Soft glasses, rheology, and trap models

Peter Sollich A Barra, M E Cates, S M Fielding, P Hébraud, F Lequeux

King's College London

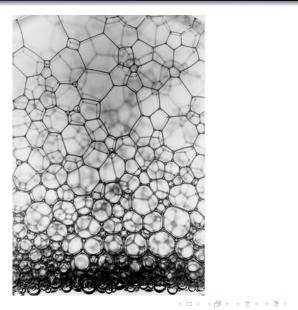
University of London

Peter Sollich (King's College London) Soft glassy rheology & trap models

Ask me questions before dinner Though I'd rather stay here...

Peter Sollich (King's College London) Soft glassy rheology & trap models

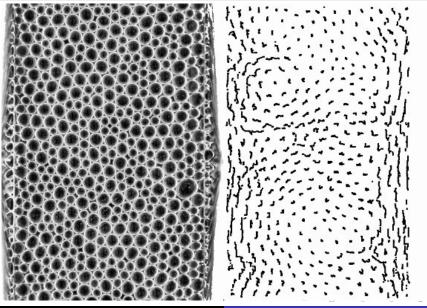
What's glassy about foam?



Peter Sollich (King's College London) Soft glassy rheology & trap models

-2

What's glassy about foam?



Peter Sollich (King's College London)

Soft glassy rheology & trap models

Q CV

Complex fluids/soft matter

- Foams (shaving foam, mousse au chocolat)
- Emulsions (mayonnaise)
- Dense colloidal suspensions (yogurt, paint)
- Most soft things you can eat (cream cheese, ketchup)
- Clays, pastes, surfactant phases ("onions")

Other important examples (not discussed here):

- Polymers (except star polymers \approx soft colloids)
- Gels

Rheology

- Science of flow and mechanical deformation
- Everything flows (Heraclitus $\pi \alpha \nu \tau \alpha \rho \epsilon \iota$, Dali see above)
- Important for e.g. industrial processing
- Usefulness of materials ("mouth-feel" for foods, spreading of paint/printing ink)

Complex fluids vs simple fluids

• Simple fluids (water):

only one lengthscale (atomic/molecular), beyond this continuum theory (Navier-Stokes)

- Complex fluids: Hierarchy of scales, e.g. in foam = air bubbles surrounded by fluid films stabilized by soap:
 - Water/soap molecules
 - Film thickness, size of channels where films meet
 - Bubble diameter
- Often intermediate behaviour between fluid and solid: Shaving foam flows out of a spray can, but doesn't drip off face

Soft glasses

- Emulsions, dense colloidal suspensions, foams, microgels
- Structural similarities: made up of squishy "particles"
- Oil droplets [ignore coalescence], colloidal particles, air bubbles [ignore coarsening]
- Typical particle scale μ m, larger for foams, smaller for colloids
- Particles have different shapes and sizes (polydisperse)
- Particle packing is amorphous (disordered)
- Metastable: k_BT too small to make system ergodic & reach optimal packing (crystalline, if polydispersity not too strong)
- So glassy (repulsive glass) but soft, can easily be made to flow

Outline

- 1 Rheology: A reminder
- 2 Soft glasses: Phenomenology and SGR model
- Intermezzo: Trap models
- 4 SGR predictions and model limitations
- 5 Comparison with simulations: Virtual strain analysis
- 6 Effective temperature dynamics, shear banding

Outlook

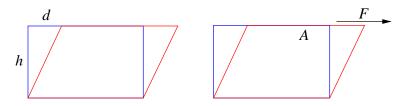
Outline

1 Rheology: A reminder

- 2 Soft glasses: Phenomenology and SGR model
- 3 Intermezzo: Trap models
- 4 SGR predictions and model limitations
- 5 Comparison with simulations: Virtual strain analysis
- 6 Effective temperature dynamics, shear banding

7 Outlook

Shear stress and strain



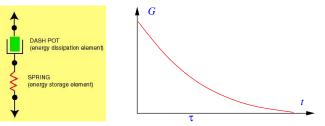
- Shear strain: $\gamma = d/h$, shear stress $\sigma = F/A$ (really tensors)
- Elastic solid: $\sigma = G\gamma$, elastic (shear) modulus G
- Newtonian fluid: $\sigma = \eta \dot{\gamma}$, viscosity η

Linear rheology & viscoelasticity

- Small strain increment (step) $\Delta \gamma$ at t = 0causes stress $\sigma(t) = G(t)\Delta \gamma$
- G(t) = stress relaxation function Constant for solid, spike $\eta \delta(t)$ for fluid
- Most materials are in between: viscoelastic
- For short t, G(t) nearly constant (solid), but eventually $\rightarrow 0$ (fluid)
- Linear superposition of many small strain steps $\Delta \gamma = \dot{\gamma} \Delta t$:

$$\sigma(t) = \int_0^t G(t - t')\dot{\gamma}(t') dt'$$

Maxwell model



- Elastic solid and viscous fluid "in series" (spring & damper)
- Common stress σ , elastic strain obeys $\sigma = G_0 \gamma_{\rm el}$, viscous strain $\sigma = \eta \dot{\gamma}_{\rm visc}$
- Total strain rate $\dot{\gamma}=\dot{\gamma}_{\rm el}+\dot{\gamma}_{\rm visc}=\dot{\sigma}/G_0+\sigma/\eta$
- Solve for small strain step ($\dot{\gamma}(t) = \Delta \gamma \, \delta(t)$):

$$G(t) = G_0 \exp(-t/\tau), \qquad \tau = \eta/G_0$$

• Note $\eta = \int_0^\infty G(t) dt$, generally true if(!) flow with constant strain rate is a linear perturbation

