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Abstract

Inspired by a continuously increasing interest in modeling and framing complex systems in a thermody-
namic rationale, in this paper we continue our investigation in adapting well known techniques (originally
stemmed in fields of physics and mathematics far from the present) for solving for the free energy of mean
field spin models in a statistical mechanics scenario.

Focusing on the test cases of bipartite spin systems embedded with all the possible interactions (self and
reciprocal), we show that both the fully interacting bipartite ferromagnet as well as the spin glass counterpart,
at least at the replica symmetric level, can be solved via the fundamental theorem of calculus, trough an
analogy with the Hamilton-Jacobi theory and lastly with a mapping to a Fourier diffusion problem. All
these technologies are shown symmetrically for ferromagnets and spin-glasses in full details and contribute
as powerful tools in the investigation of complex systems.

1 Introduction
In the last years, equilibrium statistical mechanics has been successfully extended beyond the conventional area
of the physics of matter, for instance in quantitative sociology (see e.g. [13, 25, 20, 21]) or theoretical biology
(see e.g. [38, 3, 37, 4]). However, these (as well as many others, see e.g. [16, 23]) new research fields continuously
require more refined mathematical methods and models in order to give an always more relevant quantitative
description and understanding of the phenomena they aim to tackle.
Among the several novelty these fields of research required, there has been a microscopic description of dynamical
systems where two species compete or collaborate, for instance a’ la Lotka-Volterra: restricting to equilibrium
properties, this need led to a renewal formulation of bipartite spin systems [22], beyond their original introduction
within the more standard world of physics of matter [32], which allows to study the emergent collective properties
of two interactive large groups of variables. For instance, in quantitative sociology the latter may capture
essential features of migrant’s integration inside a host community [14] or the dialogue between two different
ensembles of closely interacting cells, as for instance B and T cells within the immune system [1].
In this paper we do not deal with comparing modeling to real data, instead we continue our investigation
consisting in obtaining new statistical mechanics techniques all based on adapting existing technologies originally
developed to work in field far away from the actual focus, such to make them able to solve for the free energy
of suitably defined mean field spin Hamiltonians. We will mainly focus on sum rules originated from a mapping
of the statistical mechanics problem with the fundamental theorem of calculus as firstly shown in [30] and then
extended in [9], with the Hamilton-Jacobi framework, firstly developed in [28] and then extended in [9][12], and
with the Fourier conduction investigated in [26][7], which is a side effect of the mechanical analogy previously
introduced.
Dealing with the subjects and not only with the methodologies, the present work constitutes an extension mainly
of [6], where bipartite mean field model have been carefully inspected from a (standard) statistical mechanics
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perspective and [7] where the techniques we are going to use have been tested on single-party models: the two
routes of investigation are here merged together in a unified and stronger theory.
The paper is divided into two symmetric parts: In the first one, a bipartite ferromagnetic model, which not
only considers the interaction among spins of different parties but also between the ones of the same group, is
studied through three different interpolation approaches, respectively the fundamental theorem of calculus, the
Hamilton-Jacobi scheme and the Fourier transform. In the second one, the same procedures are applied to the
disordered (glassy) counterpart of the first model. Unfortunately, as a Parisi-like theory [36] for these models is
still under construction, and also because it is usually sacrificed in many practical applications involving models
beyond the Sherrington-Kirkpatrick paradigm, the thermodynamics of these systems is studied at the replica
symmetric level.

2 Ferromagnetic case

2.1 The Model
The spin system we study is an extension of the one analyzed in [6]. There, two dichotomic parties of variables,
{σi}i=1,...,Nσ and {τi}i=1,...,Nτ , which were coupled through a ferromagnetic interaction, were considered: here
we take into account also the ferromagnetic interaction between spins of the same group. All this results in a
Hamiltonian made up of the following contributions

HN (σ, τ ,β) = − 1

N
βστ

Nσ∑
i=1

Nτ∑
j=1

σiτj −
1

2N
βσ

Nσ∑
i,j

σiσj −
1

2N
βτ

Nτ∑
i,j

τiτj , (1)

where σi, τi ∈ {−1; 1} are the two families of dichotomic spin variables; βσ, βτ and βστ are the strength of the
interactions weighting the intensity of the three different contributions to the Hamiltonian; Nσ and Nτ are the
number of spins for each party with N = Nσ + Nτ . Note that equation (1) defines a mean-field model, where
each couple of spins interact in a ferromagnetic way (all the couplings are positive), and the normalization 1/N
ensure the linear extensivity of the thermodynamical observables (e.g. energy, entropy, etc.) with respect to
the size of the system. Introducing α = Nσ/N and thus (1− α) = Nτ/N and denoting with O(σ, τ ) a generic
observable of the system, the definitions of the statistical mechanic and thermodynamic quantities are given
straightforwardly:

Partition function ZN (β, α) :=
∑
σ,τ e

−βHN (σ,τ,β,α),

Boltzmann average 〈O (σ, τ )〉 := Z−1
N (β, α)

∑
σ,τ O (σ, τ ) e−βHN (σ,τ,β,α),

Magnetization of the σ party mσ(σ) := 1
Nσ

∑Nσ
i=1 σi,

Magnetization of the τ party mτ (τ ) := 1
Nτ

∑Nτ
i=1 τi,

Pressure (free energy) A(β, α) = limN→∞AN (β, α) := 1
N lnZN (β, α) = −βfN (β),

where fN (β) is the free energy.
In the following, for the sake of simplicity and without loss of generality, we will put β = 1: we can restore the
dependence by β simply rescaling the couplings βx → ββx, with x = σ, τ, στ . In the present paper we want
to describe three different techniques that can be used to solve the model and in particular to compute the
thermodynamic limit of the intensive pressure as to characterize the thermodynamic states, i.e. the averages
(and in general the moments) of the order parameters. Each one of the three routes approaches the problem
from a different perspective but all of these can be thought as proofs of the following
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Theorem 1. The thermodynamic limit of the intensive pressure of the full interacting ferromagnetic bipartite
model defined in (1) reads as

A(β, α) = ln 2 + α ln cosh (βσαm̄σ + βστ (1− α) m̄τ ) + (1− α) ln cosh (βσταm̄σ + βτ (1− α) m̄τ ) + (2)

−
[
βστα (1− α) m̄σm̄τ +

1

2
βσα

2m̄2
σ +

1

2
βτ (1− α)

