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Ask me questions before dinner
Though I'd rather stay here. ..
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What's glassy about foam?
_ oy

Peter Sollich (King's College London) Soft glassy rheology & trap models



1. .‘... > ._, ;t_._ -]
I,liiwuhc.?q W and

o~
S
©
2
+—
>
o
0
(g}
>
0
n
R0
o1}
wn
+—
[go}
M

Soft glassy rheology & trap models

Peter Sollich (King's College London)



Complex fluids/soft matter

Foams (shaving foam, mousse au chocolat)
Emulsions (mayonnaise)
Dense colloidal suspensions (yogurt, paint)

Most soft things you can eat (cream cheese, ketchup)

Clays, pastes, surfactant phases ( “onions”)

Other important examples (not discussed here):
@ Polymers (except star polymers = soft colloids)

o Gels
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Rheology

Science of flow and mechanical deformation
Everything flows (Heraclitus mavTa pet, Dali see above)

Important for e.g. industrial processing

Usefulness of materials (“mouth-feel” for foods, spreading of
paint/printing ink)
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Complex fluids vs simple fluids

e Simple fluids (water):
only one lengthscale (atomic/molecular),
beyond this continuum theory (Navier-Stokes)
@ Complex fluids: Hierarchy of scales, e.g. in foam =
air bubbles surrounded by fluid films stabilized by soap:
o Water/soap molecules
o Film thickness, size of channels where films meet
e Bubble diameter
e Often intermediate behaviour between fluid and solid:
Shaving foam flows out of a spray can,
but doesn't drip off face
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Soft glasses

@ Emulsions, dense colloidal suspensions, foams, microgels

@ Structural similarities: made up of squishy “particles”

Oil droplets [ignore coalescence], colloidal particles,
air bubbles [ignore coarsening]

Typical particle scale um, larger for foams, smaller for colloids
Particles have different shapes and sizes (polydisperse)

Particle packing is amorphous (disordered)

Metastable: kT too small to make system ergodic & reach
optimal packing (crystalline, if polydispersity not too strong)

So glassy (repulsive glass) — but soft, can easily be made to flow
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@ Rheology: A reminder

@ Soft glasses: Phenomenology and SGR model

© Intermezzo: Trap models

@ SGR predictions and model limitations

@ Comparison with simulations: Virtual strain analysis

@ Effective temperature dynamics, shear banding

@ Outlook
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Rheology

Outline

© Rheology: A reminder
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Rheology
Shear stress and strain

d F

A

@ Shear strain: v = d/h, shear stress 0 = F'/A (really tensors)
e Elastic solid: o0 = G, elastic (shear) modulus G

@ Newtonian fluid: o = 77y, viscosity 7
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Rheology
Linear rheology & viscoelasticity

@ Small strain increment (step) Ay at¢t =0
causes stress o(t) = G(t)Axy

@ G(t) = stress relaxation function
Constant for solid, spike nd(t) for fluid

@ Most materials are in between: viscoelastic

@ For short ¢, G(t) nearly constant (solid),
but eventually — 0 (fluid)

@ Linear superposition of many small strain steps A~y = YAt:

o(t) :/0 Gt —t)y(t') dt’
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Rheology
Maxwell model

G

DASH POT
(energy dissipation element)

SPRING
(energy storage element)

t

.

T
e Elastic solid and viscous fluid “in series” (spring & damper)
@ Common stress o, elastic strain obeys 0 = Ggel,
viscous strain ¢ = NYyisc
e Total strain rate ¥ = o] + Wise = 0/Go + o/
@ Solve for small strain step (¥(t) = Ay d(t)):

G(t) = Goexp(—t/T), T=1n/Gp

e Note n = [, G(t) dt, generally true if(!) flow with constant
strain rate is a linear perturbation

Peter Sollich (King's College London) Soft glassy rheology & trap models



Rheology

Another Maxwell model
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Rheology
Complex modulus

Experimentally, oscillatory measurements often easier

If v(t) = 70 cos(wt) = vo Re e™?, then

t o
o(t) = Re/ G(t —tiwye™ dt’ = ReG*(w)y(t)
0

G*(w) = iw/ G(t")e ™" dt"  for large t
0

Write complex modulus G*(w) = G'(w) + iG” (w), then

o(t) = G'(w)yo cos(wt) — G" (w)yo sin(wt)