Another Maxwell model

□ ▶ ▲ 臣 ▶ ▲

э

Complex modulus

• Experimentally, oscillatory measurements often easier

• If
$$\gamma(t) = \gamma_0 \cos(\omega t) = \gamma_0 \operatorname{Re} e^{i\omega t}$$
, then

$$\sigma(t) = \operatorname{Re} \int_0^t G(t - t') i\omega \gamma_0 e^{i\omega t'} dt' = \operatorname{Re} G^*(\omega) \gamma(t)$$

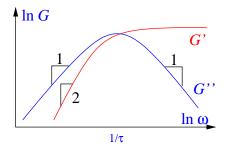
$$G^*(\omega) = i\omega \int_0^\infty G(t'') e^{-i\omega t''} dt'' \quad \text{for large } t$$

 \bullet Write complex modulus $G^*(\omega)=G'(\omega)+iG''(\omega),$ then

$$\sigma(t) = G'(\omega)\gamma_0\cos(\omega t) - G''(\omega)\gamma_0\sin(\omega t)$$

- Elastic modulus $G'(\omega)$: in-phase part of stress
- Viscous or loss modulus $G''(\omega)$: out-of-phase (ahead by $\pi/2$)

Complex modulus of Maxwell model



• $G^*(\omega) = i\omega \times$ Fourier transform of $G_0 \exp(-t/\tau) = G_0 \frac{i\omega\tau}{1+i\omega\tau}$

$$G'(\omega) = G_0 \frac{\omega^2 \tau^2}{1 + \omega^2 \tau^2}, \qquad G''(\omega) = G_0 \frac{\omega \tau}{1 + \omega^2 \tau^2}$$

 \bullet Single relaxation time gives peak in $G^{\prime\prime}(\omega)$ at $\omega=1/\tau$

Creep

- Similar setup can be used when imposing stress and measuring strain
- Step stress: creep compliance J(t)

$$\gamma(t) = \int_0^t J(t - t') \dot{\sigma}(t') \, dt'$$

- Oscillatory stress: $\gamma(t) = \operatorname{Re} J^*(\omega)\sigma(t)$
- Consistency with oscillatory strain requires $G^*(\omega)J^*(\omega) = 1$
- Maxwell model: $J^*(\omega) = (1 + i\omega\tau)/G_0$, $J(t) = 1/G_0 + t/\eta$

Nonlinear rheology

- For most complex fluids, steady flow (rate γ) is not a small perturbation, don't get σ = ηγ
- Flow curve $\sigma(\dot{\gamma})$: stress in steady state
- Often shear-thinning: downward curvature
- Many other nonlinear perturbations:
 - large step stress or strain
 - large amplitude oscillatory stress or strain
 - startup/cessation of steady shear etc
- Most general description: constitutive equation

 $\sigma(t) = \text{some function(al) of strain history } [\gamma(t'), t' = 0 \dots t]$

Outline

Rheology: A reminder

2 Soft glasses: Phenomenology and SGR model

- Intermezzo: Trap models
- 4 SGR predictions and model limitations
- 5 Comparison with simulations: Virtual strain analysis
- 6 Effective temperature dynamics, shear banding

7 Outlook

Soft glasses: Linear rheology

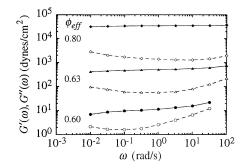
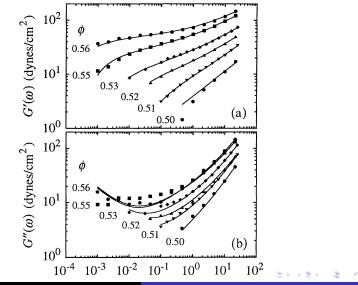


FIG. 2. The frequency dependence of the storage G' (solid points) and loss G'' (open points) moduli of a monodisperse emulsion with $r \approx 0.53 \ \mu m$ for $\phi_{eff} = 0.80$ (diamonds), 0.63 (triangles), and 0.60 (circles). The results for the two larger

- Complex modulus for dense emulsions (Mason Bibette Weitz 1995)
- Almost flat $G''(\omega)$: broad relaxation time spectrum, glassy

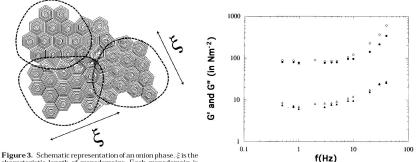
Colloidal hard sphere glasses Mason Weitz 1995



Peter Sollich (King's College London)

Soft glassy rheology & trap models

Onion phase Panizza et al 1996



characteristic length of monodomains. Each monodomain is

- Vesicles formed out of lamellar surfactant phase
- Again nearly flat moduli

____ ▶

Microgel particles Purnomo van den Ende Vanapalli Mugele 2008

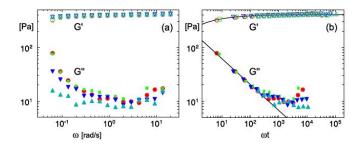
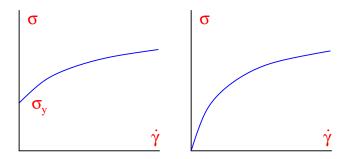


FIG. 1 (color online). G' (open symbols) and G'' (solid symbols) of a 7% w/w suspension at 25 °C plotted versus ω (a) or ωt (b) for $t_w = 3$ (\bigcirc), 30 (\square), 300 (\bigtriangledown), and 3000 s (\triangle). Lines represent the SGR model (x = 0.55, $G_p = 410$ Pa).

