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Abstract

In this manuscript we apply stochastic modeling to investigate the risk of reactivation of latent mycobacterial infections in
patients undergoing treatment with tumor necrosis factor inhibitors. First, we review the perspective proposed by one of
the authors in a previous work and which consists in predicting the occurrence of reactivation of latent tuberculosis
infection or newly acquired tuberculosis during treatment; this is based on variational procedures on a simple set of
parameters (e.g. rate of reactivation of a latent infection). Then, we develop a full analytical study of this approach through a
Markov chain analysis and we find an exact solution for the temporal evolution of the number of cases of tuberculosis
infection (re)activation. The analytical solution is compared with Monte Carlo simulations and with experimental data,
showing overall excellent agreement. The generality of this theoretical framework allows to investigate also the case of non-
tuberculous mycobacteria infections; in particular, we show that reactivation in that context plays a minor role. This may
suggest that, while the screening for tuberculous is necessary prior to initiating biologics, when considering non-
tuberculous mycobacteria only a watchful monitoring during the treatment is recommended. The framework outlined in
this paper is quite general and could be extremely promising in further researches on drug-related adverse events.
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Received August 26, 2012; Accepted December 18, 2012; Published January 28, 2013

Copyright: � 2013 Agliari et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was sponsored by the FIRB grant RBFR08EKEV from Ministero dell’ Instruzione Università Ricerca and by Sapienza Università di Roma. The
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Introduction

Over the last decades the improved understanding of the

pathogenesis of chronic inflammatory diseases, together with a

major advance in biotechnology, have accelerated the develop-

ment of biological therapies, designed to neutralize specific targets

that mediate and sustain the clinical manifestations of diseases.

These compounds, mainly monoclonal antibodies (mAb) and

fusion proteins, introduced a breakthrough in the management of

different conditions including inflammatory rheumatologic disor-

ders [1]. In this context, the first setting of application of the

biological agents was rheumatoid arthritis (RA), a chronic

autoimmune disease affecting approximately 1% of the adult

population [2]. If the disease is not treated adequately, progressive

deformity can lead to loss of quality of life and reduce average life

expectancy by about a decade [2]. Studies on the pathogenic

mechanisms of RA have revealed that tumor necrosis factor (TNF)

is a cytokine playing a critical role in the inflammatory cascade

that results in the irreversible joint damage typical of the disease

[3]. Following these discoveries, a series of clinical trials in patients

with RA showed the therapeutic benefit of TNF blockade [4]. As a

consequence, five biological agents engineered to block TNF

actions are currently available: infliximab, adalimumab, golimu-

mab, certolizumab pegol (all of them mAb), and etanercept (a

receptor fusion protein) [5]. While being highly effective, TNF

blockers have raised concerns about the potential for an increased

susceptibility to infections, in particular the reactivation of latent

tuberculosis (TB) infection [6–10]. Mycobacterium tuberculosis,

the cause of human TB, can result in a metastable clinical latency

lasting for decades. Much has been speculated about the structure

of granuloma which should contain Mycobacteria, since murine

models indicated that TNF was necessary for both formation and

maintenance of granulomas [11]. However, subsequent studies on

zebrafish model [12], monkeys [13], and humans [14–17]

challenged these data, demonstrating that the crucial role of

TNF in the granuloma was indeed macrophage activation and

stimulation of chemokine production. The reactivation of latent

TB infection has been associated with all TNF inhibitors, hence

pre-initiation screening procedures have been recommended,

which have successfully reduced the number of reported cases

[18], although current screening tools lack sensitivity and

specificity [19,20].
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TNF blockers seem to increase also the risk of other

granulomatous diseases, but little is known about the emergence

of illness due to non-tuberculous Mycobacteria (NTM). These are

a huge ensemble of pathogens (e.g. M. avium, M. abscessus, and so

on [21]) and up to date, approximately 50 different mycobacterial

species are considered to be etiological agents of human diseases

and this number seems still growing [21]. Most cases these days

occur in hosts with relatively intact immune responses. However,

RA and other chronic diseases with pulmonary manifestations can

predispose a person to NTM pulmonary disease [22] expressing as

a possible serious complication, especially in immunosuppressed

subjects. Thus, it is of utmost importance to study also the risk

related to NTM, in the perspective to understand if a proper

screening may be helpful in conferring a wider protection to the

patients. This is particularly true, in that the TNF blockers appear

to predispose both to disseminated and localized disease [21,23],

but also because these infections are increasing in prevalence,

especially among women, which are more frequently affected by

RA than men. In the present state of the art, the scenario for NTM

diseases, with respect to TNF-blocking drugs, seems different from

the TB counterpart: in particular, through extensive experimental

screening, both Wallis and coworkers [10], and Winthrop and

coworkers [23,24] evidenced that latency and reactivation do not

seem to play a crucial role in this context, yet a clear-cut picture is

still missing.