Elastic modulus G’(w): in-phase part of stress

Viscous or loss modulus G”(w): out-of-phase (ahead by 7/2)
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Rheology
Complex modulus of Maxwell model

NG

In o)
1t
e G*(w) = iwx Fourier transform of Gyexp(—t/7) = Go 11“;2”
2.2
w T wT
G'(w) = Gopr——s—s, G"(w) = Go——"s5—
() 01 + w2r2 (w) 01 + w2r2

@ Single relaxation time gives peak in G’ (w) at w = 1/7
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Rheology
Creep
@ Similar setup can be used when imposing stress and
measuring strain

@ Step stress: creep compliance J(t)

y(t) :/O J(t —the(t')dt

Oscillatory stress: y(t) = Re J*(w)o(t)
Consistency with oscillatory strain requires G*(w)J*(w) = 1
Maxwell model: J*(w) = (1 +iwT)/Go, J(t) = 1/Go + t/n
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Rheology
Nonlinear rheology

@ For most complex fluids, steady flow (rate ) is
not a small perturbation, don't get o = 07

Flow curve o(%): stress in steady state

Often shear-thinning: downward curvature

Many other nonlinear perturbations:

o large step stress or strain
e large amplitude oscillatory stress or strain
e startup/cessation of steady shear etc

@ Most general description: constitutive equation

o(t) = some function(al) of strain history [y(¢'),t' =0...1]
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SGR

Outline

© Soft glasses: Phenomenology and SGR model
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SGR

Soft glasses: Linear rheology
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FIG. 2. The frequency dependence of the storage G’ (solid
points) and loss G (open points) moduli of a monodisperse
emulsion with » = 0.53 um for ¢y = 0.80 (diamonds), 0.63
(triangles), and 0.60 (circles). The results for the two larger

@ Complex modulus for dense emulsions (Mason Bibette Weitz 1995)

@ Almost flat G”(w): broad relaxation time spectrum, glassy
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SGR

Colloidal hard sphere glasses
Mason Weitz 1995
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SGR

Onion phase
Panizza et al 1996
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Figure3. Schematic representation of an onion phase. £ is the f(HZ)

characteristic length of monodomains. Each monodomain is

@ Vesicles formed out of lamellar surfactant phase

@ Again nearly flat moduli
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SGR

Microgel particles

Purnomo van den Ende Vanapalli Mugele 2008
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FIG. 1 (color online). G’ (open symbols) and G” (solid sym-
bols) of a 7% w/w suspension at 25 °C plotted versus @ (a) or
wt (b) for t, = 3 (O), 30 (1), 300 (V), and 3000 s (A). Lines
represent the SGR model (x = 0.55, G, = 410 Pa).

e G"(w) flat but with upturn at low frequencies

@ Aging: Results depend on time elapsed since preparation,
typical of glasses
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SGR

Nonlinear rheology: Flow curves

o) 0)

y y

o Flow curves typically well fitted by o (%) — oy ~ AP (0 <p < 1)

@ Herschel-Bulkley if yield stress o, # 0,
unsheared state = “glass”

@ Otherwise power law flow curve,
unsheared state = “fluid” (but = 6/% — oo for ¥ — 0)

@ Shear thinning: o/ decreases with ¥
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SGR

A non-glassy model for foam rheology
Princen 1968

o Ideal 2d foam (identical hexagonal cells), T'= 0
@ Apply shear: initially perfectly reversible response,
stress increases
@ Eventually interfaces rearrange, bubbles “slide”: global yield
@ Process repeats under steady shear
@ We get: yield stress
@ We don't get: broad relaxation time spectrum (Buzza Lu Cates

1995), aging

R

Peter Sollich (King's College London) Soft glassy rheology & trap models




SGR

SGR model

PS Lequeux Hébraud Cates 1997, PS 1998

@ How do we incorporate structural disorder?
@ Divide sample conceptually into mesoscopic elements

@ Each has local shear strain [, which increments with
macroscopic shear

@ Assumes strain rate 4 uniform throughout system, but allows
for variation in local strain and stress (see Barrat & Falk talks)

@ When strain energy %k?lz reaches yield energy F,
element can yield and so reset to [ = 0