2
m̄2
τ

]
,

where the two quantities m̄σ and m̄τ are the solution of the following system of self-consistent equations{
m̄σ = tanh (βσαm̄σ + βστ (1− α) m̄τ ) ,

m̄τ = tanh (βσταm̄σ + βτ (1− α) m̄τ ) .
(3)

Remark 1. Equations (3) can be obtained by extremizing the free energy expressed in Theorem 1 with respect to
the trial parameters m̄σ and m̄τ . We stress that where βσβτ ≥ β2

στ the optimal parameters impose a maximum
for the pressure landscape while in the opposite region it is a saddle point only. On the critical surface βσβτ = β2

στ

the pressure has a flat direction and the model can be described through a single order parameter that is a linear
combination of the two magnetizations, i.e. ε̄ =

√
βσαm̄σ +

√
βτ (1− α) m̄τ and

A(β, α) = ln 2 + α ln cosh(
√
βσ ε̄) + (1− α) ln cosh(

√
βτ ε̄)−

ε̄2

2
(4)

with ε̄ satisfying
ε̄ =

√
βσα tanh(

√
βσ ε̄) +

√
βτ (1− α) tanh(

√
βτ ε̄). (5)

It is worth noticing that in the limit of βστ = 0 the two parties are non interacting and a convex linear
combination of two standard Curie-Weiss pressure at suitable temperatures is obtained, while, for βσ = βτ = 0,
the results developed in [6] for a bipartite system without monopartite interactions are recovered.

2.2 First approach: Sum rule
The method that in this section we adapt to fully interacting bipartite ferromagnets has been successfully
applied in [27, 10] for a huge class of single disordered system or systems in reciprocal interactions but without
self-contributions. Here we show how it works in the larger case of complete topological interactions, starting
with simpler case of the ferromagnetic couplings highlighting the perspective we want to follow. In the second
half of the manuscript we will apply it to the disordered counterpart, which will require some more mathematical
efforts. In a quick introductional summary, the technique consists of three steps:

• Through the introduction of an interpolating parameter t ∈ [0, 1], a new trial Hamiltonian is defined as
the sum of two pieces, to which it reduces in the limit t→ 1 and t→ 0: the former is the original model,
which has to be solved, and the latter is spin system with a simpler one-body interaction with an external
effective field that mirrors the real microscopic interactions in a pure mean field fashion, hence

H(t) = (t)Horiginal + (1− t)Hone-body.

From the interpolating Hamiltonian, the definitions of interpolating partition function ZN (t) and pressure
AN (t) naturally follow simply shifting exp(−βH)→ exp(−βH(t)).

• Once the interpolating structure is defined, an interpolating procedure is needed: this role is played by
the Fundamental Theorem of Calculus. The key point is that the pressure of the original model can be
written as

AN = AN (1) = AN (0) +

∫ 1

0

∂AN
∂t

dt.

In this way the problem is split into the calculation of two terms: AN (0) and
∫ 1

0
∂AN (t)
∂t dt
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Figure 1: Schematic representation of the morphism we perform through interpolation in the sum rule (first
technique). The real system is the one on the right, which is obtained whenever t = 1 is set, while on the
left the system at t = 0 is shown. Note that at t = 0 sites are no longer communicating, and their reciprocal
interactions are replaced by effective local fields, which are represented as colored surrounding spheres (different
colors represent different fields). In the middle an intermediate situation with a generic t is shown for the sake
of completeness.

• AN (0) can be easily calculated because of the factorizability property of a one-body interaction. For what
concerns ∂AN (t)

∂t , it can be written as the sum of a term Ā independent by t and a rest R(t) proportional
to the fluctuations of an appropriately chosen order parameter, in such a way that

AN =
(
AN (0) + Ā

)
+

∫ 1

0

R(t)dt

where R(t) is the rest including all the fluctuations which one would like to delete or to reduce as much
as possible, using the self-averaging property of the order parameters, when it occurs.

In the concrete case of the ferromagnetic model introduced in the previous section (eq.(1)), we define the
interpolating Hamiltonian as

HN (t) = −t

 1

N
βστ

Nσ∑
i=1

Nτ∑
j=1

σiτj +
1

2N
βσ

Nσ∑
i,j

σiσj +
1

2N
βτ

Nτ∑
i,j

τiτj

− (1− t)

[
Cσ

Nσ∑
i=1

σi + Cτ

Nτ∑
i=1

τi

]
, (6)

where Cσ and Cτ are constants that have to be determined a posteriori. At t = 0 the intensive pressure can be
easily be computed as

AN (0) =
1

N
lnZN (0) =

1

N
ln

[∑
σ,τ

e−HN (0)

]
(7)

=
1

N
ln

[(
Nσ∏
i=1

∑
σi

eCσσi

)(
Nτ∏
i=1

∑
τi

eCττi

)]
= ln 2 + α ln cosh (Cσ) + (1− α) ln cosh (Cτ )

Then, the derivative of the pressure with respect to the interpolating parameter is performed as

∂AN (t)

∂t
=

1

N

∂

∂t
[lnZN (t)] =

1

N

1

ZN (t)

∑
σ,τ

∂

∂t
e−HN (t)

= βστα (1− α) 〈mσmτ 〉t +
βσα

2

2

〈
m2
σ

〉
t

+
βτ (1− α)

2

2

〈
m2
τ

〉
t
− Cσα 〈mσ〉t − Cτ (1− α) 〈mτ 〉t(8)
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Now the last expression has to be written in terms of the fluctuations of the order parameters. Defining a, b
and c as free coefficients, the generic form of the fluctuations of the order parameters is

a 〈(mσ − m̄σ) (mτ − m̄τ )〉t + b
〈

(mσ − m̄σ)
2
〉
t

+ c
〈

(mτ − m̄τ )
2
〉
t

= (9)

= a 〈mσmτ 〉t + b
〈
m2
σ

〉
t

+ c
〈
m2
τ

〉
t

+ (−am̄τ − 2bm̄σ) 〈mσ〉t + (−am̄σ − 2cm̄τ ) 〈mτ 〉t +
[
am̄σm̄τ + bm̄2

σ + cm̄2
τ

]
.