Now, as far as TB is concerned, data collected through the

Adverse Event Reporting System of the US Food and Drug

Administration (FDA) in the time-window 1998{2002, related to

the two test-case drugs with a different mechanism of action, i.e.

infliximab and etanercept, highlight that TB infections involve 54

over 105 patients treated with infliximab and 28 over 105 patients

receiving etanercept [10]. Therefore, the question is: As the

latency in TB can last decades, are these infections (in patients

under therapy) new ones or are they reactivation of previously

encountered pathogens due to a suppressed immune system? This

kind of question underlies the awareness of a real need and

disposal for extensive pre-screening procedures. Unfortunately, the

answer is by far not trivial as, for TB, there are no secure pathways

to discriminate between a new infection or the raise of a previous

one. Moreover, a clear methodology for finding latencies is still

lacking. Furthermore, the rarity and different sizes of this infection

in different countries (ranging from 5 over 105 in Sweden up to

140 over 105 in Romania [8]) implies that data analysis and its

subsequent interpretation must be carefully performed.

As for NTM, still from FDA, through the post-marketing

surveillance system (MedWatch) and through a further survey

within the Emerging Infections Network of the Infectious Diseases

Society of America (IDSA), Winthrop and coworkers reported a

detailed study of possible correlations between the usage of TNF

blockers and the emergence of NTM diseases: over a time-window

of 8 years, they highlighted a higher prevalence of NTM diseases

in patients treated with infliximab rather than etanercept [24].

In order to investigate possible correlations between the

incidence of infections by such Mycobacteria and biological

therapy, one could rely directly on the molecular details of TNF

processing signal (which has been, at least partially, elucidated, see

e.g. [25]), coupled to the underlying infliximab and etanercept

mechanism of action, which could be achievable directly through

molecular immunology approach. Beyond these ‘‘standard’’

strands, a completely different route can also be performed: Given

the relative large amount of collected data, the problem can be

considered from a purely inferential viewpoint, by-passing the

underlying molecular immunology know-how (see also [26,27]).

According to this perspective, in Ref. [9,10], an abstract (logical)

environment for TB case has been defined, where patients can

occupy one of the (following) five different states: (0) No infection,

(1) New infection, (2) Latency, (3) Reactivation of a previous TB

infection, (4) Post first TB encounter. Clearly, the patients starting

the therapy (and hence belonging to the survey) can correspond to

either state (0) or (2), because all the other states imply

quantifiable sickness and the patient would then be treated for

TB rather than RA. Then, at the end of the survey, a fraction of

these patients will be in an illness state, i.e. either state (3) or (4).
The transition rates between different states are assumed as free-

parameters, whose values are estimated through numerical

simulations: the best estimate is the one able to reproduce, with

the smallest error, the experimental data. Remarkably, the

probability of latent TB reactivation in patients treated with

infliximab turned out to be an order of magnitude per unit of time

higher than the same probability for patients trated with

etanercept [9].

Here, we first formalize this approach in terms of Markov

chains and we write the related Master equation in continuous-

time limit, then we solve the model analytically and study its

properties in full details. In this way we get the explicit expression

for the number of patients c(t) exhibiting a TB (re)activation, as a

function of time t. One step forward, we check the robustness of

our results through extensive Monte Carlo simulations and over

the clinical data of the TB scenario, finding overall excellent

agreement among all our results (and previous literature).

Moreover, we find that different magnitudes for the probability

of reactivation correspond to qualitative different behaviors for

c(t) (on the proper timescale), that is, the number of patients

displaying active infection increases exponentially in time when

using infliximab and linearly in time when using etanercept.

The analytical expression for the whole evolution of the system

implies a great feasibility of the technique itself (e.g. we have the

whole set of first integrals and a clear picture of all the hidden

symmetries) and also allows to address, in complete generality,

several instances. In particular, we can finally consider generic

NTM infections, where, interestingly, the scenario appears quite

different from the TB counterpart: clinical data suggest that c(t)
(on the proper timescale) grows quadratically with time and this is

recovered by our analytical picture only under the assumption of a

negligible role played by latency reactivation. We check these

findings also through extensive Monte Carlo runs, which are in full

agreement too. Remarkably, this is very consistent with the present

state of the art in the medical literature dealing with NTM.

As a final result, there are two types of conclusions which stem

from our work: The former belongs to the world of modelers,

while the latter to the world of clinicians.