@ k = local shear modulus

o If all elements have same E and k, this would essentially give
back the Princen model
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SGR

SGR model

PS Lequeux Hébraud Cates 1997, PS 1998

o New ingredient 1: disorder = every element has its own F

o Initial distribution of E across elements depends on
preparation

@ When an element vyields, it rearranges into new local
equilibrium structure = acquires new £ from some
distribution p(FE) e B/E (assume no memory of previous E)

@ New ingredient 2: Yielding is activated by an effective
temperature x, to model interactions between elements

e x should be of order E, >> kT (negligible)

@ Model implicitly assumes low frequency/slow shear:
yields are assumed instantaneous, no solvent dissipation
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SGR

Sketch

SRS
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SGR

Dynamical equation for SGR

e P(E,l,t): probability of an element having yield energy E
and local strain [ at time ¢

@ Master equation (I'g = attempt rate for yields)

. P

P(El,t) = —"ya— convection of [
— Foe_(E_Wﬂ)/xP elements yield
+T()p(E)I(1) elements reborn after yield

where T'(t) = To(e~(E=F*/2)/z) — jyerage yielding rate
@ Macroscopic stress o(t) = k (I)

@ Given initial condition P(FE,[,0) and strain history (input)
can in principle calculate stress (output)

o We'll rescale E, t, I sothat E =Ty =k = 1;
this means also typical yield strains are 1
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Traps

Outline

© Intermezzo: Trap models
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Traps

Trap model

Bouchaud 1992, also Dean, Monthus . ..

e Without shear (4 = 0), can ignore local strains
(all I — 0 eventually)

e Master equation for P(F,t)
P(E,t) = —e /P 4 T(t)p(E)

where T'(t) = (e~ F/7)
@ Physical (re-)interpretation: “particle hopping” by activation,
in landscape of traps of depth E

@ Landscape has golfcourse shape: all traps hang off same
energy level

@ No geometry: every trap connected to every other
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Traps
Equilibrium & glass transition in the trap model

e Master equation for P(FE,t)
P(E,t) = —e Pl"P 4 T(t)p(E)

e P(E,t) approaches equilibrium Poy(E) o exp(E/x)p(E)
for long ¢ (Boltzmann distribution; F is measured downwards)

@ Get glass transition if p(F) has exponential tail
(possible justification from extreme value statistics)

Reason: for low enough z, Peq(E) cannot be normalized
For p(E) = e~ this transition happens at 2 = 1

For z < 1, system is in glass phase; never equilibrates

Aging: evolution into ever deeper traps
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Aging in the trap model

Easier in terms of lifetimes 7 = exp(F/x)
Then p(7) ~ 77271, Poy(7) ~ p(T)7 ~ 777
Assume initial condition P(7,0) = p(7)

At age t,, particle hasn't hopped if initial 7> t,,;
traps with 7 < t,, have become equilibrated:

77T for <ty
twT P for T >ty

-

Normalization: for > 1, most “mass” for 7 = O(1),
P(7,tw) — const x 77 for large t,

For < 1, in glass phase, most mass for 7 = O(ty)

Then get scaling form P(7,ty) = (1/tw) f(7/tw):
typical relaxation times ~ t,,, simple aging
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Aging in the trap model: Sketch

10' ——— — .

\ a) x=1.3 b) x=0.7
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Traps
Trap model: Interpretations and uses

@ Originally proposed by Bouchaud as model for motion in
phase space (spin glasses)

e Simple(st?) aging mechanism, controlled by
energy barriers and activation

@ Distinct from mean-field spin glasses, aging controlled by
entropy barriers (rare downhill directions), 7" not crucial

@ Connection with real-space dynamics?
Small subsystems ~ independent trap models (Heuer et al)

@ Intriguing fluctuation-dissipation behaviour (see my webpage)
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Predictions

Outline

@ SGR predictions and model limitations
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Predictions

Linear response in the fluid phase
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@ Calculation yields average of Maxwell models:

G*(w) = < L > average is over Peqy(7)

1+iwT
o For large z, get usual power-law dependences for small w
o But near z = 1 get G’ ~ G” ~ w*!: both become flat
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Predictions

Linear response: Aging
Sollich PS Cates 2000

Conceptual issue: with aging, G*(w) — G*(w, t, tw)

G*(w,t,ty) could depend on final time ¢
and start time ¢,, of shear

Luckily, dependence on t,, is weak: G*(w,t)
“Inherits” simple aging 1/w ~ t: G*(w,t) ~ 1 — (iwt)®!