- $G''(\omega)$ flat but with upturn at low frequencies
- Aging: Results depend on time elapsed since preparation, typical of glasses

Nonlinear rheology: Flow curves



- Flow curves typically well fitted by $\sigma(\dot{\gamma}) \sigma_y \sim \dot{\gamma}^p \ (0$
- Herschel-Bulkley if yield stress $\sigma_y \neq 0$, unsheared state = "glass"
- Otherwise power law flow curve, unsheared state = "fluid" (but $\eta = \sigma/\dot{\gamma} \rightarrow \infty$ for $\dot{\gamma} \rightarrow 0$)
- Shear thinning: $\sigma/\dot{\gamma}$ decreases with $\dot{\gamma}$

A non-glassy model for foam rheology Princen 1968

- Ideal 2d foam (identical hexagonal cells), T = 0
- Apply shear: initially perfectly reversible response, stress increases
- Eventually interfaces rearrange, bubbles "slide": global yield
- Process repeats under steady shear
- We get: yield stress
- We don't get: broad relaxation time spectrum (Buzza Lu Cates 1995), aging

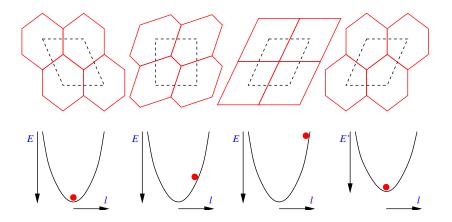
SGR model PS Lequeux Hébraud Cates 1997, PS 1998

- How do we incorporate structural disorder?
- Divide sample conceptually into mesoscopic elements
- Each has local shear strain l, which increments with macroscopic shear γ
- Assumes strain rate $\dot{\gamma}$ uniform throughout system, but allows for variation in local strain and stress (see Barrat & Falk talks)
- When strain energy $\frac{1}{2}kl^2$ reaches yield energy E, element can yield and so reset to l = 0
- k = local shear modulus
- If all elements have same E and $k,\,{\rm this}$ would essentially give back the Princen model

SGR model PS Lequeux Hébraud Cates 1997, PS 1998

- New ingredient 1: disorder \Rightarrow every element has its own E
- Initial distribution of ${\cal E}$ across elements depends on preparation
- When an element yields, it rearranges into new local equilibrium structure \Rightarrow acquires new E from some distribution $\rho(E) \propto e^{-E/\bar{E}}$ (assume no memory of previous E)
- New ingredient 2: Yielding is activated by an effective temperature *x*, to model interactions between elements
- x should be of order \bar{E} , $\gg k_B T$ (negligible)
- Model implicitly assumes low frequency/slow shear: yields are assumed instantaneous, no solvent dissipation

Sketch



2

P

(▲ 문) (▲ 문)

Dynamical equation for SGR

- P(E, l, t): probability of an element having yield energy E and local strain l at time t
- Master equation (Γ_0 = attempt rate for yields)

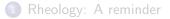
$$\begin{split} \dot{P}(E,l,t) &= -\dot{\gamma} \frac{\partial P}{\partial l} & \text{convection of } l \\ &- \Gamma_0 e^{-(E-kl^2/2)/x} P & \text{elements yield} \\ &+ \Gamma(t) \rho(E) \delta(l) & \text{elements reborn after yield} \end{split}$$

where $\Gamma(t)=\Gamma_0\langle e^{-(E-kl^2/2)/x}\rangle=$ average yielding rate

- Macroscopic stress $\sigma(t) = k \langle l \rangle$
- Given initial condition P(E, l, 0) and strain history (input) can in principle calculate stress (output)
- We'll rescale E, t, l so that $\overline{E} = \Gamma_0 = k = 1$; this means also typical yield strains are 1

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline



2 Soft glasses: Phenomenology and SGR model

Intermezzo: Trap models

- 4 SGR predictions and model limitations
- 5 Comparison with simulations: Virtual strain analysis
- 6 Effective temperature dynamics, shear banding

7 Outlook

Trap model Bouchaud 1992, also Dean, Monthus ...