From a mathematical perspective, the encouraging results of

this approach may pave the way for the development of handily

and fruitful instruments for physicians.

Much more carefully, in the clinician’s counterpart, as this

approach bypasses the whole underlying biological complexity, it

may contribute to confirm, from a theoretical perspective, the

current understanding of adverse events coupled to TNF-

inhibitors and the consequent real need for screening procedures

before undergoing biological therapies.

Materials and Methods

In this section we formalize the scheme introduced in [9] and

aimed to reproduce data of TB onset in patients treated with TNF

inhibitors, with particular attention on infliximab (an anti-TNF

mAb) and etanercept (a soluble TNF receptor). Seeking for clarity,

in this section we mention only applications to the TB case,

Modeling Adverse Events Due to TNF-Inhibitors
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although, as we will see in the second part of the paper, the

approach is rather robust and can be successfully applied to the

NTM case, too.

The model, whose structure is depicted in Figure 1, consists in

identifying a set of possible states for the patient subjected to

biological treatments, and in fixing the likelihood for the patient to

change his/her state within a proper unit time. Of course, on large

samples, some patients may experience sudden incidents (e.g.

death for other causes) or some others may assume both the drugs:

the analysis has been previously purified from these cases [9,10].

The clinical states available to a test-patient are taken as follows

(see Figure 1):

0 : Absence of infection;

1 : New infection (that after a time t can give rise either to active

TB or latent infection);

2 : Latent infection;

3 : Reactivated TB after latency;

4 : Active TB (that progresses from new infection within a time

t, without an intervening period of latency).

Moreover, each patient is assumed to change his/her state,

following the corresponding transition probabilities, which consti-

tute the model parameter set, and are meant over a proper unit

time t. Using t to label the time, these probabilities are:

L : Probability of having a latent infection at the beginning of

the observation (t~0), while, obviously, (1{L) is the probability

of not having any infection at that moment;

N : Probability of TB infection during the observational time;

P : Probability of a new TB infection to become active TB after

a time t; as a consequence, (1{P) is the probability of this new

infection to give rise to a latent infection;

R : Probability of reactivation of a latent TB infection.

We stress that such probabilistic framework is based on purely

clinical variables.

On the experimental side, the available data consist in a

collection of times (one for each patient) corresponding to the

onset of TB (in its active phase, namely a detectable scenario), after

the beginning of the treatment with TNF blockers. As a

consequence, the only states which are possible to observe are

the states 3 and 4. Unfortunately, as discussed in the introduction,

these states (that account for ill patients) are not distinguishable

one respect to the other by simply looking at the data (hence

motivating both earlier studies [9,10] and our machinery),

however, some progress can be made using stochastic extremiza-

tion. The idea resembles the standard maximum likelihood and

consists in finding the best values for free parameters such that the

theoretical curves collapse over the experimental data [28].

As already outlined, following this procedure, the main result in

[9] is that the principal difference between infliximab and

etanercept treatments resides in different management of latent

TB, i.e. on R. The former seems to enhance reactivation one order

of magnitude more than the latter.

Markov Chains and Master Equations
The model described in the previous section can be translated

into a set of differential equations coding for the temporal

evolution of the probability of patient’s states (which can be

compared to the corresponding fractions over a sample of patients

given the large collection of data).

Being the states discrete, this can be accomplished in complete

generality using Markov chains, namely a (discrete-time) proba-

bilistic framework where the probability of being in a given state at

a given time t depends only on the probability distribution over all

the states at the previous time step t{1, and on the transition rates

linking these states.

It is instructive to consider the illustrative Markov chain with

only three states (A, B and C), non-null transition rates wA?B and

wB?C and time step Dt, shown in Figure 2.

Note that, in the model, the probabilities of going from A to B
and from B to C exist but not the opposite (wB?A~0, wC?B~0)

hence, if the initial state is all concentrated in C, there will be no

evolution, while if the starting point is spread among A and B,

after enough time, the probability distribution will be peaked on C
only (but in its finite temporal evolution resides our interest).

