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Abstract. During the last few years, through the combined effort of the insight
coming from physical intuition and computer simulation, and the exploitation of
rigorous mathematical methods, the main features of the mean-field Sherrington–
Kirkpatrick spin glass model have been firmly established. In particular, it
has been possible to prove the existence and uniqueness of the infinite-volume
limit for the free energy, and its Parisi expression, in terms of a variational
principle involving a functional order parameter. Even the expected property of
ultrametricity, for the infinite-volume states, seems to be near to a complete proof.

The main structural feature of this model, and related models, is the deep phe-
nomenon of spontaneous replica symmetry breaking (RSB), discovered by Parisi
many years ago. By expanding on our previous work, the aim of this paper is to
investigate a general framework, where replica symmetry breaking is embedded
in a kind of mechanical scheme of the Hamilton–Jacobi type. Here, the analog of
the ‘time’ variable is a parameter characterizing the strength of the interaction,
while the ‘space’ variables rule out quantitatively the broken replica symmetry
pattern. Starting from the simple cases, where annealing is assumed, or replica
symmetry, we build up a progression of dynamical systems, with an increasing
number of space variables, which allow us to weaken the effect of the potential
in the Hamilton–Jacobi equation as the level of symmetry breaking is increased.
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This new machinery allows us to work out mechanically the general K-step
RSB solutions, in a different interpretation with respect to the replica trick, and
easily reveals their properties such as existence or uniqueness.

Keywords: rigorous results in statistical mechanics, cavity and replica method,
disordered systems (theory), spin glasses (theory)
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1. Introduction

In the past 20 years the statistical mechanics of disordered systems has earned an
always increasing weight as a powerful framework by which to analyze the world of
complexity [5, 6, 11, 14, 28, 29, 31].

The basic model of this field of research is the Sherrington–Kirkpatrick (SK)
model [26] for a spin glass, for which several methods of investigation have been tested over
the years [3, 4, 9, 13, 17, 23, 24, 36, 37]. The first method developed has been the replica
trick [27, 32] which, in a nutshell, consists in expressing the quenched average of the
logarithm of the partition function Z(β) in the form E lnZ(β) = limn→0 E(Z(β)n − 1)/n.
Since the averages are easily calculated for integer values of n, the problem is to find the
right analytical continuation allowing us, in some way, to evaluate the n → 0 limit, at
least for the case of large systems. Such an analytical continuation is extremely complex,
and many efforts have been necessary to examine this problem in the light of theoretical
physics tools, such as symmetries and their breaking [33, 34]. In this scenario a solution
has been proposed by Parisi, with the well-known replica symmetry breaking scheme
(RSB), both solving the SK model by showing a peculiar ‘picture’ of the organization of
the underlying microstructure of this complex system [28], as well as conferring a key role
on the replica-trick method itself [39].
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The physical relevance, and deep beauty, of the results obtained in the framework
of the replica trick has prompted a wealth of further research, in particular towards the
objective of developing rigorous mathematical tool for the study of these problems. Let us
recall, very schematically, some of the results obtained along these lines. Ergodic behavior
has been confirmed in [16, 23], the lack of self-average for the order parameter has been
shown in [35], the existence of the thermodynamic limit in [22], the universality with
respect to the coupling’s distribution in [15], the correctness of the Parisi expression for
the free energy in [21, 38], the critical behavior in [1], the constraints to the free overlap
fluctuations in [2, 25], and so many other contributions developed to give rise even to
textbooks (see, for example, [12, 18, 39]).

Very recently, new investigations on ultrametricity started [7, 8] and allowed even
strong statements dealing with the latter [30], highlighting as a consequence the inquiry
for techniques to prove the uniqueness of the Parisi solution, step by step.

In this paper we match two other techniques, the broken replica symmetry bound [21]
and the Hamilton–Jacobi method [20, 10, 19], so as to obtain a unified and stronger
mathematical tool to work out free energies at various levels of RSB, whose properties are
easily available as consequences of simple analogies with purely mechanical systems [19].
We stress that, within this framework, the improvement of the free energy by increasing
the replica symmetry breaking steps is transparent.

In this first paper we show the method in complete detail and pedagogically apply it
for recovering the annealed and the replica symmetric solutions. Then we work out the
first level of RSB and show how to obtain the 1-RSB Parisi solution with its properties.

This paper is organized as follows. In section 2 the SK model is introduced together
with its related statistical mechanics definitions. In section 3 the broken replica mechanical
analogy is outlined in complete detail (minor calculations are reported in the appendix),
while sections 4–6 are respectively dedicated to the annealed, the replica symmetric and
the 1-RSB solutions of the SK model using our approach. Section 7 deals with the
properties of the solutions and section 8 is left for the outlook and conclusions.

2. The Sherrington–Kirkpatrick mean-field spin glass

The generic configuration of the Sherrington–Kirkpatrick model [26, 27] is determined by
the N Ising variables σi = ±1, i = 1, 2, . . . , N . The Hamiltonian of the model, in some
external magnetic field h, is

HN(σ, h; J) = − 1√
N

∑

1≤i<j≤N

Jijσiσj − h
∑

1≤i≤N

σi. (1)

The first term in (1) is a long range random two-body interaction, while the second
represents the interaction of the spins with the magnetic field h. The external quenched
disorder is given by the N(N − 1)/2 independent and identically distributed random
variables Jij, defined for each pair of sites. For the sake of simplicity, denoting the average
over this disorder by E, we assume each Jij to be a centered unit Gaussian with averages

E(Jij) = 0, E(J2
ij) = 1.