Hence, we can identify each coefficient of the equation (9) with the ones of the specific expression (8), in such
a way that we can fix the coefficients Cσ and Cτ as

Cσ = αβσm̄σ + βστ (1− α) m̄τ ; Cτ = βσταm̄σ + (1− α)βτm̄τ .

Using equations (7) and (8) we can then write down the following sum rule

AN (β, α) = ln 2 + α ln cosh (βσαm̄σ + βστ (1− α) m̄τ ) + (1− α) ln cosh (βσταm̄σ + βτ (1− α) m̄τ ) (10)

−
[
βστα (1− α) m̄σm̄τ +

1

2
βσα

2m̄2
σ +

1

2
βτ (1− α)

2
m̄2
τ

]
+RN (t)

where

RN (t) =

∫ 1

0

dt
[
a 〈(mσ − m̄σ) (mτ − m̄τ )〉t + b

〈
(mσ − m̄σ)

2
〉
t

+ c
〈

(mτ − m̄τ )
2
〉
t

]
. (11)

Since in the ferromagnetic models the magnetizations are self-averaging in the thermodynamic limit, we can
argue that, for a particular choice of the parameters m̄σ and m̄τ (that is by extremizing the pressure with
respect to them) we can neglect the rest in (10), namely

lim
N→∞

RN (t) = 0,

and in the same limit AN → A (where A represents the pressure evaluated for N → ∞), that completes the
proof of Theorem 1. Note that, by deriving equation (10) with respect to m̄σ and m̄τ we get{

∂A
∂m̄σ

= βσα
2 (〈σi〉t=0 − m̄σ) + βστα (1− α) (〈τi〉t=0 − m̄τ ) = 0,

∂A
∂m̄τ

= βστα (1− α) (〈σi〉t=0 − m̄σ) + βτ (1− α)
2

(〈τi〉t=0 − m̄τ ) = 0,

from which we can argue that, as soon as βσβτ 6= β2
στ , the optimal order parameters satisfy

m̄σ = 〈σi〉t=0

m̄τ = 〈τi〉t=0 , (12)

i.e. the magnetizations of the interpolating system at t = 0 are the same of the original system’s ones. From
the equations (12) we can see that, on the critical surface βσβτ = β2

στ , we have just one single degenerate
self consistent equation, that is eq.(5) for an order parameter ε(σ, τ ) =

√
βσαmσ(σ, τ ) +

√
βτ (1− α)mτ (σ, τ )

which is a linear combination of the two magnetizations. In this region of the phase space ε(σ, τ ) is self averaging
but the two magnetizations can fluctuate. This phenomenon is very clear for example in the special case in
which βσ = βτ = βστ = β, where we cannot distinguish any longer between the two parties: the system is a
single Curie Wiess model, of size N , characterized by a single order parameter that is the global magnetization
M(σ, τ ) = αmσ(σ) + (1− α)mτ (τ ) = β−1/2ε(σ, τ ).

2.3 Second approach: The Hamilton-Jacobi framework
Besides the fundamental theorem of calculus, another interpolation method, developed in [28], can be used.
The latter is based on a mechanistic interpretation of the statistical mechanic and thermodynamic quantities
defined at the beginning of this section.
The main idea is the following: the problem of obtaining an explicit expression for the pressure of the model
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(1) in the thermodynamic limit and in terms of its order and tunable parameters, is translated in solving an
Hamilton-Jacobi equation, where the pressure plays as the action, with suitable boundary conditions. For this
purpose, with the freedom of thinking at the interpolating parameters t ∈ R+ and x ∈ R as fictitious time and
space respectively, we first define an interpolating Hamiltonian as

HN (t, x) = − t

[
Nταβστmσmτ +

Nσ
2
αβσm

2
σ +

Nτ
2

(1− α)βτm
2
τ

]
(13)

− (1− t)
[
Nσ
2
β′σm

2
σ +

Nτ
2
β′τm

2
τ

]
− xNDN (σ, τ), (14)

where, introducing a free parameter a ∈ (0,∞) (whose practical convenience will be evident later), we defined

β′σ = α
[
a2βστ + βσ

]
; β′τ = (1− α)

[
a−2βστ + βτ

]
,

and the order parameter D(σ, τ) (that is just a linear combination of the magnetizations)

D(σ, τ) =
√
βστ

[
αamσ − (1− α) a−1mτ

]
. (15)

Then, from the definition of the interpolating Hamiltonian we introduce, as usual, an interpolating pressure
SN (t, x) = N−1 ln

∑
σ τ e

−HN (t,x), which we named S as it plays the role of an action in the (t, x) space.
Performing the temporal and spatial derivatives of SN (t, x) and denoting with a subscript (t, x) the averages
performed within the extended Boltzmann measure weighted by HN (t, x)1, we get

∂SN (t, x)

∂t
=− 1

2

〈
D2
〉

(t,x)

∂SN (t, x)

∂x
= 〈D〉(t,x)

∂2SN (t, x)

∂x2
=N

(〈
D2
〉

(t,x)
− 〈D〉2(t,x)

)
,

thus, directly by construction, we can write the following Hamilton-Jacobi equation for SN (t, x):

∂tSN (t, x) +
1

2
(∂xSN (t, x))2 + VN (t, x) = 0, (16)

where the potential VN (t, x) is defined as

VN (t, x) = −1

2

(〈
D2
〉

(t,x)
− 〈D〉2(t,x)

)
=

1

2N

∂2SN (t, x)

∂x2
. (17)

Because of the self-averaging of the order parameters2, the potential becomes negligible when the size of the
system grows to infinity, hence S(t, x) satisfies, in the thermodynamic limit, a free Hamilton-Jacobi equation.
We can easily solve it by noting that the velocity field D(t, x) = ∂xS(t, x) = 〈D〉(t,x) is constant along the
trajectories x = x0 +D(t, x)t, such that D(t, x) can be determined from the relation

D(t, x) = D(0, x0) = ∂xS(0, x)|x = x0(t, x) (18)

that plays as a self consistent equation for D.
The general expression for the action S(t, x) can be obtained as its value evaluated in a point S(0, x0) (the
Cauchy condition) plus the integral of the Lagrangian L(t, x) over time. Note that here, as the trajectories of
such a fictitious motion are straight lines, or alternatively because the potential is zero, the Lagrangian reads
off simply as L(t, x) = 〈D〉2t,x/2, hence overall we can write