- Without shear ($\dot{\gamma} = 0$), can ignore local strains (all $l \rightarrow 0$ eventually)
- Master equation for P(E,t)

$$\dot{P}(E,t) = -e^{-E/x}P + \Gamma(t)\rho(E)$$

where $\Gamma(t) = \langle e^{-E/x} \rangle$

- Physical (re-)interpretation: "particle hopping" by activation, in landscape of traps of depth ${\cal E}$
- Landscape has golfcourse shape: all traps hang off same energy level
- No geometry: every trap connected to every other

伺 ト く ヨ ト く ヨ ト

Equilibrium & glass transition in the trap model

• Master equation for P(E,t)

$$\dot{P}(E,t) = -e^{-E/x}P + \Gamma(t)\rho(E)$$

- P(E,t) approaches equilibrium $P_{eq}(E) \propto \exp(E/x)\rho(E)$ for long t (Boltzmann distribution; E is measured downwards)
- Get glass transition if $\rho(E)$ has exponential tail (possible justification from extreme value statistics)
- Reason: for low enough x, $P_{\rm eq}(E)$ cannot be normalized
- For $\rho(E)=e^{-E}$ this transition happens at x=1
- For x < 1, system is in glass phase; never equilibrates
- Aging: evolution into ever deeper traps

ゆ く き と く ゆ と

Aging in the trap model

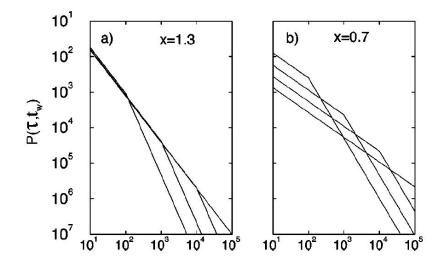
- Easier in terms of lifetimes $\tau = \exp(E/x)$
- Then $\rho(\tau) \sim \tau^{-x-1}$, $P_{\rm eq}(\tau) \sim \rho(\tau) \tau \sim \tau^{-x}$
- Assume initial condition $P(\tau,0)=\rho(\tau)$
- At age t_w, particle hasn't hopped if initial τ ≫ t_w; traps with τ ≪ t_w have become equilibrated:

$$P(\tau, t_{\sf w}) \propto \begin{cases} \tau^{-x} & \text{for} \quad \tau \ll t_{\sf w} \\ t_{\sf w} \tau^{-x-1} & \text{for} \quad \tau \gg t_{\sf w} \end{cases}$$

- Normalization: for x > 1, most "mass" for $\tau = O(1)$, $P(\tau, t_w) \rightarrow \text{const} \times \tau^{-x}$ for large t_w
- For x < 1, in glass phase, most mass for $\tau = O(t_w)$
- Then get scaling form $P(\tau, t_w) = (1/t_w)f(\tau/t_w)$: typical relaxation times $\sim t_w$, simple aging

伺 ト イ ヨ ト イ ヨ

Aging in the trap model: Sketch



Trap model: Interpretations and uses

- Originally proposed by Bouchaud as model for motion in phase space (spin glasses)
- Simple(st?) aging mechanism, controlled by energy barriers and activation
- Distinct from mean-field spin glasses, aging controlled by entropy barriers (rare downhill directions), T not crucial
- Connection with real-space dynamics?
 Small subsystems ≈ independent trap models (Heuer et al)
- Intriguing fluctuation-dissipation behaviour (see my webpage)

Outline

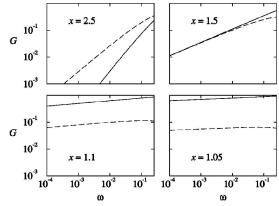
- Rheology: A reminder
- 2 Soft glasses: Phenomenology and SGR model
- 3 Intermezzo: Trap models

4 SGR predictions and model limitations

- 6 Comparison with simulations: Virtual strain analysis
- 6 Effective temperature dynamics, shear banding

7 Outlook

Linear response in the fluid phase



• Calculation yields average of Maxwell models:

$$G^*(\omega) = \left\langle rac{i\omega au}{1+i\omega au}
ight
angle$$
, average is over $P_{
m eq}(au)$

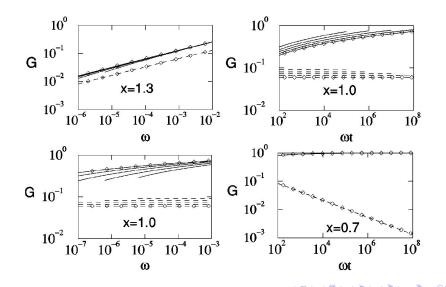
 $\bullet\,$ For large x, get usual power-law dependences for small ω

• But near x = 1 get $G' \sim G'' \sim \omega^{x-1}$: both become flat

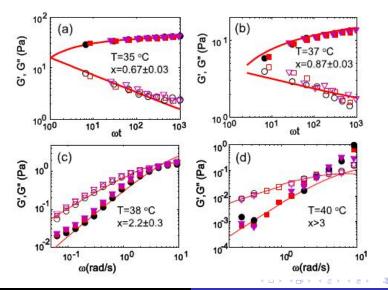
Linear response: Aging Sollich PS Cates 2000

- Conceptual issue: with aging, $G^*(\omega) \to G^*(\omega,t,t_{\rm w})$
- $G^*(\omega, t, t_w)$ could depend on final time t and start time t_w of shear
- Luckily, dependence on $t_{\rm w}$ is weak: $G^*(\omega,t)$
- "Inherits" simple aging $1/\omega \sim t$: $G^*(\omega,t) \sim 1 (i\omega t)^{x-1}$