For a given inverse temperature4 β, we introduce the disorder-dependent partition
function ZN(β, h; J), the quenched average of the free energy per site fN (β, h),

4 Here and in the following, we set the Boltzmann constant kB equal to one, so that β = 1/(kBT ) = 1/T .

doi:10.1088/1742-5468/2010/09/P09006 3
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the associated averaged normalized log-partition function αN(β, h) and the disorder-
dependent Boltzmann–Gibbs state ω, according to the definitions

ZN(β, h; J) =
∑

σ

exp(−βHN(σ, h; J)), (2)

−βfN(β, h) =
1

N
E lnZN(β, h) = αN(β, h), (3)

ω(A) = ZN(β, h; J)−1
∑

σ

A(σ) exp(−βHN(σ, h; J)), (4)

where A is a generic function of σ.
Let us now introduce the important concept of replicas. Consider a generic number n

of independent copies of the system, characterized by the spin configurations σ(1), . . . , σ(n),
distributed according to the product state

Ω = ω(1) × ω(2) × · · · × ω(n),

where each ω(α) acts on the corresponding σ
(α)
i variables, and all are subject to the same

sample J of the external disorder. These copies of the system are usually called real
replicas, to distinguish them from those appearing in the replica trick, [28], which requires
a limit towards zero number of replicas (n → 0) at some stage.

The overlap between two replicas a, b is defined according to

qab(σ
(a), σ(b)) =

1

N

∑

1≤i≤N

σ
(a)
i σ

(b)
i , (5)

and satisfies the obvious bounds

−1 ≤ qab ≤ 1.

For a generic smooth function A of the spin configurations on the n replicas, we define
the averages 〈A〉 as

〈A〉 = EΩA(σ(1), σ(2), . . . , σ(n)), (6)

where the Boltzmann–Gibbs average Ω acts on the replicated σ variables and E denotes,
as usual, the average with respect to the quenched disorder J .

3. Thermodynamics through a broken replica mechanical analogy

Once we have introduced the model, let us briefly discuss the plan we are going to follow.
In the broken replica symmetry bound (BRSB) [21] it has been shown that the Parisi

solution is a bound for the true free energy (the opposite bound has been achieved in [38]).
This has been done by introducing a suitable recursive interpolating scheme that we are
going to recall hereafter.

In the Hamilton–Jacobi technique instead [20], it has been shown, by introducing
a simple two-parameter interpolating function, how to recover the replica symmetric
solution through a mechanical analogy, offering as a sideline a simple prescription, once
the bridge to mechanics was achieved, to prove the uniqueness of the replica symmetric
solution.

doi:10.1088/1742-5468/2010/09/P09006 4
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The main result of this paper is that the two approaches can be merged such that
even the recursive interpolating structure of the BRSB obeys a particular Hamilton–Jacobi
description. This result has both theoretical and practical advantages: the former is a
clear bridge to improving the approximation of the free energy solution and increasing
the levels of RSB, while the latter is a completely autonomous mechanical tool by which
to obtain solutions at various RSB steps in further models.

The task is, however, not trivial: the motion is no longer on a 1 + 1 Euclidean
spacetime as in [20] but lives in K + 1 dimensions such that momenta and a mass matrix
need to be introduced.

To start showing the whole procedure, let us introduce the following Boltzmann factor :

B({σ};x, t) = exp

⎛

⎝
√

t

N

∑

(ij)

Jijσiσj +
K∑

a=1

√
xa

∑

i

Ja
i σi

⎞

⎠ (7)

where both Jijs and Ja
i s are standard Gaussian random variables N [0, 1] i.i.d. The t

parameter and each of the xa may be tuned in R
+. We will use both the symbol x as

well as (x1, . . . , xK) to label the K interpolating real parameters coupling the one-body
interactions. K represents the dimensions, corresponding to the RSB steps in the replica
trick. Let us denote via Ea each of the averages with respect to each of the Jas and E0

is the one with respect to the whole Jij random couplings. Through equation (7) we are

allowed to define the following partition function Z̃N(t; x1, . . . , xK) and, iteratively, all the
other BRSB approximating functions for a = 0, . . . , K:

ZK ≡ Z̃N =
∑

σ

B({σ};x, t), (8)

· · ·
Zma

a−1 ≡ Ea (Zma
a ) , (9)

· · ·
Zm1

0 ≡ E1(Z
m1
1 ). (10)

We need further to introduce the following interpolating function:

α̃N(t; x1, . . . , xK) ≡ 1

N
E0 log Z0, (11)

and define, for a = 1, . . . , K, the random variables

fa ≡ Zma
a

Ea(Zma
a )

, (12)

and the generalized states

ω̃a(.) ≡ Ea+1 · · ·EK(fa+1 · · · fKω(.)), (13)

the whole in complete analogy with the ‘broken prescriptions’ [21].
Of course, the corresponding replicated states Ωa are immediately generalized with

respect to each of the ωa states introduced above.
Overall, for a = 0, . . . , K, we further need the averages

〈.〉a ≡ E
(
f1 · · · faΩ̃a(.)

)
. (14)
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While it is clear that, when evaluated at t = β2 and x = 0, our interpolating function
α̃(t,x) reproduces the definition of the quenched free energy, when evaluated at t = 0
(which is a proper choice for the x parameters that we are going to show), it reproduces
the Parisi trial solution f(q = 0, y = h) at the given K level of RSB:

α̃N (t = 0; x1, . . . , xK) =
1

N
E0

× log

⎡

⎣E1 · · ·
[
EK

(
∑

σ

exp

(
K∑

a=1

√
xa

∑

i

Ja
i σi

))mK
]1/mK

· · ·
⎤

⎦
1/m1

. (15)

Even though this is far from being trivial, this is an essential feature of mean-field behavior
even in the disordered framework; in fact, in the thermodynamic limit the connected
correlation inside pure states should go to zero, bridging the two-body problem to a
(collection of) one-body model, or better ‘high temperature model’, whose partition
function factorizes:

∑

σ

exp

(
K∑

a=1

√
xa

∑

i

Ja
i σi

)
= 2N

∏

i

cosh

(
K∑

a=1

√
xaJ

a
i

)
, (16)

such that, averaging over JK
i , we get

EK

(
∑

σ

exp

(
K∑

a=1

√
xa

∑

i

Ja
i σi

))mK

= 2NmK

∏

i

∫
d μ(zK) coshmK

×
(

K−1∑

a=1

√
xaJ

a
i + zK

√
xK

)
, (17)

and so on. Even taking the external field h, which is again encoded in a single-body
interaction and is simply added into the hyperbolic cosine, we get

α̃N (t = 0; x1, . . . , xK) = log 2

+ log
[∫

dμ(z1) · · ·
[∫

dμ(zK) coshmK

(
K∑

a=1

√
xaza + βh

)]1/mK

· · ·
]1/m1

.