S (t, x) = S (t = 0, x = x0) +

∫ t

0

L (t′, x) dt′ = S (0, x0) +
t

2
〈D2〉(t,x). (19)

1Note that this extended average reduces to the canonical one whenever measured at t = 1 and x = 0.
2Alternatively, instead of assuming self-averaging for the vector 〈D〉 in the thermodynamic limit (〈D〉 = limN→∞〈DN 〉), it is

possible to obtain it simply by noticing the N−1 pre-factor at the r.h.s. of equation (17), multiplying a bounded function.
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Note also that the Cauchy starting point implicitly allows for factorization over the sites σ, τ as at t = 0 the
(potentially tricky) two-body interactions disappear.
All the quantities we need can then be derived simply by computing the interpolating pressure at t = 0, which
is

SN (0, x) =
1

N
ln
∑
σ,τ

e(β
′
σ
Nσ
2 m2

σ+β′τ
Nτ
2 m2

τ)e(x
√
βστ)N(αamσ−((1−α)a−1)mτ) (20)

that is the pressure of two independent Curie-Wiess model with external fields h, i.e.

S (0, x) = αACW
(
β′σ, xa

√
βστ

)
+ (1− α)ACW

(
β′τ ,−xa−1

√
βστ

)
, (21)

where
ACW (β, h) = log 2 + log cosh(β(m+ h))− β

2
m2. (22)

and m = m(β) is the solution of the self-consistent equation m = tanh(βm). Taking the derivative with respect
to x we get the initial condition for the velocity field

D(0, x) = ∂xS(0, x) =
√
βστ

[
αam(β′σ, xa

√
βσ,τ )− (1− α)a−1m(β′τ ,−xa−1

√
βστ )

]
. (23)

At this point we can explicitely write down the self-consistent equation for the velocity field D(t, x) that has to
be the solution of

D(t, x) = D(0, x0) =
√
βστ

[
αam(β′σ, (x−D(t, x)t)a

√
βσ,τ )− (1− α)a−1m(β′τ ,−(x−D(t, x)t)a−1

√
βστ )

]
.

(24)
Finally, remembering that x0 = x−D(t, x)t, the pressure of the model can be written in terms of D(t, x) as

S(t, x) = S(0, x−D(x, t)t) +
t

2
D2(t, x). (25)

It is easy to check that, whenever evaluated at t = 1 and x = 0 the expression (25) does coincide with the
expression (2) obtained through the first method. In fact, referring to equation (24), we can define

m̄σ(β; a) = m(β′σ,−D(1, 0)a
√
βσ,τ ),

m̄τ (β; a) = m(β′τ , D(1, 0)a−1
√
βστ ). (26)

Since D(β) = D(1, 0) =
√
βστ

[
αam̄σ − (1− αa−1mτ )

]
, m̄σ and m̄τ satisfy the following system of coupled

equations

m̄σ = m(β′σ,−Da
√
βσ,τ ) = tanh(αβσm̄σ + (1− α)βστm̄τ ),

m̄τ = m(β′τ , Da
−1
√
βσ,τ ) = tanh((1− α)βτm̄τ + αβστm̄σ), (27)

that is exactly the system defining the order parameters in the first method and reported in eq. (3). Using this
decomposition for D(β) we can rewrite equation(25) once again obtaining for the pressure the expression (2),
in full agreement with Theorem 1 statements.
Note that, as it should be, since m̄σ(β; a) and m̄τ (β; a) do not depend on a, we get the same expression for the
pressure of the model independently by the choice of a in the interpolating procedure. This degree of freedom
allows us to give a physical interpretation to the quantities m̄σ and m̄τ as magnetizations ”completely inside”
the Hamilton-Jacobi framework. In fact, since

D(β) =
√
βστ

[
αa 〈mσ〉 − (1− α)a−1 〈mτ 〉

]
=
√
βστ

[
αam̄σ − (1− α)a−1m̄τ

]
, (28)

for every choice of the parameter a, we obtain 〈mσ〉 = m̄σ and 〈mτ 〉 = m̄τ .
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Remark 2. We can use fruitfully the freedom in the choice of the free parameter a by imposing that the velocity
is zero when x = 0. In this way S(t, x) = S(0, x0), i.e. the pressure of the model can be written as a convex
linear combination of two non interacting single-party systems at suitable temperatures. We can do that by
imposing √

βστ
[
αam̄σ − (1− α)a−1m̄τ

]
= 0, (29)

i.e. choosing a =
√

(1−α)m̄τ
αm̄σ

. In this way we can write

A(βσ, βτ , βστ ) = αACW (β′σ) + (1− α)ACW (β′τ ). (30)

This result generalizes the decomposition introduced for the first time in [6], concerning the bipartite systems
without self interactions.

2.4 Third approach: The Fourier framework
In line with the precedent remark, in this section we show a strategy easily obtainable revisiting the Hamilton-
Jacobi scheme. In fact, instead of giving the solution of the model through (24) and(25), the (Cole-Hopf
transform of the) function SN (t, x) can be studied in its conjugate Fourier space (t, k) and solved via standard
Green function plus convolution theorem route as summarized in the following adaptation of the Lax Theorem
[34].

Theorem 2. Using S0(x) to quantify the value of the action at t = 0, and a subscript N to denote averages
of observable performed at finite N with its lacking accounting for quantities evaluated in the thermodynamic
limit, then for N →∞ the solution of{

∂tSN (t, x) + 1
2 (∂xSN (t, x))

2
+ 1

2N ∂
2
xSN (t, x) = 0,

SN (0, x) = S0(x),

namely an explicit expression for the action S(t, x), and the associated Burger problem{
∂tDN (t, x) +DN (t, x) ∂xDN (t, x) + 1

2N ∂
2
xDN (t, x) = 0,

DN (0, x) = D0(x),

is given by the Legendre transform of its Cauchy condition on the action, hence

S (t, x) = inf
y

{
(x− y)

2

2t
+ S0 (y)

}
=

(x− ŷ)
2

2t
+ S0 (ŷ) , (31)

with ŷ minimizer and x = ŷ +D0(ŷ)t.