Now, the probability of remaining-at/moving-into the state B in

the time interval Dt is given by the probability of already being in

B (hence pB(t)) plus the probability of arriving in B from A times

the probability of being in A at the previous step (hence

wA?BpA(t)) minus the probability of leaving B to C times the

probability of being in B at the previous step (hence wB?CpB(t));
this concept can be written as follows:

pB(tzDt)~pB(t)zpA(t)wA?BDt{pB(t)wB?CDt : ð1Þ

Now, the mathematics for continuous variable differential

equations is much more handily and does not change significantly

the perspective if the time step is small with respect to the global

time window; indeed, both experimental data sets considered here

(for TB cases [10] and for NTM cases [23]) fulfill this requirement

and thus we are allowed to consider the time as a continuous

variable. This can be achieved straightforwardly starting from the

previous equation using a limit procedure:

lim
Dt?0

pB(tzDt){pB(t)

Dt
~

dpB(t)

dt
~pA(t)wA?B{pB(t)wB?C :

The evolution for the probability pB(t) is then ruled by the

following differential equation, namely a ‘‘Master equation’’,

Figure 1. Symbolic representation of the Markov chain under
investigation. States are represented as circles and numbered from 0
to 4 according to the scheme outlined in the Materials and Methods
section. The arrows N,P,1{P,R represent the transition probabilities
connecting two different states, while 1{L and L represent the initial
conditions on the states 0,2.
doi:10.1371/journal.pone.0055017.g001

Figure 2. Toy Markov chain. From the state A there is a potential
flux of probability at rate wA?B toward the state B, hence we expect
that, after a proper amount of time, a fraction of the probability p will
be drained from A to B. The same holds for the situation linking C to B.
After an infinite time the probability of having the patient in the state C
is one, while it is zero for the states A,B.
doi:10.1371/journal.pone.0055017.g002

Modeling Adverse Events Due to TNF-Inhibitors
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which acts as a continuous counterpart of the Markov chain in the

discrete-time case:

dpB(t)

dt
~pA(t)wA?B{pB(t)wB?C : ð2Þ

In general, for a system which can be in one of M arbitrary

states, we need a M|M transition-rate matrix w (where wi?j is

the rate for the transition from state i to state j) and the Master

equation takes the form

_ppi(t):
dpi

dt
~
XM
j~1

wj?i pj(t){
XM
j~1

wi?j pi(t) : ð3Þ

Note that we use the symbol : above the functions meaning their

temporal derivative. Finally, we switch to a form where the explicit

timescale t of the process appears directly in the equation, that is

t _ppi(t)~
XM
j~1

Wj?i pj(t){
XM
j~1

Wi?j pi(t), ð4Þ

where Wi?j*wi?jt stands for the probability of transition from

state i to j along the time interval t.

Master Equations for the Model
Keeping in mind Figure 1, we can write down the system of

differential equations describing the evolution of the five states

earlier introduced as follows:

t _pp0~{N p0(t),

t _pp1~Np0(t){p1(t),

t _pp2~(1{P)p1(t){Rp2(t),

t _pp3~Rp2(t),

t _pp4~Pp1(t),

8>>>>>>>><
>>>>>>>>:

ð5Þ

with initial conditions

p0(t~0)~1{L,

p2(t~0)~L,

p1(t~0)~p3(t~0)~p4(t~0)~0:

8><
>: ð6Þ

The numbers indexing the probabilities mirror the enumeration of

the previous section, that is, p0 stands for the probability that a

patient has never been affected by the infection, and so on. The

parameter t represents the typical time for a patient experiencing

a new infection to either develop the disease or to fall into a latent

state and it should be chosen according to the natural time-scale of

the process described. For instance, for the TB case, the data

collected suggest that t is order of a few months [10,29], and we

set t~1month for the sake of simplicity and in agreement with

previous works [9,10].

Note that, as patients affected by active TB do not start RA

therapy, we set p1(t~0)~p3(t~0)~p4(t~0)~0. Furthermore,

the parameter L tunes the initial amount of latent-TB patients

with respect to free-TB patients, such that for L~0 all patients are

healthy, while for L~1 all patients display a latent TB infection; as

we have no ways to discriminate between healthy and latent-

infected patients, L is taken as a free parameter which can be

estimated a posteriori comparing the solution of (5) with available

data.

The solution of the system (5) can be easily obtained using first

order ordinary differential equations theory and reads off as

p0(t)~(1{L)e{Nt=t,

p1(t)~N
1{L

1{N
e{Nt=t{e{t=t
� �

,

p2(t)~{
(1{P)(1{L)N

(1{N)(N{R)
e{Nt=tz Lz

(1{P)(1{L)N

(N{R)(1{R)

� �
e{Rt=t

z
(1{P)(1{L)N

(1{N)(1{R)
e{t=t,

p3(t)~Lz(1{P)(1{L)z
R(1{P)(1{L)

(1{N)(N{R)
e{Nt=t

{ Lz
(1{P)(1{L)N

(1{R)(N{R)