(]
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Predictions
Linear response: Aging
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Predictions

Comparison with experiments on microgel particles
Purnomo van den Ende Vanapalli Mugele 2008
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Predictions
Flow curve

o Calculation: steady state, so set P =0 in master equation,

integrate differential eq" for [; I" from normalization (try it)
@ Three regimes for small 5:

¥ for 2<x: Newtonian
o~ AL for 1<x<2: powerlaw
oy(z) +417% for x<1: Herschel-Bulkley
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Predictions
Relation between flow and aging

0

10

x=1}

10

10°

@ No aging in steady flow
@ Driving by shear restores ergodicity

@ Flow interrupts aging (Kurchan)

Peter Sollich (King's College London) Soft glassy rheology & trap models



Predictions

Yield stress

0 0.2 04 0.6 08 1
X

@ Yield stress increases continuously at glass transition
@ Compare MCT prediction: discontinuous onset of yield stress

@ Physics?
Elastic networks/stress chains vs caging?
Jamming transition vs glass transition?

@ Could e.g. emulsions exhibit both transitions?

Peter Sollich (King's College London) Soft glassy rheology & trap models



Predictions

General nonlinear rheology: Constitutive equation
PS 1998

@ SGR model can be solved: switch variable [ — | — ~(¢) to
eliminate OP/Jl term, then integrate (try it)

e For simplest initial condition P(FE,[,0) = p(E)d(l) get
constitutive equation (2nd equation determines I'(¢))

o(t) = Y(t)G(Z(t,0)) + /0 L)y (t) = v(E)]Gp(Z(t, 1)) dt’
1 = GP(Z(t,O))+/tr(t’)Gp(Z(t,t/))dt’
0

° = [ p(E) exp(—te~P/*) dE survival probability

° Z(t,t’ = ft, exp([y(t") — v(t")]?/2z) effective time,
Z(t,t") =t —t' for small strains

@ Overall interpretation as birth-death process
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Predictions

Example: Large amplitude oscillatory strain

0.6 0.6
04 N @ - 04t
02t 02t
S 00 \ / o) 0.0 L
02 F 02 ¢
04 | L 04t
000 oz o0s 06 08 10 LT 0 2 e

ot/2n Y®

@ Close to but above glass transition (z = 1.1, w = 0.01)
@ Increasing strain amplitude gives stronger nonlinearities

@ Hysteresis-like loops
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Predictions

Large oscillatory strain: Complex modulus

— —_
o (]
— ©

[e]
[=]

G'(y), G"(y) (dynes/cm?)

G" first increases with amplitude, becomes larger than G’
Large strain fluidizes an initially predominantly elastic system
Compare experiments on colloidal hard spheres (right)

Quantitative comparison for foam
(Rouyer Cohen-Addad Héhler PS Fielding 2008)
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Predictions
SGR predictions: Summary

@ Flow curves: Find both Herschel-Bulkley (z < 1) and
power-law (1 < z < 2)

e Viscoelastic spectra G', G” ~ w® ! are flat near z = 1

@ In glass phase (x < 1) find rheological aging,
loss modulus G” ~ (wt)®~! decreases with age ¢
@ Steady shear always interrupts aging,
restores stationary state
o Large amplitude G’ and G” show fluidization behaviour
similar to experiments
@ Stress overshoots in shear startup,
linear and nonlinear creep,
rejuvenation and overaging
(Lequeux, Viasnoff, McKenna, Cloitre, Roettler . ..)
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Predictions
Limitations of SGR model

@ Scalar model with ideal local elasticity up to yield —
both can be fixed (Cates PS 2004)

@ No spatial information: geometry of stress redistribution
might be important, also non-affine flow (Barrat talk)

@ Length scale of elements: needs to be large enough to allow
local strain and stress to be defined, but otherwise unspecified

@ Interpretation of effective temperature x7?
Link to material parameters?
Should have own dynamics? (see later)

e What sets fundamental time scale (attempt rate for yielding)?
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Virtual

Outline

© Comparison with simulations: Virtual strain analysis
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Virtual
Simulations to the rescue?