Proof. First we perform the following Cole-Hopf transform on SN (t, x)

ΨN (t, x) := e−NSN (t,x), (32)

that, by definition, satisfies the following heat equation:

∂ΨN (t, x)

∂t
− 1

2N

∂2ΨN (t, x)

∂x2
= 0. (33)

Now, calling its Fourier transform Ψ̂N (t, k), clearly

∂tΨ̂N (t, k) +
k2

2N
Ψ̂N (t, k) = 0, (34)

8



whose solution is given by

Ψ̂N (t, k) = Ψ̂0(k) exp(− k2

2N
t). (35)

Coming back to the original space we get

ΨN (t, x) =

∫
dy Gt(x− y)Ψ0(y) =

√
N

2πt

∫
dy e−N

(x−y)2
2t Ψ0(y)

where Gt(x− y) is the Green propagator. Recalling the definition of ΨN (t, x) we get

SN (t, x) = − 1

N
log ΨN (t, x) = − 1

N
ln

√
N

2πt

∫
dy e

−N
(

(x−y)2
2t +S0(y)

)
(36)

that can be computed in the thermodynamic limit through the saddle-point technique obtaining

S(t, x) = inf
y

{
(x− y)2

2t
+ S0 (y)

}
. (37)

Using the explicit definition of S(t, x), once computed the initial condition (21), we can use Lemma 2 and
recover exactly equation (25) from which all the considerations of the previous section hold.

3 Disordered case: Replica Symmetric Approximation

3.1 The Model
In this second part of the paper we study a fully interacting bipartite spin glass. Namely we investigate the
disordered counterpart of the model (1) where now the coupling may assume both positive and negative values
allowing for frustration. Thus, besides a different normalization of the Hamiltonian in order to ensure the
standard extensive linear growth of the thermodynamical observables with the size of the system, the exchange
interactions now are independently drawn at random from a Gaussian distribution N (0, 1), hence

HN (σ, τ ;J) = − 1√
N
βστ

Nσ∑
i=1

Nτ∑
j=1

Jστij σiτj −
1√
2Nσ

βσ

Nσ∑
i,j

Jσijσiσj −
1√
2Nτ

βτ

Nτ∑
i,j

Jτijτiτj , (38)

The factor 1/
√

2, when present, ensures the contribution of each couple of spins to count just once. Further, as
in the ferromagnetic case, each contribution is weighted with a β-parameter, modulating the relative strength
between interactions of different nature (mono-partite or bipartite) and within each party. Then, one can define
easily the statistical mechanics machinery as before, this time introducing replicas too. Thus, using E to depict
the average over the Gaussian couplings, we have:

Partition function ZN =
∑
{σ,τ} e

−βHN (σ,τ ;J)

Boltzmann average ωN (O;J) = Z−1
N

∑
{σ,τ}Oe−βHN (σ,τ ;J)

Product measure over S replicas Ω = ω1 ⊗ ...⊗ ωs

Quenched state 〈O〉 = E [Ω (O)]

Overlap of the σ party qσaσb = 1
Nσ

∑
i σ

a
i σ

b
i

Overlap of the τ party qτaτb = 1
Nτ

∑
µ τ

a
i τ

b
i

Quenched intensive pressure A (α,β) = limN→∞AN (βσ, βτ , βστ ) = limN→∞
1
NE lnZN (βσ, βτ , βστ ) .

9



As usual the (quenched) free energy f(α, β) is related to the (quenched) pressure A(α, β) via A(α, β) =
−βf(α, β). Note that in the rest of the paper we will set β = 1 without loss of generality as we can re-
store the dependence by β simply rescaling the couplings βx → ββx, with x = σ, τ, στ . As in the first part
of the paper, the expression of the quenched pressure in the replica symmetric approximation is determined
using the three different techniques described before. Nevertheless, the presence of the overlaps instead of the
magnetizations of the spins implies slightly different procedures in the proofs with respect to the ferromagnetic
case. Even so, all the strategies produce the same solution as stated in the following

Theorem 3. The Replica Symmetric Approximation for the intensive pressure of the model defined in (38)
reads as

ARS(α,β) = ln 2

+α

∫
dµ(z) ln cosh

(
z
√

(β2
σ) q̄σσ′ + β2

στ (1− α) q̄ττ ′
)

+ (1− α)

∫
dµ(z) ln cosh

(
z
√

(β2
στα) q̄σσ′ + (β2

τ ) q̄ττ ′
)

+

+
β2
σ

4
α (q̄σσ′ − 1)

2
+
β2
τ

4
(1− α) (q̄ττ ′ − 1)

2
+

1

2
β2
στα (1− α) (1− q̄σσ′) (1− q̄ττ ′) ,

where dµ(z) is a unitary gaussian measure and the order parameters q̄σσ′ and q̄ττ ′ are the solutions of the
following system of self-consistent coupled equationsq̄σσ′ =

∫
dµ(z) tanh2

(
z
√
β2
σ q̄σσ′ + β2

στ (1− α) q̄ττ ′
)
,

q̄ττ ′ =
∫
dµ(z) tanh2

(
z
√
β2
σταq̄σσ′ + β2

τ q̄ττ ′
)
.

(39)

Finally, in the region
βσβτ ≥ β2

στ

√
α(1− α), (40)

the following sum rule holds
A(α,β) ≤ ARS(α,β). (41)

As it will be clear in the next sections, the replica symmetric approximation can be defined assuming that
the fluctuations of the order parameters of the model, i.e.

〈
q2
σσ′

〉
−〈qσσ′〉2 and

〈
q2
ττ ′

〉
−〈qττ ′〉2, can be neglected

in the thermodynamic limit (hence the order parameters are self-averaging quantities). This assumption was
exact in the ferromagnetic model but of course it is no longer true in the low noise region of the phase diagram
for the disordered counterpart [36]: Indeed the well known phenomenon of replica symmetry breaking, clearly
understood for single species [39][40][29][42], occurs also in multi-specie spin-glasses [8], but a Parisi-like theory
in this case is still missing, hence, we will focus only on replica symmetric regimes, which, for practical purposes,
are generally the standard level of description [3, 17].
As in the ferromagnetic case, when βστ = 0 the sum of two independent spin-glass replica symmetric solutions
(namely of the Sherrington-Kirkpatrick (SK) type [36]) is obtained and for βσ = βτ = 0 the same representation
of the free energy as the one shown in [6] for a purely bipartite interaction is founded.
As a last remark before proving Theorem 3, note that the condition (40), as shown in [8], plays a very important
role for a lot of issues including the proof of the existence of the thermodynamic limit and the convexity of
the variational principle regulating the free energy. Finally, exactly as happened in the previous ferromagnetic
counterpart, we will see that, on the critical surface βσβτ = β2

στ

√
α(1− α), a complete description of the model

needs just one single order parameter that is a linear combination of the two overlaps: This phenomenon can
be easily understood when βσ/

√
α = βτ/

√
1− α = βστ , i.e. when all the interactions have the same strength:

we can’t distinguish the two parties and the system reduces just to a single SK spin glass model that can be
described completely through a single order parameter that is the global overlap.