� �
e{Rt=t

{
(1{P)(1{L)RN

(1{N)(1{R)
e{t=t,

p4(t)~P
1{L

1{N
1{N{e{Nt=tzN e{t=t
� �

:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð7Þ

Of course, since the total amount of patients is conserved,

C0~p0zp1zp2zp3zp4 is an integral of motion, that is

0~
d

dt
C0[C0~p0(t)zp1(t)zp2(t)zp3(t)zp4(t)~const: ð8Þ

Beyond C0, the system ( ) admits another integral of motion C1,

namely

0~
d

dt
p2(t)zp3(t)z

P{1

P
p4(t)

� �
[

C1~p2(t)zp3(t)z
P{1

P
p4(t)~const:

ð9Þ

This means that the rate of growth for patients in the latency

branch (i.e. in states 2,3) equals the rate of growth for the rest of

infected patients (i.e. in state 4) weighted by a factor P{1{1, so

that the smaller P and the larger the difference between the related

rates. The knowledge of integrals of motion can be very useful as

they allow to obtain information in a very simple way; for instance,

should P drop, then p4(t) would also decrease (or, analogously,

p2(t)zp3(t) would increase) in order to maintain C1 constant.

Given C0 and C1, other integrals of motion, which are

combination of C0 and C1, can be trivially built. For example,

C2~C0{C1 fulfills.

0~
d

dt
p1(t)zp0(t)z

1

P
p4(t)

� �
[

C2~p1(t)zp0(t)z
1

P
p4(t)~const:

ð10Þ

We underline that this kind of investigation can be accom-

plished only through an analytical study of the system.

Modeling Adverse Events Due to TNF-Inhibitors

PLOS ONE | www.plosone.org 4 January 2013 | Volume 8 | Issue 1 | e55017



As discussed above, the fraction of active TB cases is given by

the sum of the fraction of cases of direct TB after infection and of

the fraction of cases with reactivated TB; namely, calling c(t) the

total fraction of cases, we have:

c(t)~p3(t)zp4(t) : ð11Þ

In the above quantity, the time dependence appears only

through three different exponential decay terms

(e{Nt=t, e{Rt=t, e{t=t), which vanish at infinite time, so that the

solution becomes a constant term equal to 1, meaning that, if we

wait for a sufficient long (possibly infinite) time, all patients become

sick (although, obviously, they can possibly die earlier due to

reasons not related to RA/TB). In order to deepen the temporal

evolution of these probabilities at relatively short times, it is useful

to use a little bit of algebraic manipulation to distinguish constant

terms from decaying terms, in such a way that we get

c(t)~1zk1e{t=tzkRe{Rt=tzkNe{Nt=t, ð12Þ

where the three constants k1, kR and kN are related to the

physiological parameters by

k1~
N(1{L)(P{R)

(1{N)(1{R)
,

kR~{Lz
N(1{P)(1{L)

(1{R)(R{N)
,

kN~{
(1{L)(R{PN)

(1{N)(R{N)
:

8>>>>>>><
>>>>>>>:

ð13Þ

Of course, from c(t) one can derive the effective number of cases

multiplying c(t) by the overall number of treated patients.

Before turning attention to the fitting procedure, we stress that

the analytical solution in Eq. (7) was successfully checked through

numerical methods, i.e. fourth-order Runge-Kutta algorithm and

Monte Carlo simulations (notice that here, with Monte Carlo

simulation we mean a simulation in which a set of virtual patients

evolves in time following the Markov chain of Figure 1, giving a

sample of the evolution of the fraction of cases during time. In our

simulations we set 106 virtual patients).

Results

The TB-infection Case
Having obtained the complete solution of the model and

exploiting the available information on parameters, we now look

for proper approximations able to highlight the effective behavior

of c(t) in cases of practical interest, starting with the TB scenario.

In particular, Eq. (12) can be reduced to a simpler form if we

note that the probability N of TB infection is much smaller than

all the other parameters, in agreement with studies on TB and

with results found in [9] and, a posteriori, in the current paper (see

Table 1).

Hence, as a first approximation step, we assume N%1 and

N=R%1 such that we can expand the solution, at the first order in

N and N=R, as follows:

k1~(1{L) P{R
1{P

1{R

� �
N½1zNzO(N2)�,

kR~{Lz
(1{P)(1{L)

R(1{R)
N 1z

N

R
zO N2

R2

� �� �
,

kN~{(1{L)

P½1zNzO(N2)�z(1{P)½1zNzO(N2)� 1z
N

R
zO N2

R2

� �� �� 	
,

notice that here and in the following we use the ‘‘big-O’’ Landau

notation to characterize the growth rate of functions; more

precisely, being f (x) and g(x) two arbitrary functions, we say

f (x)~O(g(x)) as x?0 if there exists a positive real number M
such that Df (x)DƒM Dg(x)D.