In the case where xa = β2(qa − qa−1) the second term does coincide sharply with the
solution of the Parisi equation [28].

Let us now define S(t,x) as the principal Hamilton function (PHF) for our problem:

S(t; x1, . . . , xK) = 2

(
α(t; x1, . . . , xK) − 1

2

K∑

a=1

xa − 1
4
t

)
. (18)

As proved in the appendix, the (x, t)-streaming of S(t; x1, . . . , xK) is then

∂tS(t; x1, . . . , xK) = −1
2

K∑

a=0

(ma+1 − ma)〈q2
12〉a, (19)

∂aS(t; x1, . . . , xK) = −1
2

K∑

b=a

(mb+1 − mb)〈q12〉b. (20)

doi:10.1088/1742-5468/2010/09/P09006 6
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It is then possible to introduce a Hamilton–Jacobi structure for S(x, t), which implicitly
defines a potential V (t; x1, . . . , xK), so we can write

∂tS(t,x) + 1
2

K∑

a,b=1

∂aS (M−1)ab ∂bS + V (t,x) = 0. (21)

The kinetic term is then

T ≡ 1
2

K∑

a,b=1

∂aS(t; x1, . . . , xK) (M−1)ab ∂bS(t; x1, . . . , xK)

= 1
2

K∑

a,b=1

(M−1)ab

K∑

c≥a

K∑

d≥b

(mc+1 − mc)〈q12〉c(md+1 − md)〈q12〉d

= 1
2

K∑

c,d=1

Dcd (mc+1 − mc)〈q12〉c(md+1 − md)〈q12〉d, (22)

where we defined

Dcd ≡
c∑

a=1

d∑

b=1

(M−1)ab. (23)

By the inversion of the mass matrix

Dcd(mc+1 − mc) = δcd (24)

we obtain the expression

T = 1
2

K∑

c=1

(mc+1 − mc)〈q12〉2c (25)

= 1
2

K∑

c=0

(mc+1 − mc)〈q12〉2c − 1
2
(m1 − m0)〈q12〉20. (26)

Condition (24) determines the elements of the inverse of the mass matrix M−1.
In particular, we stress that it is symmetric and the non-zero values are only on the

diagonal and all of them respecting (M−1)a,a+1 = (M−1)a+1,a:

(M−1)11 =
1

m2 − m1
, (27)

(M−1)a,a =
1

ma+1 − ma

+
1

ma − ma−1

, (28)

(M−1)a,a+1 = − 1

ma+1 − ma
, (29)

all the others being zero.

doi:10.1088/1742-5468/2010/09/P09006 7
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The elements of the mass matrix M are determined by the equation
∑

b

Mab(M
−1)bc = δac, (30)

and it is immediate to verify that the following representation holds:

Mab = 1 − m(a∧b). (31)

With this expression for the matrix elements, by substituting equations (19) and (26)
into (21) we obtain the expression for the potential such that overall

∂tS(t; x1, . . . , xK) + 1
2

K∑

a,b=1

∂aS (M−1)ab ∂bS + V (t; x1, . . . , xK) = 0,

V (t; x1, . . . , xK) = 1
2

K∑

a=0

(ma+1 − ma)(〈q2
12〉a − 〈q12〉2a) + 1

2
(m1 − m0)〈q12〉20.

(32)

Once the mechanical analogy is built, it is, however, prohibitive solving the problem as it
is (i.e. integrating the equations of motion); instead we propose an iterative scheme that
mirrors the replica symmetry breaking one: at first, by choosing K = 1, we solve the free-
field solution (we impose V (t,x) = 0) and we recover the annealed expression for the free
energy. This is consistent with neglecting the potential as it turns out to be the squared
overlap. Then, we avoid the perturbation scheme to deal with the source but we enlarge
our Euclidean space by considering K = 2. Again we work out the free-field solution to
obtain the replica symmetric expression for the free energy, consistent with neglecting the
potential; in fact, the source we avoid this time is the variance of the overlap: a much
better approximation with respect to K = 1. We go further explicitly by considering the
K = 3 case and we get the 1-RSB solution in the same way (and so on). Interestingly
we discover that there is a one-to-one connection among the steps of replica symmetry
breaking in the replica trick and the Euclidean dimension in the broken replica mechanical
analogy. The latter, however, incorporates, in a single scheme, even the annealed and the
replica symmetry solutions.

4. K = 1, annealed free energy

Let us now recover some properties of disordered thermodynamics by studying the K = 1
case so to show how the solution of the free problem coincides with the annealed expression.

We assume x(q) = m1 = 1 in the whole interval [0, 1].
We show now that, within our approach, this implies a reduction in the degrees of

freedom where the Hamilton–Jacobi action lives, such that the PHF depends on t only.
The dynamics involves a 1 + 1 Euclidean space–time such that

Z1 ≡ ZK ≡ Z̃N ≡
∑

σ

exp(
√

t/NHN(σ; J) +
√

x
∑

i

Jiσi). (33)

Z0 is consequently given by

Z0 ≡ E1Z1 = exp

(
N

2
x

)∑

σ

exp(
√

t/NHN(σ; J)). (34)

doi:10.1088/1742-5468/2010/09/P09006 8
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This implies, in the interpolating function, a linear and separate dependence by the x:

α̃(t, x) =
x

2
+

1

N
E0 log

∑

σ

exp(
√

t/NHN(σ; J)). (35)

The x derivative of α̃(t,x) is immediate, while for the t one we can use the general
expression previously obtained (cf equations (19) and (20)):

∂tα̃ = 1
4
[1 − 〈q2

12〉0], (36)

∂xα̃ = 1
2
. (37)

As a straightforward but interesting consequence, PHF does not depend on x and we get

S(t, x) = 2α̃(t, x) − x − t

2

=
2

N
E0 log

∑

σ

exp(
√

t/NHN(σ; J)) − t

2
, (38)

∂tS = −1
2
〈q2

12〉0, (39)

∂xS ≡ v(t, x) = 0, (40)

where v(t) defines the velocity field, which is identically zero such that x(t) ≡ x0.

