining elements

- Focus on $d = 2$ ($d = 3$ can be done but more complicated)
- Make elements circular to minimize boundary effects
- Position circle centres on square lattice to cover all of the sample (with some overlap)
- Once defined, element is co-moving with strain: always contains same particles
- Avoids sudden change of element properties when particles leave/enter, but makes sense only up to moderate $\Delta \gamma$
- Measuring average stress in an element is easy but how do we assign strain l, yield energy etc for a given snapshot?
Virtual strain analysis

- Deliberately want local yield points etc: interaction between elements is accounted for separately within model
- Cannot “cut” an element out of sample and then strain until yield – unrealistic boundary condition
- Idea: Use rest of sample as a frame
- Deform the frame affinely to impose a virtual strain $\tilde{\gamma}$
- Particles inside element relax non-affinely to minimize energy
- Gives energy landscape $\epsilon(\tilde{\gamma})$ of element
- Yield points are determined (for $\tilde{\gamma} > 0$ and < 0) by checking for reversibility for each small $\Delta\tilde{\gamma}$ (adaptive steps)
Example: Virtual strain sequence 1
Example: Virtual strain sequence 2
Example: Virtual strain sequence 3
Example: Virtual strain sequence 4
Example: Virtual strain sequence 5
Example: Virtual strain sequence 6
Example: Virtual strain sequence 7
Example: Virtual strain sequence 8
Example: Virtual strain sequence 9
Element energy landscape

Extract: minimum energy ϵ_{min}, strain away from local minimum $l = -\tilde{\gamma}_{\text{min}}$, yield strains γ_{\pm}, yield barriers E_{\pm}
Local modulus

Quadratic fit of energy near minimum, or linear fit of stress, gives local modulus k.
Systems studied

- **Polydisperse Lennard-Jones mixtures** (Tanguy et al), quenched to low temperatures \(T = 0.005 \ll T_g \)
- Low shear rates \(\dot{\gamma} \sim 10^{-3} \); \(N = 10^4 \) particles at \(\rho = 0.95 \)
- Steady shear driven from the walls (created by “freezing” particles in top/bottom 5% some time after quench)
- Check for stationarity & affine shape of velocity profile before taking data
- Each element contains \(\approx 40 \) particles (diameter = 7): large enough to have near-parabolic energy landscape, small enough to avoid multiple local yield events inside one element
Simulation demo
Close-up
Exponential tail; detailed form can be fitted by SGR model
Yield strain distributions

Symmetric as assumed in SGR; gap around 0 or maybe power-law approach (exponent ≈ 4)
Clear spread; not constant as assumed in model.
But yield strains γ_\pm still controlled by E_\pm; no correlation with k.

Peter Sollich (King’s College London)
Soft glassy rheology & trap models
Negative l, need to extend SGR to allow frustration: $l \neq 0$ after yield ($\delta(l) \to \rho(l|E) \propto (1 - kl^2/2E)^b$)
Dynamics: Evolution of local strain with time

Typical sawtooth shape assumed by SGR
Population picture of l-dynamics

Scatter plot of l(after $\Delta \gamma$) vs l(initial)

Separation into strain convection and yield events

Peter Sollich (King’s College London) Soft glassy rheology & trap models
Same for larger $\Delta \gamma$
...and yet larger

\[\Delta \gamma = 0.020 \]
Change in other landscape properties
Example of modulus

Stays largely constant between yields as expected; same for yield barriers etc

Peter Sollich (King’s College London) Soft glassy rheology & trap models
Comparing real and virtual deformations

Primary yield

Curve: virtual energy landscape.
Vertical lines: Real ϵ versus $l - l_0$ for uniform steps $\Delta \gamma$
Good match, even for energy drop after yield
Comparing real and virtual deformations (cont)

Induced yield

Curve: virtual energy landscape.
Vertical lines: Real ϵ versus $l - l_0$ for uniform steps $\Delta \gamma$
Summary for virtual strain analysis

- **Virtual strain method** for assigning local strains, yield energies
- **Generic**: can be used on configurations produced by any (low-T) simulation
- Steady state distributions in shear flow seem in line with SGR (detailed fits in progress), though e.g. local modulus \neq const
- Dynamics of local strain has typical sawtooth shape; local strain rate is of same order as global one but not identical
- Energy landscapes for real and virtual deformations match (but not purely quadratic)
- To do: analysis of induced yield events – well modelled by effective temperature?
Outline

1. Rheology: A reminder
2. Soft glasses: Phenomenology and SGR model
3. Intermezzo: Trap models
4. SGR predictions and model limitations
5. Comparison with simulations: Virtual strain analysis
6. Effective temperature dynamics, shear banding
7. Outlook
Effective temperature dynamics
Fielding Cates PS 2008

- Shouldn’t effective temperature \(x \) be determined self-consistently by dynamics?
- To allow for potential shear banding, split sample in \(y \) (shear gradient)-direction
- Separate SGR model for each \(y \), with \(x(y) \)
- Relaxation-diffusion dynamics:

\[
\tau_x \dot{x}(y) = -x(y) + x_0 + S(y) + \lambda^2 \frac{\partial^2 x}{\partial y^2}
\]

- \(x \) is “driven” by energy dissipation rate:

\[
S = a \langle l^2 \exp\left(-\left[\frac{(E - l^2/2)}{x}\right]\right) \rangle
\]

- Assume that \(x \) equilibrates (locally) quickly: \(\tau_x \to 0 \)
Flow curve

\[a = 2, \ x_0 = 0.3 \]

- Steady state: \(x = x_0 + 2a\sigma(x, \dot{\gamma})\dot{\gamma} \)
- Shear startup with imposed mean \(\dot{\gamma} \) across sample: shear banding
Nature of banded state

\[a = 2, \quad x_0 = 0.3, \quad \dot{\gamma} = 0.05, 0.1, 0.2 \]

- "Hot" band: \(\dot{\gamma} > 0 \), ergodic
- "Cold" band: \(\dot{\gamma} = 0 \), aging
Viscosity bifurcation at imposed stress
Coussot, Bonn, ...
\(x \) now driven by yield rate, \(S \propto \langle \exp(-[(E - l^2/2)/x]) \rangle \)

- **Hysteresis** in shear rate sweep: banding on way up, stay on fluid branch on way down
- Resembles data for multi-arm polymers (Holmes Callaghan Vlassopoulos Roovers 2004)
Outline

1. Rheology: A reminder
2. Soft glasses: Phenomenology and SGR model
3. Intermezzo: Trap models
4. SGR predictions and model limitations
5. Comparison with simulations: Virtual strain analysis
6. Effective temperature dynamics, shear banding
7. Outlook
Summary & Outlook

- **Trap models** for aging dynamics in glasses, focus on activation
- **SGR model** adds strain to this & re-interprets trap depths as yield energies
- Reproduces much (not all) of *rheological behaviour* of soft glasses
- ...and some cytoskeletal rheology(?)
- **Virtual strain** method allows detailed comparison with simulations: some encouraging agreement, but also suggests modifications
- **Dynamics of \(x \)**: phenomenological models useful, but too much choice?
- **To do**: linking to other approaches (STZ, Picard et al); coarse-graining from “microscopic” models?