Can we use simulation data to:

See how far the SGR model represents physical reality?

°
°
o Get better understanding of model parameters?
@ Tell us where we should improve the model?

°

Need to develop method for explicit coarse-graining of
simulation data
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Virtual
Defining elements

@ Focus on d = 2 (d = 3 can be done but more complicated)
o Make elements circular to minimize boundary effects

@ Position circle centres on square lattice to cover all of the
sample (with some overlap)

@ Once defined, element is co-moving with strain:
always contains same particles

@ Avoids sudden change of element properties when particles
leave/enter, but makes sense only up to moderate Ay

@ Measuring average stress in an element is easy but how do we
assign strain [, yield energy etc for a given snapshot?
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Virtual
Virtual strain analysis

Deliberately want local yield points etc: interaction between
elements is accounted for separately within model

Cannot “cut” an element out of sample and then strain until
yield — unrealistic boundary condition

Idea: Use rest of sample as a frame

Deform the frame affinely to impose a virtual strain ¥
Particles inside element relax non-affinely to minimize energy
Gives energy landscape €(7) of element

Yield points are determined (for 4 > 0 and < 0) by checking
for reversibility for each small A% (adaptive steps)

Peter Sollich (King's College London) Soft glassy rheology & trap models



Virtual

‘ Example: Virtual strain sequence 1
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Virtual

‘ Example: Virtual strain sequence 2
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Virtual

‘ Example: Virtual strain sequence 3
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Virtual

‘ Example: Virtual strain sequence 4
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Virtual

‘ Example: Virtual strain sequence 5
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Virtual

‘ Example: Virtual strain sequence 6
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Virtual

‘ Example: Virtual strain sequence 7
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Virtual

‘ Example: Virtual strain sequence 8
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Virtual

‘ Example: Virtual strain sequence 9
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Virtual

Element energy landscape
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Extract: minimum energy €nmin, strain away from local minimum
I = —Amin, Yyield strains ~, yield barriers E1
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Virtual

Local modulus

Quaderatic fit of energy near minimum, or linear fit of stress,

gives local modulus &
04 T T T T T T T T s
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Virtual
Systems studied

o Polydisperse Lennard-Jones mixtures (Tanguy et al), quenched
to low temperatures (7" = 0.005 < Ty)

o Low shear rates 4 ~ 1073; N = 10? particles at p = 0.95

@ Steady shear driven from the walls (created by “freezing”
particles in top/bottom 5% some time after quench)

@ Check for stationarity & affine shape of velocity profile
before taking data

@ Each element contains ~ 40 particles (diameter = 7):
large enough to have near-parabolic energy landscape,
small enough to avoid multiple local yield events inside one
element
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Virtual

Simulation demo
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Virtual

Close-up
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Virtual

Results: Yield energy distribution

P(E)

M M M
0 20 40 60 80 100 120 140 160 180
bins

Exponential tail; detailed form can be fitted by SGR model
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Virtual

Yield strain distributions
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V-V
Symmetric as assumed in SGR; gap around 0 or maybe power-law
approach (exponent = 4)
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Virtual

Modulus distribution

0.09 T T T T T
0.08
0.07
0.06

0.05

P(K)

0.04

0.03

0.02

0.01

Clear spread; not constant as assumed in model.
But yield strains . still controlled by E4; no correlation with k
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Virtual
Local strain distribution

0.14

01F

0.08 f

P()

0.06 f

0.04 f

0.02 f

-0.04 -0.02 0 0.02 0.04 0.06 0.08
strain

Negative [, need to extend SGR to allow frustration: [ # 0 after
yield (6(1) — p(I|E) o (1 — kI?/2E)®)
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Virtual

Dynamics: Evolution of local strain with time

0 0.01 0.02 0.03 0.04 0.05 0.06
Y

Typical sawtooth shape assumed by SGR
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Virtual

Population picture of [-dynamics

Scatter plot of [(after A~y) vs [(initial)
0.06

T T T T T T
Ay=0.005  +
0.05
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Iy
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0.01

0
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lo

Separation into strain convection and yield events
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Virtual

Same for larger A~
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Virtual

...and yet larger

006 T T T T T T T
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Virtual

Change in other landscape properties

Example of modulus

340

320 ,
310 | ; .