In this simplest case, the potential is trivially the t derivative of S(t,x) with a change
in the sign (the averaged squared overlap):

V (t,x) = 1
2
〈q2

12〉0. (41)

Now we want to deal with the solution of the statistical mechanics problem. As we
neglect the source (we are imposing 〈q2

12〉0 = 0), we can take the initial value for S(x, t)
as it must be constant over all spacetime:

S̄ = S(0) = 2 log 2, (42)

and, consequently, we can write the solution of the problem as

ᾱ(t, x) = log 2 +
x

2
+

t

4
. (43)

At this point it is straightforward to obtain the statistical mechanics by posing t = β2

and x = 0:

αN(β) = log 2 +
β2

4
, (44)

which is exactly the annealed free energy.

doi:10.1088/1742-5468/2010/09/P09006 9
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5. K = 2, replica symmetric free energy

In this section, by adding another degree of freedom to our mechanical analogy, we want
to reproduce the replica symmetric solution of the statistical mechanics problem.

We deal with K = 2. The order parameter is now taken as

x(q) = xq̄(q) =

{
0 if q ∈ [0, q̄),

1 if q ∈ [q̄, 1].
(45)

So

q1 = q̄, q2 = qK ≡ 1 (46)

m0 = m1 = 0, m2 = mK = 1, m3 = mK+1 ≡ 1. (47)

The auxiliary partition function depends on t and on the two spatial coordinates x1

and x2:

Z̃N(t; x1, x2) ≡
∑

σ

exp

(
√

t/NHN(σ; J) +
√

x1

∑

i

J1
i σi +

√
x2

∑

i

J2
i σi

)
, (48)

and with the latter, recursively, we obtain Z0:

ZK ≡ Z2 ≡ Z̃N , (49)

Z1 ≡ (E2Z
m2
2 )1/m2 = E2Z2, (50)

Z0 = (E1Z
m1
1 )1/m1 . (51)

The function Z1 can be immediately evaluated by standard Gaussian integration as

Z1 = exp
(
N

x2

2

)∑

σ

exp

(
√

t/NHN(σ; J) +
√

x1

∑

i

J1
i σi

)
. (52)

Concerning the function Z0 we can write

(E1Z
m1
1 )1/m1 = exp

[
1

m1
log E1[exp(m1 log Z1)]

]

= exp

[
1

m1

log E1[1 + m1 log Z1 + o(m2
1)]

]

= exp

[
1

m1
[m1E1 log Z1 + o(m2

1)]

]

= exp E1 log Z1 + o(m1),

and consequently

Z0 = exp E1 log Z1. (53)

In this case, our interpolating function is

α̃(t, x1, x2) =
x2

2
+

1

N
E0E1 log

[
∑

σ

exp

(
√

t/NHN(σ; J) +
√

x1

∑

i

J1
i σi

)]
. (54)
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Again by using the general formulae sketched in the first section (cf equations (19)
and (20)) we get for the derivatives

∂tα̃ = 1
4
[1 − 〈q2

12〉1], (55)

∂x1α̃ = 1
2
[1 − 〈q12〉1], (56)

∂x2α̃ = 1
2
. (57)

Evaluating our function at t = 0, x1 = x0
1, x2 = x0

2 we easily find

α̃(0; x0
1, x

0
2) =

x0
2

2
+ log 2 +

∫
dμ(z) log cosh

(√
x0

1 z

)
. (58)

Let us introduce now the K = 2 PHF:

S(t; x1, x2) = 2

(
α̃ − x1

2
− x2

2
− t

4

)
, (59)

together with its derivatives

∂tS = −1
2
〈q2

12〉1, (60)

∂x1S = v1(t, x1) = −〈q12〉1, (61)

∂x2S = 0. (62)

We observe that, even in this case, there is no true dependence by one of the spatial
variables (x2): this is due to the constant value of the last interval mK = m2 where
the order parameter equals one and can be Gaussian-integrated out immediately into the
corresponding Z2, getting the pre-factor exp(1

2
Nx0

2).
As a consequence, we can forget the mass matrix as there is no true multidimensional

space.
Let us write down the Hamilton–Jacobi equation:

∂tS(t, x1) + 1
2
(∂x1S(t, x1))

2 + V (t, x1) = 0. (63)

The potential is given by the function

V (t, x1) = 1
2
(〈q2

12〉1 − 〈q12〉21), (64)

where

〈q2
12〉1 = E0E1f1Ω1(q

2
12) = E0E1f1

1

N2

∑

ij

(E2f2ω(σiσj))
2. (65)

When taking x1 = 0 and t = β2 the variance of the overlap becomes the source of the
streaming:

V (β2, 0) = 1
2
(〈q2

12〉 − 〈q12〉2). (66)

As usual in our framework, we kill the source (i.e. V (t,x) = 0) and obtain for the
velocity

q̄(x0
1) ≡ −v1(0, x

0
1) =

∫
dμ(z) tanh2(z

√
x0

1). (67)
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This is the well-known self-consistency relation of Sherrington and Kirkpatrick, namely

q̄(β) =

∫
dμ(z) tanh2(β

√
q̄z). (68)

The free-field solution of the Hamilton–Jacobi equation is then the solution in a particular
point (and of course the choice is S̄(0, x0

