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In this work we aim to highlight a close analogy between cooperative behaviors in chemical kinetics and
cybernetics; this is realized by using a common language for their description, that is mean-field statistical
mechanics. First, we perform a one-to-one mapping between paradigmatic behaviors in chemical kinetics
(i.e., non-cooperative, cooperative, ultra-sensitive, anti-cooperative) and in mean-field statistical mechanics
(i.e., paramagnetic, high and low temperature ferromagnetic, anti-ferromagnetic). Interestingly, the
statistical mechanics approach allows a unified, broad theory for all scenarios and, in particular,
Michaelis-Menten, Hill and Adair equations are consistently recovered. This framework is then tested
against experimental biological data with an overall excellent agreement. One step forward, we consistently
read the whole mapping from a cybernetic perspective, highlighting deep structural analogies between the
above-mentioned kinetics and fundamental bricks in electronics (i.e. operational amplifiers, flashes,
flip-flops), so to build a clear bridge linking biochemical kinetics and cybernetics.

C
ooperativity is one of the most important properties of molecular interactions in biological systems and it
is often invoked to account for collective features in binding phenomena.

In order to investigate and predict the effects of cooperativity, chemical kinetics proved to be a fundamental
tool and, also due to its broadness over several fields of biosciences, a number of cooperativity quantifiers (e.g.
Hills number1, Koshland cooperativity test2, global dissociation quotient3, weak and strong fine tunings4, etc.),
apparently independent or distinct, have been introduced. However, a clear, unified, theoretical scheme where all
cooperative behaviors can be framed would be of great importance, especially in biotechnology research5,6 and for
scientists dealing with interdisciplinary applications7,8. To this task, statistical mechanics offers a valuable
approach as, from its basic principles, it aims to figure out collective phenomena, possibly overlooking the details
of the interactions to focus on the very key features. Indeed, a statistical mechanics description of reaction kinetics
has already been paved through theoretical models based on linear Ising chains9, spin lattices with nearest
neighbors interactions10, transfer matrix theory9,10 and structural probabilistic approaches11.

In this work we expand such statistical mechanics picture toward a mean-field perspective12 by assuming that
the interactions among the system constituents are not limited by any topological or spatial constraint, but are
implicitly taken to be long-ranged, as in a system that remains spatially homogeneous. This approach is naturally
consistent with the rate-equation picture, typical of chemical kinetics investigations and whose validity is restricted
to the case of vanishing correlations13,14 and requires a sufficiently high spatial dimension or the presence of an
effective mixing mechanism (hence, ultimately, long-range interactions). In general, in the mean-field limit,
fluctuations naturally decouple from the volume-averaged quantities and can be treated as negligible noise.

By adopting a mean-field approach, we abandon a direct spatial representation of binding structures and we
introduce a renormalization of the effective couplings. The reward lies in a resulting unique model exhibiting a
rich phenomenology (e.g. phase transitions), which low-dimensional models typically lack, yet being still feasible
for an exact solution. In particular, we obtain an analytical expression for the saturation function which is
successfully compared with recent experimental findings, taken from different (biological) contexts to check
robustness. Furthermore, from this theory basic chemical kinetics equations (e.g. Michaelis-Menten, Hill and
Adair equations) are recovered as special cases.

Further, there is a deep theoretical motivation underlying the development of a mean-field statistical
mechanics approach to chemical kinetics: it can be used to code collective behavior of biosystems into a cyber-
netical framework. In fact, cybernetics, meant as the science dedicated to the understanding of self-organization
and emergent communication among the constituents of a system, can be naturally described via (mean-field)
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statistical mechanics15–17. Thus, the latter provides a shared form-
alism which allows to automatically translate chemical kinetics into
cybernetics and vice versa. In this perspective, beyond theoretical
interest, at least two concrete benefits may stem from our investiga-
tion: first, in the field of biotechnologies, logical gates have already
been obtained through biological hardware (see e.g.5,6) and for their
proper functioning signal amplification turns out to be crucial. In
this paper, cooperativity in reaction kinetics is mapped into amp-
lification in electronics, hence offering a solid scaffold for biological
amplification theory.

Then, as statistical mechanics has been successfully applied in the
world of computing (for instance in neural networks18, machine
learning19 or complex satisfiability20), its presence in the theory of
biological processors could be of relevant interest. In particular, we
discuss how to map ultra-sensitive kinetics to logical switches and
how to read anti-cooperative kinetics as the basic ingredient for
memory storage in biological flip-flops, whose interest resides in
several biological machineries as gene regulatory networks21, ribos-
witches22, synaptic switches23, autopoietic systems24 and more25–27.