By plugging the previous expressions into Eq. 12, with some

algebra and retaining only up-to-linear terms in N or N=R, we get

c(t)&1zN(1{L)
P{R

1{R
e{t=tz {Lz

(1{P)(1{L)

1{R

N

R

� �
e{Rt=t

{(1{L) 1zNz
N

R
(1{P)

� �
e{Nt=t: ð14Þ

Let us now move further and focus on the exponential terms.

First, we notice that 1wRwN and, consequently, we can neglect

the term e{t=t, as it decays much faster that both e{Rt=t and

e{Nt=t. Moreover, since the time range considered is &30 months

and N is expected to be %t=t&10{2, we can expand e{Nt=t as

e{Nt=t&1{Nt=t, and considering only the leading dependence

on t, we get

c(t)&1{(1{L) 1zNz
N

R
(1{P)

� �
z

{Lz
(1{P)(1{L)

1{R

N

R

� �
e{Rt=t:

ð15Þ

As for e{Rt=t, a similar approximation (e{Rt=t&1{Rt=t) can

be adopted as long as R v* 10{2 so to obtain the following linear

approximation.

c(t)&1zkR(1{Rt=t)zkN : ð16Þ

Notice that a smaller (larger) estimate for t would simply require

a stricter (softer) condition on N and on R for the related linear

expansions to hold (on the same time range); the model would not

be affected and the parameters coupled with time, i.e. N,R, would

be accordingly rescaled. As shown in Figure 3, the approximation

(16) is rather good only for etanercept-treated patients, for which

the best fit yields R~2:24:10{2. On the other hand, if we consider

infliximab-treated patients, the approximation (16) does not fit

data, while using (15) we get a good overlap with data and the best

fit yields R~2:12:10{1, confirming that now Rt=t is no longer

small over the time window. All best-fit coefficients are reported in

Table 1, and the related errors are shown in Figure 4.

We can estimate how sensitive c(t) is with respect to the system

parameters by deriving its analytic expression (see Eq. 12) with
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respect to N,P,R,L, respectively; in this way we get that, in the

regime N%(1,P,R,L), the most relevant parameter affecting the

behavior of c(t) is R. Another argument in favor of this claim is

that, in the zero approximation of the solution (i.e. neglecting even

terms O(N)), P does not appear at all.

In order to get further insight on the effect of infliximab and of

etanercept on TB incidence, in Fig. 5 we plotted the model

predictions for the percentage of patients having TB because of

new infections (p4(t)) or reactivations (p3(t)).

To summarize, our results confirm that, in the present context,

the most important difference between therapies based on

infliximab or etanercept is that the former enhances TB

reactivation more than the latter, in fact, we found

RINF*10RETA, in agreement with [9]. Such a discrepancy

implies even a qualitatively different behavior of c(t) over the

time-window considered: the number of infliximab-treated

patients experiencing a TB infections grows exponentially in time,

while for etanercept-treated patient the growth is linear.

The NTM-infection Case
The analytical expression for c(t), (see Eqs. 7 and 11) holds for a

general environment schematizable as in Fig. 1; in the last

paragraph we used the details of TB infections to implement

convenient approximations. We now turn to NTM-infections in

patients treated with infliximab and etanercept and look for proper

approximations able to highlight the characteristic features of such

case. The experimental data we refer to are those reported in [23]

and collected over the period 1999{2006. Overall, there were

239 reports of NTM infections in patients who were receiving anti-

TNF therapy. Most reports were for patients receiving infliximab

(75%) or etanercept (17%) and here we shall focus just on these

drugs.

Some remarks are in order here to merge mathematically the

TB and NTM scenarios.

First, it is important to notice that patients affected by NTM

lung infections typically suffer through long periods of illness

before a clinical diagnosis is made. To comply with the actual state

of the art on the involved time-scales we follow M. Iseman and T.

Marras [29] that we quote: ‘‘Preliminary prevalence estimates

have been made, assuming that the disease duration for TB is 8
months and for pulmonary NTM is within the range of 4 to 10
years’’ (48 to 120 months), hence for NTM the timescale is at least

one order of magnitude larger than in the TB counterpart.

Another important point is that available data on NTM-diseases

related to drug therapies lack the size of the survey, namely the

number of patients participating to the screening, consequently,

we can quantify the (cumulative) amount of sick patients, but we

do not know their percentage. This is not a serious deficiency

since, while we do not have access to the very reactivation

probabilities RINF or RETA, their ratio (which cancels out both

time-scales and survey-size) still retains a quantitative information

content.