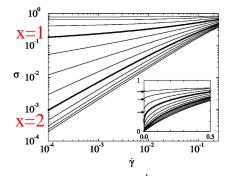
Linear response: Aging



Comparison with experiments on microgel particles Purnomo van den Ende Vanapalli Mugele 2008



Flow curve

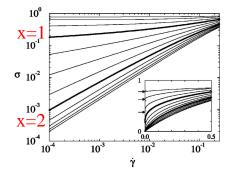


- Calculation: steady state, so set P = 0 in master equation, integrate differential eqⁿ for l; Γ from normalization (try it)
- Three regimes for small $\dot{\gamma}$:

$$\sigma \sim \left\{ \begin{array}{ll} \dot{\gamma} & \text{for} \quad 2 < x: \qquad \text{Newtonian} \\ \dot{\gamma}^{x-1} & \text{for} \quad 1 < x < 2: \quad \text{power law} \\ \sigma_y(x) + \dot{\gamma}^{1-x} & \text{for} \quad x < 1: \qquad \text{Herschel-Bulkley} \end{array} \right.$$

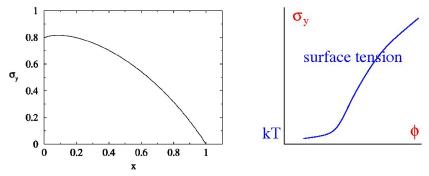
Rheology SGR Traps Predictions Virtual Banding Outlook

Relation between flow and aging



- No aging in steady flow
- Driving by shear restores ergodicity
- Flow interrupts aging (Kurchan)

Yield stress



• Yield stress increases continuously at glass transition

- Compare MCT prediction: discontinuous onset of yield stress
- Physics?

Elastic networks/stress chainsvscaging?Jamming transitionvsglass transition?

• Could e.g. emulsions exhibit both transitions?

Rheology SGR Traps Predictions Virtual Banding Outlook

General nonlinear rheology: Constitutive equation PS 1998

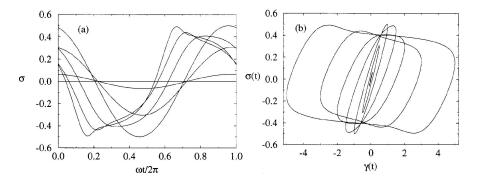
- SGR model can be solved: switch variable $l \to l \gamma(t)$ to eliminate $\partial P/\partial l$ term, then integrate (try it)
- For simplest initial condition $P(E, l, 0) = \rho(E)\delta(l)$ get constitutive equation (2nd equation determines $\Gamma(t)$)

$$\sigma(t) = \gamma(t)G_{\rho}(Z(t,0)) + \int_{0}^{t} \Gamma(t')[\gamma(t) - \gamma(t')]G_{\rho}(Z(t,t')) dt'$$

$$1 = G_{\rho}(Z(t,0)) + \int_{0}^{t} \Gamma(t')G_{\rho}(Z(t,t')) dt'$$

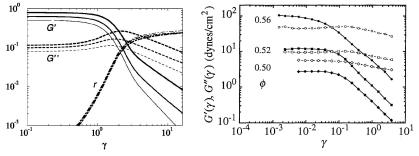
- $G_{\rho}(t) = \int \rho(E) \exp(-te^{-E/x}) \, dE$ survival probability
- $Z(t,t') = \int_{t'}^{t} \exp([\gamma(t'') \gamma(t')]^2/2x)$ effective time, Z(t,t') = t t' for small strains
- Overall interpretation as birth-death process

Example: Large amplitude oscillatory strain



- Close to but above glass transition (x = 1.1, $\omega = 0.01$)
- Increasing strain amplitude gives stronger nonlinearities
- Hysteresis-like loops

Large oscillatory strain: Complex modulus



- G'' first increases with amplitude, becomes larger than G'
- Large strain fluidizes an initially predominantly elastic system
- Compare experiments on colloidal hard spheres (right)
- Quantitative comparison for foam (Rouyer Cohen-Addad Höhler PS Fielding 2008)

SGR predictions: Summary

- Flow curves: Find both Herschel-Bulkley (x < 1) and power-law (1 < x < 2)
- Viscoelastic spectra G', $G'' \sim \omega^{x-1}$ are flat near x = 1
- In glass phase (x < 1) find rheological aging, loss modulus $G'' \sim (\omega t)^{x-1}$ decreases with age t
- Steady shear always interrupts aging, restores stationary state
- Large amplitude G' and G'' show fluidization behaviour similar to experiments
- Stress overshoots in shear startup, linear and nonlinear creep, rejuvenation and overaging (Lequeux, Viasnoff, McKenna, Cloître, Roettler ...)

Limitations of SGR model

- Scalar model with ideal local elasticity up to yield both can be fixed (Cates PS 2004)
- No spatial information: geometry of stress redistribution might be important, also non-affine flow (Barrat talk)
- Length scale of elements: needs to be large enough to allow local strain and stress to be defined, but otherwise unspecified
- Interpretation of effective temperature x? Link to material parameters? Should have own dynamics? (see later)
- What sets fundamental time scale (attempt rate for yielding)?