1) which requires only a one-body evaluation) plus
the integral of the Lagrangian over time (which is trivially built by the kinetic term alone
when considering free propagation). Overall the solution is

S̄(t, x1) = S̄(0, x0
1) + 1

2
q̄2(x0

1)t, (69)

by which statistical mechanics is recovered as usual, obtaining for the pressure

ᾱ(t; x1, x2) = log 2 +

∫
dμ(z) log cosh

(√
x0

1z

)
+

t

4
(1 − q̄)2 +

x2

2
, (70)

which corresponds exactly to the replica symmetric solution once evaluated at x1 = x2 = 0
and t = β2 and noticing that 0 = x(t) = x0

1 − q̄t.
Within our description it is not surprising that the replica symmetric solution is a

better description with respect to the annealing. In fact, while annealing is obtained by
neglecting the whole squared overlap 〈q2

12〉 as a source term, the replica symmetric solution
is obtained when neglecting only its variance.

Of course, neither the former nor the latter may correspond to the true solution.
However, we understand that increasing the Euclidean dimensions (the RSB steps in
the replica framework) corresponds to lessening the potential in the Hamilton–Jacobi
framework and consequently reducing the error of the free-field approximation towards
the true solution.

6. K = 3, 1-RSB free energy

The simplest expression of x(q) which breaks replica symmetry is obtainable when
considering K = 3:

0 = q0 < q1 < q2 < q3 = 1, (71)

0 = m1 < m2 ≡ m < m3 = 1. (72)

With this choice for the parametrization of x(q) the solution of the Parisi equation

∂qf + 1
2
∂2

yf + 1
2
x(∂yf)2 = 0 (73)

is given by

f(0, h; x, β) =
1

m

∫
dμ(z1) log

∫
dμ(z2) coshm[β(

√
q1z1 +

√
q2 − q1z2 + h)]

+ 1
2
β2(1 − q2), (74)

doi:10.1088/1742-5468/2010/09/P09006 12

http://dx.doi.org/10.1088/1742-5468/2010/09/P09006


J.S
tat.M

ech.
(2010)

P
09006

Replica symmetry breaking in mean-field spin glasses through the Hamilton–Jacobi technique

and, using a label P to emphasize that we are considering the Parisi prescription, the
pressure becomes

αP (β, h; x) = log 2 + f(0, h; x, β) − 1
2
β2

∫ 1

0

q x(q) dq

= log 2 − 1
4
β2[(m − 1)q2

2 − 1 − mq2
1 + 2q2]

+
1

m

∫
dμ(z1) log

∫
dμ(z2) coshm[β(

√
q1z1 +

√
q2 − q1z2 + h)]. (75)

Now we want to see how it is possible to obtain this solution by analyzing the geodetics
of our free mechanical propagation in 3 + 1 dimensions.

Let us define

Z̃N(t; x1, x2, x3) ≡
∑

σ

exp

[
√

t/NHN(σ; J) +

3∑

a=1

√
xa

∑

i

Ja
i σi

]
, (76)

by which

Z3 ≡ ZK ≡ Z̃N , (77)

Z2 = E3Z3 = exp

(
Nx3

2

)∑

σ

exp

[
√

t/NHN(σ; J) +
2∑

a=1

√
xa

∑

i

Ja
i σi

]
, (78)

Z1 = (E2Z
m
2 )1/m , (79)

Z0 = (E1Z
m1
1 )1/m1 = exp(E1 log Z1) = exp

[
1

m
E1 log E2Z

m
2

]
. (80)

For the interpolating function we get in this way

α̃N (t; x1, x2, x3) ≡ 1

N
E0 log Z0 =

x3

2
+

1

Nm
E0E1

× log

{
E2

[
∑

σ

exp

(
√

t/NHN(σ; J) +

2∑

a=1

√
xa

∑

i

Ja
i σi

)]m}
, (81)

while for the derivatives we can use the general formulae so as to obtain

∂tα̃ = 1
4
[1 − m〈q2

12〉1 − (1 − m)〈q2
12〉2], (82)

∂1α̃ = 1
2
[1 − m〈q12〉1 − (1 − m)〈q12〉2], (83)

∂2α̃ = 1
2
[1 − (1 − m)〈q12〉2], (84)

∂3α̃ = 1
2
. (85)

Then we need to evaluate the interpolating function at the starting time:

α̃N (0; x0
1, x

0
2, x

0
3) =

x3

2
+ log 2

+
1

m

∫
dμ(z1) log

[∫
dμ(z2) coshm

(√
x0

1z1 +
√

x0
2z2

)]
. (86)
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The K = 3 PHF, as usual and previously explained for the K = 1, 2 cases, does
not depend on the last coordinate (i.e. x3), such that we can ignore it when studying the
properties of the solution:

S(t; x1, x2) =
2

Nm
E0E1 log E2

[
∑

σ

exp

(
√

tN/2K(σ) +
2∑

a=1

√
xa

∑

i

Ja
i σi

)]m

− x1 − x2 − t/2. (87)

and the derivatives, implicitly defining the momenta (labeled by p1, p2), are given by

∂tS = −m

2
〈q2

12〉1 −
1 − m

2
〈q2

12〉2, (88)

∂1S ≡ p1(t; x1, x2) = −m〈q12〉1 − (1 − m)〈q12〉2, (89)

∂2S ≡ p2(t; x1, x2) = −(1 − m)〈q12〉2. (90)

The kinetic energy consequently turns out to be

T =
m

2
〈q12〉21 +

1 − m

2
〈q12〉22, (91)

and the potential, which we are going to neglect as usual, is given by

V (t; x1, x2) = 1
2
[m(〈q2

12〉1 − 〈q12〉21) + (1 − m)(〈q2
12〉2 − 〈q12〉22)]. (92)

By having two spatial degrees of freedom, the mass matrix has a 2 × 2 structure now:

M−1 =

(
1/m −1/m
−1/m 1/[m(1 − m)]