As a result of the first remark, the (average) exit time from state

1, i.e. t, is comparable to the experimental time window, and one

can expand the solution reported Eq. 7 at second order in t=t as

p3(t)~RL
t

t
{LR2 t2

2t2
zO t3

t3

� �
, ð17Þ

p4(t)&PN(1{L)
t2

2t2
zO t3

t3

� �
: ð18Þ

We notice that, at this stage of expansion, p4(t) grows

quadratically with time, while p3(t) presents two contributes

growing, respectively, linearly and quadratically with time, the

former being the leading one.

Such expressions must now be compared with experimental

data, which display a purely quadratic growth in time, i.e.

compatible with c(t)~at2 (see Fig. 6). In order for the comparison

to hold, one must therefore drop the linear coefficient, and this

implies R*0 (or L*0 which is conceptually pretty similar). With

this choice of parameters we get.

p3(t)&0

p4(t)&PN t2

2t2
[c(t)&PN

t2

2t2
, ð19Þ

Table 1. TB-infection case: Best-fit coefficients.

TB-infection case: Best-fit coefficients.

L (4.5260.65) 1024

N (2.8860.23) 1026

RINF (2.1260.19) 1021

PINF (9.7660.82) 1021

RETA (2.2460.15) 1022

PETA (8.0360.71) 1021

Best fit parameters obtained through the maximum likelihood method (see Eqs.
15, 16, respectively). Here we used t~1month, consistently with clinical data.
The fit was accomplished with the constraint that the parameters N and L are
the same for both therapies, as they are drug-independent. The average relative
error on these parameters is &9%.
doi:10.1371/journal.pone.0055017.t001

Figure 3. Comparison between experimental, analytical and
numerical results for the TB-infection case. Cumulative number of
patients undergoing active TB-infection. Experimental data from [9] (.
for infliximab-treated patients and D for etanercept-treated patients)
are compared with the approximated analytical solution (see Eq. 15 and
Eq. 16, respectively, solid curves) and with data from numerical
simulation (dashed curves). The parameters used to draw the analytical
curves correspond to the best-fit coefficients and are reported in
Table 1. Notice that here we consider the extensive number of patients
affected by TB over a population of N~105 treated patients, according
to experimental results.
doi:10.1371/journal.pone.0055017.g003
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and this form successfully fits experimental data, as shown in

Figure 6; the best-fit coefficients are reported in Table 2, and the

related errors are shown in Figure 7.

The functional form of p4(t) highlights why finding an estimate

of the parameters is extremely difficult through blind numerical

extremization, without any explicit analytical hint: The latency-

branch turns out to be negligible in NTM-context and this results

in a coupling of the parameters P and N as only a single

probability streaming toward p4(t) survives. Therefore the two

parameters alone are undetectable.

Using the coefficients of Table 2 in numerical simulations we

obtain results in excellent agreement with real data and analytical

ones. Notice that, impressively, the fit is very good although here

the optimization relies only on one parameter.

We stress that the qualitative difference between the behaviors

of c(t) in the case of TB and NTM infection (see Eqs. 15 and 19)

mainly stems from a significant gap in the related disease duration

(few months versus several years). In the latter case t is relatively

large to allow the expansion of the exponential functions into a

polynomial form, while for TB this can be accomplished only

under the condition of small enough R. Such expansions do not

significantly alter the predicted values of the fit parameters, as long

as the underlying assumptions are consistent with facts.

To summarize, the theoretical framework developed evidences

that the rate of reactivation R is vanishing: This issue makes the

fraction p3 of reactivation cases negligible, while the number of

activation cases grows quadratically with time through the

contribution of only p4, consistently with the actual understanding

of NTM-pathology achieved through standard pathways. More-

over, differently from the TB case, in the NTM scenario no

qualitative difference can be detected between infliximab and

etanercept: The parabolic behavior for c(t) seems robust.

Discussion

In the last decades, several tools and concepts stemmed from the

fields of stochastic mathematics and theoretical physics have been

proposed to help the investigation of the immunological world,

ranging from kinetic theories [30], to associative neural networks

[31,32], to cellular automata and more [33,34].

Along the same line, in these notes we formalized and extended

a stochastic approach to data analysis (originally introduced in [7–

10]) for evidencing underlying correlations between adverse events

and therapies based on immunosuppressants. In particular, the

focus of our investigation concerns the risk of reactivation of latent

mycobacterial infection in patients undergoing treatment with

TNF-inhibitors.