Outline

- Rheology: A reminder
- 2 Soft glasses: Phenomenology and SGR model
- 3 Intermezzo: Trap models
- 4 SGR predictions and model limitations
- 5 Comparison with simulations: Virtual strain analysis
- 6 Effective temperature dynamics, shear banding

7 Outlook

Simulations to the rescue?

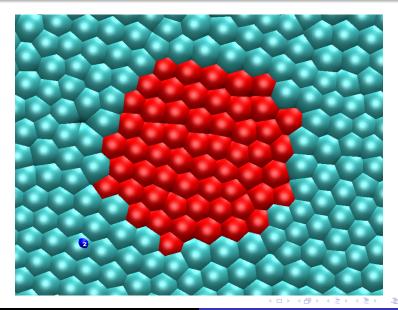
- Can we use simulation data to:
- See how far the SGR model represents physical reality?
- Get better understanding of model parameters?
- Tell us where we should improve the model?
- Need to develop method for explicit coarse-graining of simulation data

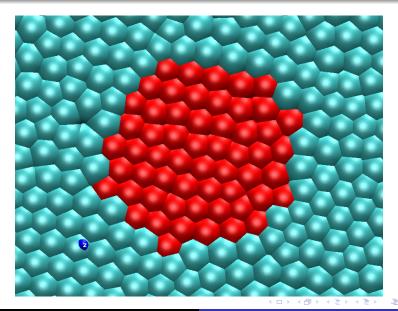
Defining elements

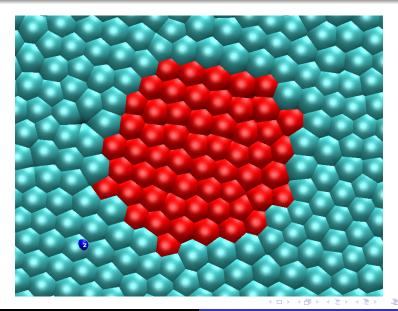
- Focus on d = 2 (d = 3 can be done but more complicated)
- Make elements circular to minimize boundary effects
- Position circle centres on square lattice to cover all of the sample (with some overlap)
- Once defined, element is co-moving with strain: always contains same particles
- Avoids sudden change of element properties when particles leave/enter, but makes sense only up to moderate $\Delta\gamma$
- Measuring average stress in an element is easy but how do we assign strain *l*, yield energy etc for a *given* snapshot?

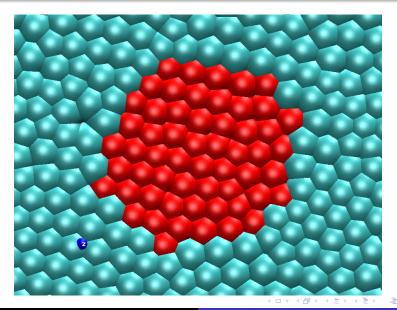
Virtual strain analysis

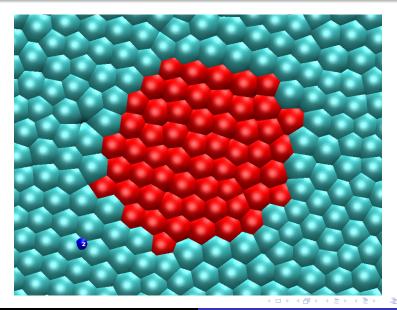
- Deliberately want local yield points etc: interaction between elements is accounted for separately within model
- Cannot "cut" an element out of sample and then strain until yield unrealistic boundary condition
- Idea: Use rest of sample as a frame
- Deform the frame affinely to impose a virtual strain $\tilde{\gamma}$
- Particles inside element relax non-affinely to minimize energy
- Gives energy landscape $\epsilon(\tilde{\gamma})$ of element
- Yield points are determined (for $\tilde{\gamma} > 0$ and < 0) by checking for reversibility for each small $\Delta \tilde{\gamma}$ (adaptive steps)