3.2 First approach: Sum rule
In this section we give a first proof of Theorem (3) by interpolating between the original model with nasty
two-body couplings and a system regulated by a suitable one-body Hamiltonian whose spins feel an effective

10



random external field representing -at least on average- their microscopic surrounding. This procedure allows to
obtain, via the Fundamental Theorem of Calculus, a sum rule for the free energy where overlap fluctuations are
embedded in a source term, split from the rest (which, as a consequence, naturally returns the replica symmetric
approximation once neglected).
First of all we define the interpolating Hamiltonian as

HN (t) =−
√
t

 βστ√
N

Nσ∑
i=1

Nτ∑
j=1

Jστij σiτj +
βσ√
2Nσ

Nσ∑
i,j

Jσijσiσj +
βτ√
2Nτ

Nτ∑
i,j

Jτijτiτj

+ (42)

−
√

1− t

[√
Cσ
∑
i

ησi σi +
√
Cτ
∑
τ

ητi τi

]
, (43)

where the {ησi }i=1,...,Nσ and the {ητi }i=1,...,Nτ are two families of independent unitary gaussian random variables,
independent also from the J and Cσ and Cτ are two constants that we have to fix appropriately. Defining
naturally the interpolating partition function ZN (t) and the quenched pressure AN (t) as

ZN (t) =
∑
{σ}

∑
{τ}

e−HN (t) AN (t) =
1

N
E lnZN (t), (44)

we recover the original pressure at t = 1 while, at t = 0 we have a simpler one body problem that factorizes
over the sites and whose pressure can be easily computed and reads as

AN (0) =
1

N
E lnZ (0) =

1

N
E ln

∑
{σ}

∑
{τ}

e−H(0) =

= ln 2 + α

∫
dµ(z) ln cosh

(
z
√
Cσ

)
+ (1− α)

∫
dµ(z) ln cosh

(
z
√
Cτ

)
. (45)

The calculation leading to an explicit expression of ∂tAN (t) is long but straightforward and returns

∂AN (t)

∂t
=−

[
1

2
β2
στα (1− α) 〈qσσ′qττ ′〉+

β2
σ

4
α
〈
q2
σσ′
〉

+
β2
τ

4
(1− α)

〈
q2
ττ ′
〉]

+

[
Cσ
2
α 〈qσσ′〉+

Cτ
2

(1− α) 〈qττ ′〉
]

+

[
−Cσ

2
α− Cτ

2
(1− α) +

β2
τ

4
(1− α) +

β2
σ

4
α+

1

2
β2
στα (1− α)

]
. (46)

Hence, if we choose

Cσ =
(
β2
σ

)
q̄σσ′ + β2

στ (1− α) q̄ττ ′ ; Cτ =
(
β2
στα

)
q̄σσ′ +

(
β2
τ

)
q̄ττ ′ , (47)

we can write down the t-streaming as

∂AN (t)

∂t
= α

β2
σ

4
(1− q̄σσ′)2 + (1− α)

β2
τ

4
(1− q̄ττ ′)2 + α(1− α)

β2
στ

2
(1− q̄σσ′)(1− q̄ττ ′)

−
[
α
β2
σ

4

〈
(qσσ′ − q̄σσ′)2

〉
t

+ (1− α)
β2
τ

4

〈
(qττ ′ − q̄ττ ′)2

〉
t

+ α(1− α)
β2
στ

2
〈(qσσ′ − q̄σσ′)(qττ ′ − q̄ττ ′)〉t

]
.

Using equation (45) and the last expression for the t-streaming of A(t), we can then build the following sum-rule

AN (α,β) = AN (1) = AN (0) +

∫ 1

0

dt
d

dt
AN (t) = ARS(q̄σσ′ , q̄ττ ′)−

∫ 1

0

RN (t), (48)
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where ARS(q̄σσ′ , q̄ττ ′) is the function stated in Theorem 3 for a generic couple of parameters q̄σσ′ and q̄ττ ′ , while
the source of overlap fluctuations reads as the rest

RN (t) = α
β2
σ

4

〈
(qσσ′ − q̄σσ′)2

〉
t

+ (1− α)
β2
τ

4

〈
(qττ ′ − q̄ττ ′)2

〉
t

+ α(1− α)
β2
στ

2
〈(qσσ′ − q̄σσ′)(qττ ′ − q̄ττ ′)〉t . (49)

As soon as βσβτ ≥ β2
στ

√
α(1− α), such a source is positively defined and we can minimize the error we commit

keeping only the replica-symmetric approximation simply by finding the values of the order parameters that
minimize ARS(q̄σσ′ , q̄ττ ′). By extremizing ARS(q̄σσ′ , q̄ττ ′) with respect to q̄σσ′ and q̄σσ′ we find the conditions
(39) that complete the proof of Theorem 3. Note that, in the language of the current interpolating method, the
equations (39) for the order parameters can be written in the following form

q̄σσ′ = 〈qσσ′〉t=0

q̄ττ ′ = 〈qττ ′〉t=0 . (50)

This means that the optimal order parameters represent the mean of the system’s overlap when t = 0. This
shows a sort of stochastic stability [19] in the interpolating procedure and justifies the definition of ARS(α,β)
also in the region βσβτ ≤ β2

στ

√
α(1− α), where we don’t know the sign of the error term. Finally we want

just to point out that, in this interpolating framework, the name "replica symmetric approximation" is justified
by the sum rule (48), but ARS(α,β) is the true pressure of the model only if the error term vanishes in the
thermodynamic limit, i.e. only in the region of the phase space where the overlaps are self-averaging (high
temperature limit [36]).