)
, (93)

M =

(
1 1 − m

1 − m 1 − m

)
. (94)

Note that the eigenvalues of the mass matrix are always positive defined for m ∈ [0, 1].
We can determine now the velocity field

v1(t; x1, x2) =

2∑

b=1

(M−1)1b pb = −〈q12〉1, (95)

v2(t; x1, x2) =
2∑

b=1

(M−1)2b pb = 〈q12〉1 − 〈q12〉2. (96)

So we get all the ingredients for studying the free-field solution (the one we get
neglecting the source). In this case the equations of motion are

x1(t) = x0
1 − 〈q12〉1(0; x0

1, x
0
2) t ≡ x0

1 − q̄1t (97)

x2(t) = x0
2 +

(
q̄1 − 〈q12〉1(0; x0

1, x
0
2)
)

t ≡ x0
2 + (q̄1 − q̄2)t (98)
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and we can see that q̄1 and q̄2 satisfy the self-consistency relations in agreement with the
replica trick predictions:

q1 =

∫
dμ(z)

[
D−1(z)

∫
dμ(y) coshm θ(z, y) tanh θ(z, y)

]2

, (99)

q2 =

∫
dμ(z)

[
D−1(z)

∫
dμ(y) coshm θ(z, y) tanh2 θ(z, y)

]
, (100)

θ(z, y) = β(
√

q1z +
√

q2 − q1y), (101)

D(z) =

∫
dμ(y) coshm θ(z, y). (102)

The PHF is obtained in coherence with the previous cases and obeys

S̄(t; x1, x2) = S̄(0; x0
1, x

0
2) + T (0; x0

1, x
0
2)t, (103)

by which

ᾱ(t; x1, x2, x3) − x1

2
− x2

2
− t

4
= ᾱ(0; x0

1, x
0
2, x

0
3) −

x0
1

2
− x0

2

2
+ T (0; x0

1, x
0
2)

t

2
, (104)

and, remembering that

x1 − x0
1 = − q̄1t, (105)

x2 − x0
2 = (q̄1 − q̄2)t, (106)

we get the thermodynamic pressure in the space–time coordinates:

ᾱ(t; x1, x2, x3) =
x3

2
+ log 2 − t

4
[−1 + 2q̄2 − mq̄2

1 − (1 − m)q̄2
2 ]

+
1

m

∫
dμ(z1) log

[∫
dμ(z2) coshm

[√
x0

1z1 +
√

x0
2z2

]]
. (107)

In order to get the statistical mechanics result, as usual, we need to evaluate the latter
in t = β2, x1 = x2 = x3 = 0, from which x0

1 = q̄1t and x0
2 = (q̄1 − q̄2)t, gaining once

again (75).

7. Properties of the K = 1, 2, 3 free energies

In the previous sections, we obtained solutions for the Hamilton–Jacobi equation in the
K = 1, 2, 3 cases without saying anything about uniqueness. For K = 1, the annealed
case, there is no true motion so it is clear that there is just a single straight trajectory,
identified by the initial point x0 = x, intersecting the generic point (x, t), with x, t > 0.

In the K = 2 problem, well studied in [20], one can show uniqueness by observing
that the function t(x0), representing the point at which the trajectory intersects the x
axis, is a monotone increasing one of the initial point x0, so that given x, t > 0, there is a
unique point x0 (and velocity q̄(x0), of course) from which the trajectory starts.

For K = 3, the problem becomes much complicated, because we now have to consider
motion in a three-dimensional Euclidean space, proving that given the generic point
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(x1, x2, t), with x1 > 0, x2 > 0, t > 0, there exists a unique line passing in (x1, x2)
at time t. So let us consider the functions

F (x1, t; x
0
1, x

0
2) ≡ x1 − x0

1 + q̄1(x
0
1, x

0
2)t, (108)

G(x2, t; x
0
1, x

0
2) ≡ x2 − x0

2 + q̄2(x
0
1, x

0
2)t − q̄1(x

0
1, x

0
2)t. (109)

These functions vanish in the points corresponding to the solutions of the equations of
motion, and in particular for all the At ≡ (x1 = 0, x2 = 0, t > 0; x0

1 = 0, x0
2 = 0). Labeling

with ∂1 and ∂2 the partial derivatives with respect to x0
1 and x0

2, the Dini prescription tells
us that, if the determinant of the Hessian matrix

∂(F, G)

∂(x0
1, x

0
2)

=

∣∣∣∣
∂1F ∂2F
∂1G ∂2G

∣∣∣∣ (110)

is different from zero in a neighborhood of At, then we can explicate x0
1 and x0

2 as functions
of x1, x2 and t in such a neighborhood. This means that the initial point and the velocities,
which depend on it, are univocally determined by x1, x2 and t via the equations of motion.

Calculating the determinant we find

∂(F, G)

∂(x0
1, x

0
2)

= (−1 + ∂1q̄1t)(−1 + ∂2q̄2t − ∂2q̄1t) − (∂2q̄1t)(+∂1q̄2t − ∂1q̄1t)

= 1 + (∂2q̄1 − ∂1q̄1 − ∂2q̄2)t + (∂1q̄1∂2q̄2 − ∂2q̄1∂1q̄2)t
2. (111)

so we should ask, for all x0
1 > 0 and x0

2 > 0:

Δ ≡ (∂2q̄1 − ∂1q̄1 − ∂2q̄2)
2 − 4(∂1q̄1∂2q̄2 − ∂2q̄1∂1q̄2) (112)

to be negative, or in the case Δ ≥ 0, the zeros of

t± =
−∂2q̄1 + ∂1q̄1 + ∂2q̄2 ±

√
Δ

2(∂1q̄1∂2q̄2 − ∂2q̄1∂1q̄2)
(113)

correspond to non-invertibility points.
The expression we obtain for the determinant is quite intractable. However, we can

show uniqueness in a neighborhood of the initial point x0
1 = 0, x0

2 = 0. The motion
starting from this point has zero velocity and we saw that it gives the high temperature
solution for the mean-field spin glass model. Remembering that the transition to low
temperature is continuous, we can expand the Hessian for small values of x0

1 and x0
2 and

observe that, for x1 = 0, x2 = 0, t = β2, the equations of motions become

x0
1 = β2q̄1 (114)

x0
2 = β2(q̄2 − q̄1). (115)

When x0
1 → 0 and x0

2 → 0 we have also q̄1 → 0 and q̄2 → 0, so we have an expansion close
to the critical point (which is the only region where the control of the unstable 1-RSB
solution makes sense for the SK, the latter being ∞-RSB).