: 0.045
300 - H 1 0.04

0.035

290 - 1 003

280 | i 0025
' - 0.02

0015
001
0005 | K

1 ! 0L/
0 0.01 0.02 0.03 0.04 0.05 0.06 -0.005 5
Y v

Stays largely constant between yields as expected;
same for yield barriers etc
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Virtual

Comparing real and virtual deformations
Primary yield

0.7 . . : . . .
real
0.65 | virtual ------- |

06 =B, 10 4 I
055 | 6, g
05 s 1 _
w 045 4, 4 i
04t !

N
1

0.35 |

<~ N
.
1

03 117 g

o 1
0.25 _-___.I——' [ .
0.2 I L I 1 I

0 0.01 0.02 0.03 0.04 0.05

Curve: virtual energy landscape.
Vertical lines: Real € versus [ — [y for uniform steps A~y
Good match, even for energy drop after yield
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Virtual

Comparing real and virtual deformations (cont)

Induced yield
0.85 T T T T T T
_real
0s | virtual ------- ) E |
0.75 | o/ i1
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Curve: virtual energy landscape.
Vertical lines: Real € versus [ — [y for uniform steps A~y
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Virtual
Summary for virtual strain analysis

@ Virtual strain method for assigning local strains, yield energies

@ Generic: can be used on configurations produced by any
(low-T") simulation

@ Steady state distributions in shear flow seem in line with SGR
(detailed fits in progress), though e.g. local modulus # const

Dynamics of local strain has typical sawtooth shape; local
strain rate is of same order as global one but not identical

Energy landscapes for real and virtual deformations match
(but not purely quadratic)

@ To do: analysis of induced yield events — well modelled by
effective temperature?
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Banding

Outline

@ Effective temperature dynamics, shear banding
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Banding

Effective temperature dynamics
Fielding Cates PS 2008

@ Shouldn't effective temperature x be determined
self-consistently by dynamics?

To allow for potential shear banding, split sample
in y (shear gradient)-direction

Separate SGR model for each y, with z(y)

Relaxation-diffusion dynamics:

i

mai(y) = —a(y) + 20+ S(y) + X5 5

@ x is “driven” by energy dissipation rate:
S = a{l® exp(~=[(E - 1?/2)/2]))
Assume that x equilibrates (locally) quickly: 7, — 0
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Banding

Flow curve

a=2, 20=0.3

N
Y
_..}:,1.1.1.;3;\.; ..... 1....1..,.,_1,_,__’_!/

0.651- -

e Steady state: x = x¢ + 2a0(z, %)Y

@ Shear startup with imposed mean  across sample:
shear banding
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Banding

Nature of banded state
a=2, zo=0.3, 4 =0.05,0.1,0.2

O bt
0.2
015+ e
v
0.1F
0.05-
U- 1 2] i |
0 0.2 0.4 0.6

@ “Hot" band: 4 > 0, ergodic
e "“Cold” band: 4 =0, aging
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Banding

Viscosity bifurcation at imposed stress

Coussot, Bonn, ...

@ Plot instantaneous viscosity n = o /%
@ Sample only reaches steady flow when o is large enough

@ Depends on age t,, when stress is applied
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Banding

Variation of driving term for
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@ x now driven by yield rate, S o {exp(—[(E —1?/2)/z]))
@ Hysteresis in shear rate sweep: banding on way up,
stay on fluid branch on way down
@ Resembles data for multi-arm polymers (Holmes Callaghan
Vlassopoulos Roovers 2004)

Peter Sollich (King's College London) Soft glassy rheology & trap models



Outlook

Outline

@ Outlook
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Outlook
Summary & Outlook

@ Trap models for aging dynamics in glasses, focus on activation

@ SGR model adds strain to this & re-interprets trap depths as
yield energies

@ Reproduces much (not all) of rheological behaviour of soft
glasses

@ ...and some cytoskeletal rheology(?)

@ Virtual strain method allows detailed comparison with
simulations: some encouraging agreement, but also suggests
modifications

@ Dynamics of x: phenomenological models useful, but too
much choice?

e To do: linking to other approaches (STZ, Picard et al);
coarse-graining from “microscopic” models?
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