To summarize, a rigorous, promising link between cybernetics and
collective biological systems can be established via statistical
mechanics and this point will be sketched and corroborated by
means of several examples throughout this paper, which is structured
as follows:
First, we review the main concepts, facts and methods from both
chemical kinetics and statistical mechanics perspectives. Then, we
develop a proper theoretical framework able to bridge statistical
mechanics and chemical kinetics; the former can also serve as a
proper tool for describing and investigating cybernetics, thus, as a
syllogism, chemical kinetics and cybernetics become also related. The
agreement of our framework with real data, carefully extrapolated
from recent biological researches, covering the various standard
behaviors in chemical kinetics, is also successfully checked. Finally,
results and outlooks are discussed.

Results
Collective behaviors in chemical kinetics. Many polymers and
proteins exhibit cooperativity, meaning that their ligands bind in a
non-independent way: if, upon a ligand binding, the probability of
further binding (by other ligands) is enhanced, like in the
paradigmatic case of hemoglobin9, the cooperativity is said to be
positive, vice versa there is negative cooperativity when the
binding of more ligands is inhibited28, as for instance in some
insulin receptors29,30 and most G-protein coupled receptors23,31.
Several mechanisms can be responsible for this effect: for example,
if two neighbor docking sites on a polymer can bind charged ions, the
electrostatic attraction/repulsion may be the cause of a positive/
negative cooperativity. However, the most common case is that the
binding of a ligand somehow modifies the structure of the hosting
molecule, influencing the binding over the other sites and this is the
so-called allosteric mechanism32.

Let us now formalize such behavior by considering a hosting
molecule P that can bind N identical molecules S on its structure;
calling Pj the complex of a molecule P with j g [0,N] molecules
attached, the reactions leading to the chemical equilibrium are the
following

SzPj{1'Pj,

hence the time evolution of the concentration of the unbounded
protein P0 is ruled by

d P0½ �
dt

~{K 1ð Þ
z1 P0½ � S½ �zK 1ð Þ

{1 P1½ �, ð1Þ

where K 1ð Þ
z1, K 1ð Þ

{1 are, respectively, the forward and backward rate
constants for the state j 5 1, and their ratios define the association

constant K 1ð Þ:K 1ð Þ
z1

.
K 1ð Þ

{1 and dissociation constant ~K 1ð Þ:K 1ð Þ
{1

.
K 1ð Þ

z1. Focusing on the steady state we get, iteratively,

K jð Þ~
Pj

� �
Pj{1
� �

S½ �
:

Unfortunately, measuring [Pj] is not an easy task and one usually
introduces, as a convenient experimental observable, the average
number �S of substrates bound to the protein as

�S~
P1½ �z2 P2½ �z . . . zN PN½ �

P0½ �z P1½ �z . . . z PN½ �

~
K 1ð Þ S½ �z2K 2ð Þ S½ �2z . . . zN K Nð Þ S½ �N

1zK 1ð Þ S½ �zK 1ð ÞK 2ð Þ S½ �2z . . . zK 1ð ÞK Nð Þ S½ �N
,

ð2Þ

which is the well-known Adair equation3, whose normalized express-
ion defines the saturation function Y~�S=N . In a non-cooperative
system, one expects independent and identical binding sites, whose
steady states can be written as (explicitly only for j 5 1 and j 5 2 for
simplicity)

0~{N Kz P0½ � S½ �{K{ P1½ �, j~1ð Þ, ð3Þ

0~{ N{1ð ÞKz P1½ � S½ �z2K{ P2½ �, j~2ð Þ, ð4Þ

where K1 and K2 are the rates for binding and unbinding on any
arbitrary site. Being K:Kz=K{ the intrinsic association constant,
we get

K~
P1½ �

N P0½ � S½ �~
K 1ð Þ

N
, j~1ð Þ, ð5Þ

K~
2 P2½ �

N{1ð Þ P1½ � S½ �~
2K 2ð Þ

N{1ð Þ , j~2ð Þ, ð6Þ

and, in general, K(j) 5 (N 2 j 1 1)K/j. Plugging this expression into
the Adair equation (2) we get

�S~
N K S½ �

1zK S½ �[Y~
K S½ �

1zK S½ � , ð7Þ

which is the well-known Michaelis-Menten equation3.
If interaction among binding sites is expected, the kinetics

becomes far less trivial. Let us first sketch the limit case where inter-
mediates steps can be neglected, that is

P0½ �zN S½ �' PN½ �,

then

�S~
N PN½ �

P0½ �z PN½ �
~

N K S½ �N

1z S½ �N
, ð8Þ

�Y~
Y
N

~
K S½ �N

1z S½ �N
: ð9Þ

More generally, one can allow for a degree of sequentiality and write

Y~
K S½ �nH

1z S½ �nH
, ð10Þ

which is the well-known Hill equation3, where nH, referred to as Hill
coefficient, represents the effective number of substrates which are
interacting, such that for nH 5 1 the system is said to be non-cooperative
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and the Michaelis-Menten law is recovered; for nH . 1 it is coopera-
tive; for nH?1 it is ultra sensitive; for nH , 1 it is anti cooperative.