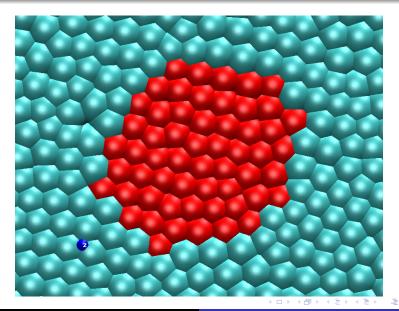


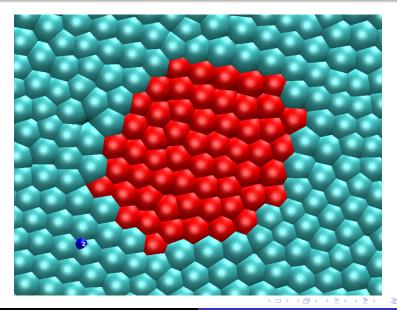


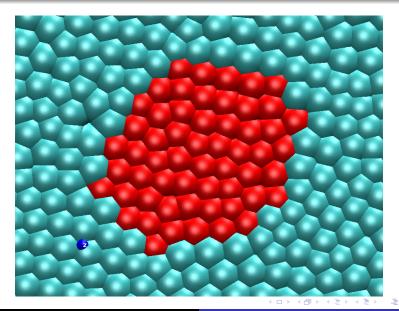


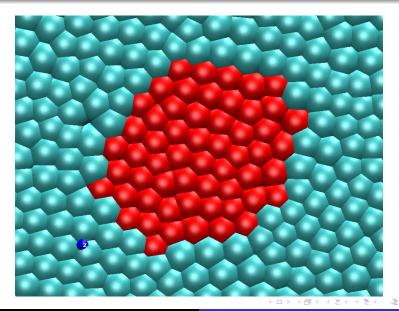




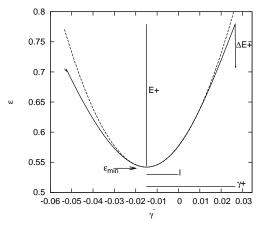








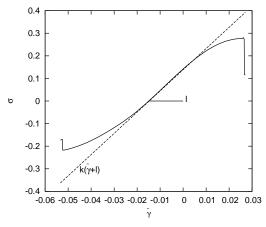
Element energy landscape



Extract: minimum energy ϵ_{\min} , strain away from local minimum $l = -\tilde{\gamma}_{\min}$, yield strains γ_{\pm} , yield barriers E_{\pm}

Local modulus

Quadratic fit of energy near minimum, or linear fit of stress, gives local modulus \boldsymbol{k}



Systems studied

- Polydisperse Lennard-Jones mixtures (Tanguy et al), quenched to low temperatures ($T=0.005\ll T_{\rm g}$)
- Low shear rates $\dot{\gamma} \sim 10^{-3};~N=10^4$ particles at $\rho=0.95$
- Steady shear driven from the walls (created by "freezing" particles in top/bottom 5% some time after quench)
- Check for stationarity & affine shape of velocity profile before taking data
- Each element contains ≈ 40 particles (diameter = 7): large enough to have near-parabolic energy landscape, small enough to avoid multiple local yield events inside one element

□ > < = > <

Simulation demo

2

э

・日・ ・ ヨ・・

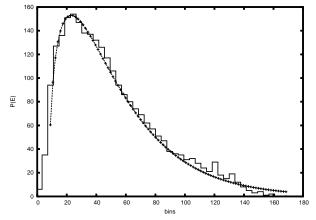
Close-up

(4日) (日) (1)

2

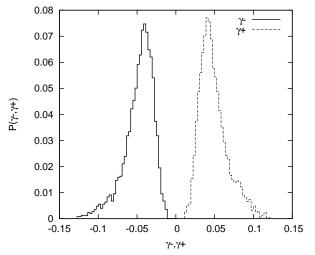
3

Results: Yield energy distribution



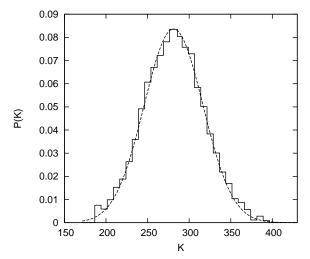
Exponential tail; detailed form can be fitted by SGR model

Yield strain distributions



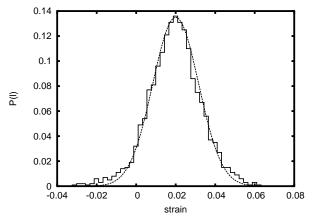
Symmetric as assumed in SGR; gap around 0 or maybe power-law approach (exponent ≈ 4)

Modulus distribution



Clear spread; not constant as assumed in model. But yield strains γ_{\pm} still controlled by E_{\pm} ; no correlation with k

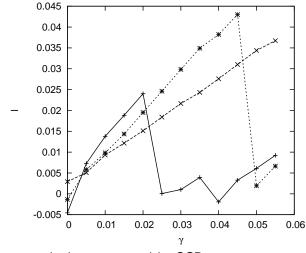
Local strain distribution



Negative l, need to extend SGR to allow frustration: $l \neq 0$ after yield $(\delta(l) \rightarrow \rho(l|E) \propto (1 - kl^2/2E)^b)$

Rheology SGR Traps Predictions Virtual Banding Outlook

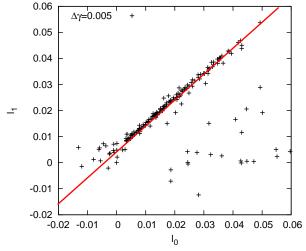
Dynamics: Evolution of local strain with time



Typical sawtooth shape assumed by SGR

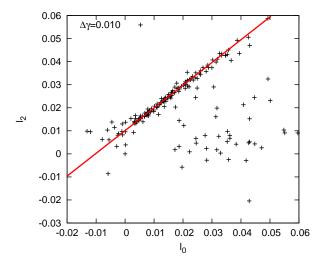
Population picture of *l*-dynamics

Scatter plot of $l(after \Delta \gamma)$ vs l(initial)

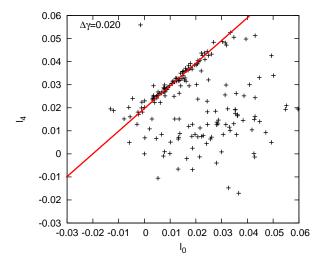


Separation into strain convection and yield events () () () ()