3.3 Second approach: The Hamilton-Jacobi framework
In this section, as in the ferromagnetic case, we give a proof of Theorem 3 using a mechanical analogy with
an Hamilton-Jacobi problem for a free particle 3. First of all we define a (fictitious) time and space dependent
Hamiltonian

HN (t, x) =−
√
t

 1√
N
βστ

Nσ∑
i=1

Nτ∑
j=1

Jστij σiτj +
1√
2Nσ

βσ

Nσ∑
i,j

Jσijσiσj +
1√
2Nτ

βτ

Nτ∑
i,j

Jτijτiτj

+

−
√

1− t

 √β′σ√
2Nσ

Nσ∑
i,j

Ĵσijσiσj +

√
β′τ√

2Nτ

Nτ∑
i,j

Ĵτijτiτj

+

−
(√

xβστ

)[√
a
∑
i

Jσi σi +
√
a−1

∑
i

Jτi τi

]
,

where
β′σ = β2

σ − a2αβ2
στ ; β′τ = β2

τ − a−2 (1− α)β2
στ ,

a is a positive free parameter and the {J} and {Ĵ} are all families of unitary gaussian random variable inde-
pendent from each other. Then we define naturally an interpolating pressure as

AN (t, x) = −βfN (β) =
1

N
E lnZN (t, x) =

1

N
E ln

∑
σ,τ

e−HN (t,x), (51)

where fN (β) is the standard quenched free energy.
Finally we define an interpolating action SN (t, x) that, this time, is not directly the interpolating pressure as

3Restricting to single-specie spin glasses, the phenomenon of replica symmetry breaking within the Hamilton-Jacobi framework
has been solved and has been reported in [12]. For multi-species spin-glasses a quantitative description of such a phenomenon is
still lacking. A first trial can be found in [8].
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in the first part of the paper. Here, we need to add two constants that will be determined a posteriori. In other
words we define

SN (t, x) = 2AN (t, x) +Xx+ Tt.

Deriving the action with respect to t we get

∂SN (t, x)

∂t
=

2

N
E

[
Z−1
N(t,x)

∑
σ,τ

∂

∂t
e−HN (t,x)

]
+ T

= −1

2

〈[
βστ

(
αaqσσ′ + (1− α) a−1qττ ′

)]2〉
(t,x)

+
1

2
β2
στ (αa+ (1− α)a−1) + T

= −1

2

〈[
βστ

(
αaqσσ′ + (1− α) a−1qττ ′

)]2〉
(t,x)

, (52)

where we have chosen T = − 1
2β

2
στ (αa + (1 − α)a−1) in order to have a square product in the last expression.

For the derivative with respect to the space variable we have

∂SN (t, x)

∂x
=

2

N
E

 1

ZN (t, x)

∑
{σ}

∑
{τ}

∂

∂x
e−HN (t,x)

+X

= −
〈
βστ

(
αaqσσ′ + (1− α) a−1qττ ′

)〉
(t,x)

+ βστ
(
aα+ a−1 (1− α)

)
+X

= −
〈
βστ

(
αaqσσ′ + (1− α) a−1qττ ′

)〉
(t,x)

(53)

with the choice of X = −βστ
(
aα+ a−1 (1− α)

)
. If we call, as in the ferromagnetic case, the velocity field

DN (t, x) = ∂xSN (t, x) = −βστ 〈DN (σ, τ ; a)〉(t,x) , (54)

where we defined the observable DN (σ, τ ; a) = αaqσσ′(σ) + (1− α) a−1qττ ′(τ ) that is a linear combination of
the two overlaps, we can easily write down an Hamilton-Jacobi equation for SN (t, x) as

∂tSN (t, x) +
1

2
(∂xSN (t, x))2 + VN (t, x) = 0, (55)

VN (t, x) = −1

2
β2
στ

(〈
D2
N

〉
(t,x)
− 〈DN 〉2(t,x)

)
= 0. (56)

In contrast with the ferromagnetic case, where the potential evidently vanished in the thermodynamic limit, in
the disordered case the potential

〈
D2
N

〉
(t,x)
−〈DN 〉2(t,x), proportional to the fluctuations of the order parameters,

is not in general negligible, neither in the thermodynamic limit [36][28]. Still, if we are looking for a replica-
symmetric approximation of the real (full-RSB) solution, we can impose limN→∞ VN (t, x) = 0 and try to solve
a free Hamilton-Jacobi equation for S(t, x). For this purpose we need to compute first the initial condition for
the action4, that is

SN (0, x) =
2

N
E lnZN (0, x) +Xx =

=
2

N
E ln

∑
σ

e

√
β′σ
2Nσ

∑Nσ
i,j Ĵ

σ
ijσiσj+

√
βστax

∑
i J

σ
i σi +

2

N
E ln

∑
τ

e

√
β′τ
2Nτ

∑Nτ
i,j Ĵ

τ
ijτiτj+

√
βστa−1x

∑
i J

τ
i τi +Xx

and contains the free energies of two SK models with external random field and different temperatures
√
β′σ

and
√
β′τ , i.e.

SN (0, x) = 2αASKN (
√
β′σ,
√
βστax) + 2(1− α)ASKN (

√
β′τ ,
√
βστa−1x) +Xx. (57)

4Here the strength of the method becomes clearly manifest as the calculation of the Cauchy condition SN (t = 0, x = x0) implies
considering only one-body interactions (that trivially factorizes) and whose analytic expression is immediate.
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Since we are interested in the replica symmetric approximation of the solution, we can use it also in the initial
condition, replacing ASK(β) with the well known RS approximation [36]

ASKRS (β) = log 2 +

∫
dµ(z) log cosh(z

√
β2q) +

β2

4
(1− q)2 (58)

with q = q(β) solution of the self consistent equation

q(β) =

∫
dµ(z) tanh2(z

√
β2q(β)). (59)

As in the ferromagnetic case, taking the derivative with respect to x we get the initial condition for the velocity

D(0, x) = ∂xS(0, x) = −2βστ

[
αa

∫
q(
√
β′σ,
√
βστax) + (1− α)a−1q(

√
β′τ ,
√
βστa−1x)

]
,

that allows us to write the following self consistent equation for D(t, x):

D(t, x) = D(0, x0) = D(0, x−D(t, x)t) =

= −2βστ

[
αaq(

√
β′σ,
√
βστa(x−Dt)) + (1− α)a−1q(

√
β′τ ,
√
βστa−1(x−Dt))