For q̄1 and q̄2 we have, retaining terms until the second order:

q̄1(x
0
1, x

0
2) ≈ x0

1 − 2(1 − m)x0
1x

0
2 − 2(x0

1)
2 (116)

q̄2(x
0
1, x

0
2) ≈ x0

1 + x0
2 + mx0

2(x
0
2 + 2x0

1) (117)
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and consequently

∂1q̄1(x
0
1, x

0
2) ≈ 1 − 2(1 − m)x0

2 − 4x0
1 (118)

∂2q̄1(x
0
1, x

0
2) ≈ −2(1 − m)x0

1 (119)

∂1q̄2(x
0
1, x

0
2) ≈ 1 + 2mx0

2 (120)

∂2q̄2(x
0
1, x

0
2) ≈ 1 + 2mx0

1 + 2mx0
2. (121)

Substituting in (111) we find

∂(F, G)

∂(x0
1, x

0
2)

≈ 1 − 2[1 − x0
1 − (1 − 2m)x0

2]t

+ [1 − (2 − m)x0
1 − 2(1 − 2m)x0

2 + 2m(m − 4)x0
1x

0
2 +

− 8m(x0
1)

2 − 4m(1 − m)(x0
2)

2]t2 (122)

and, for x0
1, x

0
2 = 0 (which corresponds to expand the velocities up to first order in x0

1 and
x0

2), we simply obtain

∂(F, G)

∂(x0
1, x

0
2)

≈ (1 − t)2. (123)

This means that in a neighborhood of x1 = x2 = 0 we have uniqueness, provided that we
are not exactly at the critical point t = β2 = 1.

8. Outlook and conclusions

In this paper we pioneered one step forward with respect to the previously investigated
Hamilton–Jacobi structure for free energy in the thermodynamics of complex systems
(tested on the paradigmatic SK model). This has been achieved by merging this approach
with the broken replica symmetry bound technique.

At the mathematical level the main achievement is the development of a new method
which is autonomously able to give the various steps of replica symmetry breaking (of
the replica trick counterpart). At the actual level, our method can be thought of as
a ‘trick’ for deriving the various steps of RSB, as an alternative to the replica trick
or the cavity fields. For instance, when working with the replica trick, annealing is a
regime far from being incorporated ‘naturally’ in the RSB mechanism; instead, in our
approach, it is simply the ‘zero level’ of approximation of a single scheme which merges
the various approximations in a unifying framework. Then, what can be proven within
this formalism—at this stage—are the various upper bounds of the corresponding K
levels of RSB with respect to the true free energy (full RSB)—this is essentially because
this version of the Hamilton–Jacobi streaming implicitly incorporates the broken replica
symmetry bounds. Surely the limit of K diverging is expected to offer the true solution
(the full Parisi scheme). However, rigorous control is still lacking nowadays. Surely
future research by our staff will be developed in that direction. However, the method
itself deserves attention because there are several models apart from the paradigmatic
SK which are finite-RSB (i.e. from the—still pedagogical—Gardner P-spin to the whole
plethora of applications in quantitative biology or computer science which actually are
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strongly based on cavity and belief propagation), to which the method can be directly
applied.

At a physical level this method highlights an alternative perspective by which
we understand that increasing the steps of RSB improves the achieved approximating
thermodynamics; this is achieved by mirroring these increments in diminishing the
approximation of a free-field propagation in a Euclidean spacetime for an extended free
energy, which recovers the proper one of statistical mechanics as a particular, well-defined,
limit.

However, when increasing the steps of RSB (and so making smaller the potential that
we neglect, and so, the smaller the error) there is a price to pay: each step of replica
symmetry breaking enlarges by one dimension the space for the motion of the mechanical
action. As a consequence the full RSB theory should live on some infinite-dimensional
space which deserves more analysis.

We need to investigate both the K → ∞ limit to complete the theory as well as its
immediate applications, primarily diluted systems.
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Appendix. Streaming of the interpolating function α̃(t, x)

In this appendix we show in full detail how to get the streaming of the interpolating
function (11).

The t-streaming of the interpolating function α̃(t,x) is given by the following formula:

∂tα̃N (x, t) = 1
4

(
1 −

K∑

a=0

(ma+1 − ma)〈q2
12(x, t)〉a

)
. (A.1)

To get this result, let us start by

∂tα̃N (x, t) =
1

N
E0Z

−1
0 (x, t)∂tZ0(x, t), (A.2)

and, as it is straightforward to show that

Z−1
a (x, t)∂tZa(x, t) = Ea+1(fa+1Z

−1
a+1(x, t)∂tZa+1(x, t)), (A.3)

by iteration, we get

Z−1
0 (x, t)∂tZ0(x, t) = E1 · · ·EK(f1 · · ·fKZ−1

K (x, t)∂tZK(x, t)). (A.4)
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The t-derivative of ZK is then given by

Z−1
K (x, t)∂tZK(x, t) =

1

4
√

tN

∑

ij

Jijω(σiσj), (A.5)

from which

Z−1
0 (x, t)∂tZ0(x, t) =

1

4
√

tN

∑

ij

E(f1 · · ·fKJijω(σiσj)), (A.6)

where we labeled with E the global average over all the random variables as there is no
danger of confusion. All the terms in the sum can be worked out by integrating by parts:

E(f1 · · · fKJijω(σiσj)) =

K∑

a=1

E(f1 · · ·∂Jij
fa · · · fKω(σiσj))

+ E(f1 · · ·fK∂Jij
ω(σiσj)). (A.7)

So we need to calculate the explicit expression of the derivatives with respect to Jij of
both fa as well as ω(σiσj). For the latter, it is easy to check that

∂Jij
ω(σiσj) =

√
t

N
(1 − ω2(σiσj)), (A.8)

while for the fas we have

∂Jij
fa = mafa

(
Z−1

a (x, t)∂Jij
Za(x, t)

)− mafaEafa

(
Z−1

a (x, t)∂Jij
Za(x, t)

)
. (A.9)

By using the analogy of (A.3) we get

Z−1
a (x, t)∂Jij

Za(x, t) = Ea+1 . . . EK

(
fa+1 . . . fKZ−1

K ∂Jij
ZK

)

=

√
t

N
ω̃a(σiσj), (A.10)

such that

∂Jij
fa = mafa

√
t

N
(ω̃a(σiσj) − ω̃a−1(σiσj)). (A.11)

Substituting (A.8) and (A.11) into (A.7) we obtain

E(f1 . . . fKJijω(σiσj)) =

√
t

N

K∑

a=1

ma[E(f1 · · · faω̃a(σiσj) . . . fKω(σiσj))

− E(f1 · · · fa−1ω̃a−1(σiσj) · · ·fKω(σiσj))]

+

√
t

N
E(f1 · · · fK(1 − ω2(σiσj))). (A.12)

Overall, an explicit expression for the equation (A.2) is given by

∂tα̃ =
1

4N2

K∑

a=1

∑

ij

ma[E0 . . . Eaf1 · · · faω̃a(σiσj)Ea+1 · · ·EKfa+1 . . . fKω(σiσj)

− E0 · · ·Ea−1f1 · · · fa−1ω̃a−1(σiσj)Ea · · ·EKfa · · · fKω(σiσj)]

+
1

4N2
Ef1 · · · fK

∑

ij

(1 − ω2(σiσj)). (A.13)
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Once the overlap is introduced, we can write the result:

∂tα̃ = 1
4

K∑

a=1

ma(〈q2
12〉a − 〈q2

12〉a−1) + 1
4
(1 − 〈q2

12〉K)

= 1
4

(
K∑

a=1

ma〈q2
12〉a −

K∑

a=0

ma+1〈q2
12〉a + mK+1〈q2

12〉K + 1 − 〈q2
12〉K

)

= 1
4

(
1 −

K∑

a=0

(ma+1 − ma)〈q2
12〉a

)
. (A.14)

Now let us focus on the x-streaming of the interpolating function α̃(t,x) and show
that it is given by the following formula:

∂aα̃N (x, t) = 1
2

(
1 −

K∑

b=a

(mb+1 − mb)〈q12(x, t)〉b
)

. (A.15)

In analogy with the t-streaming we have

∂aα̃N (x, t) =
1

N
E0Z

−1
0 (x, t)∂aZ0(x, t), (A.16)

Z−1
b (x, t)∂aZb(x, t) = Eb+1(fb+1Z

−1
b+1(x, t)∂aZb+1(x, t)), (A.17)

⇒ Z−1
0 (x, t)∂aZ0(x, t) = E1 . . . EK(f1 . . . fKZ−1

K (x, t)∂aZK(x, t)), (A.18)

Z−1
K (x, t)∂aZK(x, t) =

1

2
√

xa

∑

i

Ja
i ω̃(σi), (A.19)

by which

∂aα̃ =
1

N

1

2
√

xa

∑

i

E(f1 · · ·fKJa
i ω̃(σi)). (A.20)

Again by integrating by parts we have

∂aα̃ =
1

N

1

2
√

xa

N∑

i=1

[

K∑

b=1

E(f1 · · ·∂Ja
i
fb · · · fKω̃(σi)) + E(f1 · · · fK∂Ja

i
ω̃(σi))]. (A.21)

Let us work out Ja
i by remembering that Zbs, and consequently fbs, do not depend on

J b+1
i , . . . , JK

i :

∂Ja
i
fb =

⎧
⎪⎨

⎪⎩

0 if a > b

mafa(Z
−1
a (x, t)∂Ja

i
Za(x, t)) if a = b

mbfb(Z
−1
b (x, t)∂Ja

i
Zb(x, t)) − mbfbEbfb(Z

−1
b (x, t)∂Ja

i
Zb(x, t)) if a < b.

(A.22)

The same recursion relationship holds in this case as well:

Z−1
b (x, t)∂Ja

i
Zb(x, t) = Eb+1 · · ·EK(fb+1 · · · fKZ−1

K (x, t)∂Ja
i
ZK(x, t)). (A.23)

doi:10.1088/1742-5468/2010/09/P09006 20

http://dx.doi.org/10.1088/1742-5468/2010/09/P09006


J.S
tat.M

ech.(2010)
P

09006

Replica symmetry breaking in mean-field spin glasses through the Hamilton–Jacobi technique

Furthermore

Z−1
K (x, t)∂Ja

i
ZK(x, t) =

√
xaω̃(σi), (A.24)

from which we get

Z−1
b (x, t)∂Ja

i
Zb(x, t) =

√
xaω̃b(σi). (A.25)

Consequently, equations (A.22) can be written as

∂Ja
i
fb =

⎧
⎪⎨

⎪⎩

0 if a > b

mafa

√
xaω̃a(σi) if a = b√

xambfb(ω̃b(σi) − ω̃b−1(σi)) if a < b.

(A.26)

The last thing missing is evaluating the derivative of the state

∂Ja
i
ω(σi) =

√
xa(1 − ω2(σi)), (A.27)

so as to write, via the overlap, the analogous terms for the generalized states. Substituting
equations (A.27) and (A.26), once expressed via overlaps, into (A.21) we obtain
equation (A.15).
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