Figure 4. Deviations between experimental, analytical and
numerical results for the TB-infection case. Absolute difference
between experimental data and theoretical data reported in Fig. 3; the
same legend holds.
doi:10.1371/journal.pone.0055017.g004

Figure 5. Probabilities p3 and p4 versus time for the TB-
infection case. The probability p3 of being in state 3 (TB
reactivation) and p4 of being in state 4 (Post 1

0
TB) are calculated

from Eq. 7, using the parameters of Table 1. In the main plot we
compare the ratio p3=p4 obtained from infliximab (.) and etanercept (D)
parameters. In the inset, we depict each single probability, namely p3

for infliximab (dark .) and for etanercept (dark D), p4 for infliximab
(bright .) and for etanercept (bright D); notice that the two sets of data
for p4 are partially overlapped. Lines are guide for the eye.
doi:10.1371/journal.pone.0055017.g005

Figure 6. Comparison between experimental, analytical and
numerical results for the NTM-infection case. Cumulative number
of patients undergoing active NTM-infection. Experimental data from
[23] (. for infliximab-treated patients and D for etanercept-treated
patients) are compared with the approximated analytical solution (see
Eq. 19, solid curves) and with data from numerical simulation (dashed
curves). The parameters used to draw the analytical curves correspond
to the best-fit coefficient and are reported in Table 2. Notice that here
we consider the extensive number of patients affected by NTM over the
whole population of treated patients, according to experimental results.
doi:10.1371/journal.pone.0055017.g006
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We gave a clear and complete mathematical backbone to this

approach, building it on explicit Markov processes, whose

continuous-time limit yields the Master equation governing the

evolution of the expected fraction of patients c(t) exhibiting an

active infection. We also solved the Master equation in all details

finding an analytical expression for c(t): Such mathematical

developments make the original approach much more versatile

and general: For instance, handling the complete (mathematical)

solution allows to better account for reasonable approximations,

tackling their control quantitatively (e.g. finding the proper

timescales involved in the process or the integrals of motion

constraining the evolution of the system). Furthermore, we can

finally consider, within the same framework, different problems. In

particular, we focused on TB and NTM infections emerging

during anti-TNF therapies (infliximab and etanercept) according

to data reported in [9,23].

In the former case, we recovered previous findings showing that

the rate of reactivation R of TB from a latent state to an active

state plays a crucial role: being RINF*10RETA we get qualitatively

different behaviors for c(t). More precisely, once fixed the

observational time-window, for infliximab c(t) grows exponentially

with time, while for etanercept it grows linearly with time. Hence,

these results sustain the need, for patients candidate to TNF

blockers, to perform an accurate TB screening at baseline,

irrespective of the type of antiTNF. Indeed, screening may

decrease the risk of TB reactivation in such patients, while it is less

clear what should be done to prevent NTM disease occurrence or

progression in patients taking biologic agents. Importantly, for this

purpose, we found that the comparison with experimental data

allows to infer that reactivation plays a very minor role for both the

therapies and that c(t) grows quadratically with time.

We checked our results also against Monte Carlo simulation

with excellent agreement.

Furthermore, our results are all consistent with recent exper-

imental data and seem to indicate that TB and NTM infections

are sustained by different pathogenetic mechanisms.

Non-tuberculous Mycobacteria are present in large numbers in

the environment, including fresh water, aerosols, biofilms, and

soils [35]. There are thus many opportunities for acquisition of

NTM infection during ordinary daily activities, although the true

incidence is not known. In contrast, nearly all transmission of

Mycobacterium tuberculosis infection results from inhalation

cough-generated aerosols from persons with active pulmonary

TB. The annual risk of TB infection (ARTI) can be calculated

from age-specific rates of tuberculin skin test reactivity; in most

instances it is directly related to TB prevalence. Thus, although the

ARTI may reach 4% in highly TB-endemic regions such as South

Africa, it is as low as 0:01% in much of Northern Europe and

North America [36–38]. These epidemiologic findings are

consistent with the results of our mathematical model, and

underscore the interplay of microbial and host biology in

determining the relative contributions of reinfection and reactiva-

tion to mycobacterial pathogenesis.

Hence, while the screening for TB is necessary prior to initiating

biologics, when considering NTM only a watchful monitoring

during the treatment is recommended. This finding is particularly

relevant, since it allows to avoid screening for NTM infection,

which is complicated by the poor sensitivity of chest radiograph

and more expensive and invasive techniques, such as chest

computed tomography scan and/or bronchoscopy, should be

used.

It is worth stressing that this methodology, being based on very

standard stochastic procedures, has the advantage to hold beyond

the test case of Mycobacteria. We hope that this test-case may shed

light to future developments of this sideline approach in figuring

out adverse events of biological therapies.
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