]
(60)

and finally the solution of the model as

A(t, x) =
1

2
(S(t, x)−Xx− Tt) =

1

2

(
S(0, x−D(t, x)t) +

1

2
D(t, x)2t−Xx− Tt

)
. (61)

At t = 1 and x = 0, when we recover the original model, the velocity field D(β) = D(1, 0) is the solution of

D(β) = −2βστ

[
αaq(

√
β′σ,
√
−βστaD) + (1− α)a−1q(

√
β′τ ,
√
−βστa−1D)

]
. (62)

If we call

q̄σσ′(β; a) = q(
√
β′σ,
√
−βστaD),

q̄ττ ′(β; a) = q(
√
β′τ ,
√
−βστaD), (63)

since D(β) = −2βστ [αaq̄σσ′(β; a) + (1 − α)a−1q̄ττ ′(β; a)] and using the definition of q(β), we can easily check
that q̄σσ′ and q̄ττ ′ satisfy the following system of coupled self-consistent equation, independent by the parameter
a,

q̄σσ′ =

∫
dµ(z) tanh2(z

√
β2
σ q̄σσ′ + (1− α)β2

στ q̄ττ ′),

q̄ττ ′ =

∫
dµ(z) tanh2(z

√
β2
τ q̄ττ ′ + αβ2

στ q̄σσ′), (64)

that mirrors exactly what we obtained in the previous section (equation (39)). Note that, also in this case, due
to the freedom in the choice of the interpolating parameter a, i.e.

αa 〈qσσ′(σ)〉+ (1− α)a−1 〈qττ ′(τ)〉 = αaq̄σσ′ + (1− α)a−1q̄ττ ′ , (65)

we can associate q̄σσ′ = 〈qσσ′(σ)〉 and q̄ττ ′ = 〈qττ ′(τ)〉 and characterize completely the model. Using the
previous decomposition for D(β) inside the equation (61), we get the free energy of the model in terms of
overlaps recovering the main expression enclosed in the statements of Theorem 3.
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3.4 Third approach: the Fourier framework
Once introduced the mechanical interpolating scheme, we can solve the Hamilton-Jacobi equation (55) using,
as in the ferromagnetic counterpart, the Fourier method too. We can do that again in the replica symmetry
approximation in which we neglect the potential, proportional to the fluctuations of the order parameters.
In this context we have to note that solving a free Hamilton Jacobi equation is equivalent to solving a Burger-like
equation

∂tSN (t, x) +
1

2
(∂xSN (t, x))2 +

1

2N
∂2
x2SN (t, x) = 0, (66)

where we added an irrelevant, because vanishing in the thermodynamic limit, mollifier term proportional to the
second derivative of SN (t, x).
Hence, also for replica-symmetric bipartite spin-glasses, in this way we can apply a Cole Hopf transform, namely
introduce a function ΨN (t, x) as

ΨN (t, x) = exp (−NSN (t, x)) . (67)

Trough the latter we can map the problem of solving for the quenched pressure in statistical mechanics in
solving a heat equation for the Cole-Hopf transform of the action, namely

∂ΨN (t, x)

∂t
− 1

2N

∂2ΨN (t, x)

dt2
= 0 (68)

and follow the prescription of Theorem 2 to obtain a variational principle equivalent to the equation (61), hence
solving the Fourier equation in the impulse space and, due to the monotonicity of the exponential, reverse the
expression for the action as

SN (t, x) = − 1

N
ln ΨN (t, x) = − 1

N
ln

√
N

2πt

∫
dy exp

(
N(S0(y) +

(x− y)2

2t
)

)
, (69)

that, in the thermodynamic limit, returns the solution as the inverse Legendre transform of the initial condition

S(t, x) = inf
y

(
(x− y)2

2t
+ S0(y)

)
. (70)

4 Conclusions and Outlooks
In this paper we have shown how to adapt techniques originally stemmed mainly in the classical mechanics
scenario in order to make them powerful tools for solving the statistical mechanics of mean field spin systems
too, focusing on bipartite structures in full interaction. In a sense this work extends, merges (and closes, at
least at the replica symmetric level), our investigations started in [6] we and [7] on mean field spin systems in
interaction. In particular, in this paper we considered the test case of two parties, each one provided of its inter-
nal links and in reciprocal interaction with the other party: we investigated both the ferromagnetic case, where
parties share the positivity of the couplings (whose strength is instead tunable in each party and reciprocally)
and the glassy counterpart, where, retaining the same freedom in the strengths, couplings are drawn at random
from a Gaussian distribution allowing for positive and negative strengths, hence frustrating the network.
At first we proved that it is possible to built a sum rule for the free energy (strictly speaking the pressure) of
these models in terms of a replica symmetric expression plus a rest that is exactly the source of order parameter
fluctuations, then, if these order parameters are self-averaging (as in the ferromagnetic case or in the replica
symmetric approximations), such an expression becomes the true solution in the thermodynamic limit. We
stress that, however, for glassy systems, in a huge region of the tunable parameters (namely where the rest in
the sum rule is positive defined) such an expression is further a rigorous bound for the real free energy.
If self-averaging is lacking, instead, as in the low temperature limit of glassy systems, the expression for the free
energy is only an approximation. We remark however that in several applicative fields (e.g. ranging from neural
to immune or metabolite networks in theoretical biology) this level of description is retained, hence motivating
the present study.
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One step forward, we showed that there exists a sharp one to one mapping between the free energy of these
systems in the statistical mechanics scenario and an action function in a suitably defined fictitious spacetime
such that solving the latter implies solving the former: following this path, we have shown how to obtain an
explicit expression (again at the replica symmetric level) for the action and then map back this finding in the
original statistical mechanics framework reobtaining the same solutions (both for ferromagnets and for glasses)
previously discovered.
Lastly, we have shown that the Cole-Hopf transform of the free energy obeys a diffusion-like equation that we
solved via the standard route of Green propagator and convolution theorem in the impulse space and then we
mapped it back in the original frame, re-obtaining once more the same thermodynamics.
As a final remark, we stress here that extensions of these techniques to a (finite in number) amount of different
species (beyond the test-case of two groups investigated here) is straightforward.
Summarizing, we believe that, while the self-averaging scenario is completely understood, from multiple per-
spectives, and rules out further investigations on ferromagnets with multi-species, the phenomenon of replica
symmetry breaking in multiple spin-glasses still deserves much more efforts for being tackled.
We plan to investigate its structure in the near future.
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