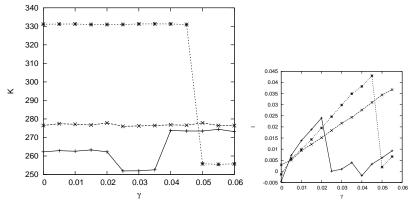
Same for larger $\Delta \gamma$



... and yet larger

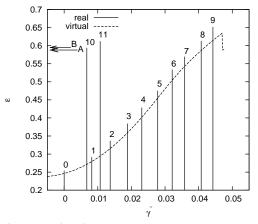


Change in other landscape properties Example of modulus



Stays largely constant between yields as expected; same for yield barriers etc

Comparing real and virtual deformations Primary yield



Curve: virtual energy landscape. Vertical lines: Real ϵ versus $l - l_0$ for uniform steps $\Delta \gamma$ Good match, even for energy drop after yield

Peter Sollich (King's College London) Soft glassy rheology & trap models

Comparing real and virtual deformations (cont) Induced yield



Curve: virtual energy landscape. Vertical lines: Real ϵ versus $l - l_0$ for uniform steps $\Delta \gamma$

Summary for virtual strain analysis

- Virtual strain method for assigning local strains, yield energies
- Generic: can be used on configurations produced by any (low-T) simulation
- Steady state distributions in shear flow seem in line with SGR (detailed fits in progress), though e.g. local modulus ≠ const
- Dynamics of local strain has typical sawtooth shape; local strain rate is of same order as global one but not identical
- Energy landscapes for real and virtual deformations match (but not purely quadratic)
- To do: analysis of induced yield events well modelled by effective temperature?

Outline

- Rheology: A reminder
- 2 Soft glasses: Phenomenology and SGR model
- 3 Intermezzo: Trap models
- 4 SGR predictions and model limitations
- 5 Comparison with simulations: Virtual strain analysis
- 6 Effective temperature dynamics, shear banding

7 Outlook

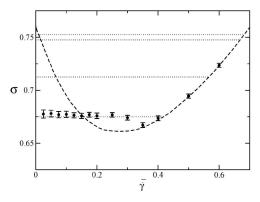
Effective temperature dynamics Fielding Cates PS 2008

- Shouldn't effective temperature x be determined self-consistently by dynamics?
- To allow for potential shear banding, split sample in y (shear gradient)-direction
- Separate SGR model for each y, with x(y)
- Relaxation-diffusion dynamics:

$$\tau_x \dot{x}(y) = -x(y) + x_0 + S(y) + \lambda^2 \frac{\partial^2 x}{\partial y^2}$$

- x is "driven" by energy dissipation rate: $S = a \langle l^2 \exp(-[(E - l^2/2)/x]) \rangle$
- Assume that x equilibrates (locally) quickly: $au_x
 ightarrow 0$

Flow curve $a = 2, x_0 = 0.3$

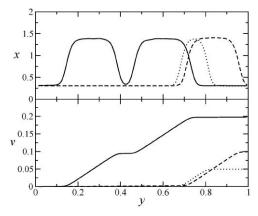


• Steady state:
$$x = x_0 + 2a\sigma(x,\dot{\gamma})\dot{\gamma}$$

• Shear startup with imposed mean $\dot{\gamma}$ across sample: shear banding

A∄ ▶ ∢ ∃=

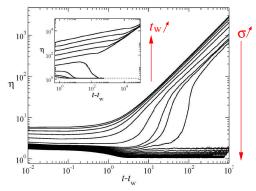
Nature of banded state $a = 2, x_0 = 0.3, \dot{\gamma} = 0.05, 0.1, 0.2$



• "Hot" band: $\dot{\gamma} > 0$, ergodic

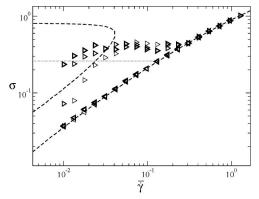
• "Cold" band:
$$\dot{\gamma} = 0$$
, aging

Viscosity bifurcation at imposed stress Coussot, Bonn, ...



- Plot instantaneous viscosity $\eta=\sigma/\dot{\gamma}$
- \bullet Sample only reaches steady flow when σ is large enough
- Depends on age t_w when stress is applied

Variation of driving term for x



- x now driven by yield rate, $S\propto \langle \exp(-[(E-l^2/2)/x])\rangle$
- Hysteresis in shear rate sweep: banding on way up, stay on fluid branch on way down
- Resembles data for multi-arm polymers (Holmes Callaghan Vlassopoulos Roovers 2004)

Outline

- Rheology: A reminder
- 2 Soft glasses: Phenomenology and SGR model
- 3 Intermezzo: Trap models
- 4 SGR predictions and model limitations
- 5 Comparison with simulations: Virtual strain analysis
- 6 Effective temperature dynamics, shear banding

Outlook

Summary & Outlook

- Trap models for aging dynamics in glasses, focus on activation
- SGR model adds strain to this & re-interprets trap depths as yield energies
- Reproduces much (not all) of rheological behaviour of soft glasses
- ... and some cytoskeletal rheology(?)
- Virtual strain method allows detailed comparison with simulations: some encouraging agreement, but also suggests modifications
- Dynamics of *x*: phenomenological models useful, but too much choice?
- To do: linking to other approaches (STZ, Picard et al); coarse-graining from "microscopic" models?

/□ ▶ < 글 ▶ < 글