From a practical point of view, from experimental data for Y([S]),
one measures nH as the slope of log(Y/(1 2 Y)) versus [S].

Mean-field statistical mechanics. One of the best known statistical
mechanics model is the mean-field Ising model, namely the Curie-
Weiss model33. It describes the macroscopic behavior of a magnetic
system microscopically represented by N binary spins, labeled by i 5

1, 2, …, N, and whose state is denoted by si 5 61. In the presence of
an external field h and being J the N 3 N symmetric matrix encoding
for pairwise interactions among spins, the (extensive, macroscopic)
internal energy associated to a the configuration {s} 5 {s1, s2, …,
sN} is defined as

E sf g J, hjð Þ~{
1
N

XN

i~1

XN

jvi

Jijsisj{
XN

i~1

hisi: ð11Þ

It is easy to see that the spin configurations leading to a lower energy
are those where spins are aligned with the pertaining field, i.e. sihi .

0, and pairs (i, j) associated to positive (negative) coupling Jij are
parallel (anti-parallel), i.e. sisj 5 1 (sisj 5 21). Notice that, in eq.
11, we implicitly assumed that any arbitrary spin possibly interacts
with any other. This is a signature of the mean field approach which,
basically, means that interactions among spins are long-range and/or
that the time-scale of reactions is longer than the typical time for
particles to diffuse, in such a way that each spin/particle actually sees
any other. We stress that the mean field approximation also implies
that the probability distribution P({s}) for the whole configuration is
factorized into the product of the distribution for each single

constituents, namely P sf gð Þ~PN
i~1P sið Þ, analogously to classical

chemical kinetic prescriptions10.
For the analytic treatment of the system it is convenient to adopt a

mesoscopic description where the phase space, made of all the 2N

possible distinct spin configurations, undergoes a coarse-graining
and is divided into a collection T of sets, each representing a meso-
scopic state of a given energy Ek, (we dropped the dependence on the
parameters J, h to lighten the notation). In this way, all the micro-
scopic states belonging to the set k [ T share the same value of
energy Ek, calculated according to (11). In order to describe the
macroscopic behavior of the system through its microscopical
degrees of freedom, we introduce a statistical ensemble
r: rkf gk[T , meant as the probability distribution over the sets in
T ; consequently, ri $ 0 and

X
k

rk~1 must be fulfilled.

Accordingly, the internal energy and the entropy read as

E rð Þ~
X
k[T

Ekrk, S rð Þ~{KB

X
k[T

rk log rk, ð12Þ

where KB is the Boltzmann constant, hereafter set equal to 1. Being b
. 0 the absolute inverse temperature of the system, we define the
free-energy

F r,bð Þ~E rð Þ{b{1S rð Þ: ð13Þ

Notice that the minimum of F ensures, contemporary, the minimum
for E and the maximum for S, hence it provides a definition for the
thermodynamic equilibrium. As a consequence, from eq. 13 we cal-
culate the derivative with respect to the probability distribution and
require hF/hri 5 0; the solution, referred to as �r, reads as

�rk~
e{bEk

Z bð Þ , ð14Þ

and it is called the Maxwell-Bolzmann distribution. The normaliza-
tion condition implies Z bð Þ~

X
k

e{bEk and this quantity is called

‘‘partition function’’. We therefore have

�F E,bð Þ~ inf
r

F E,r,bð Þ:F E,�r,bð Þ~{b{1 ln Z bð Þ: ð15Þ

In general, given a function f({s}), its thermal average is fh i~P
sf g f sf gð Þe{bE sf gð Þ

.
Z bð Þ.

As this system is expected to display two different behaviors, an
ordered one (at low temperature) and a disordered one (at high

temperature), we introduce the magnetization m~
XN

i~1
si=N ,

which provides a primary description for the macroscopic behavior
of the system. In particular, it works as the ‘‘order parameter’’ and it
characterizes the onset of order at the phase transition between the
two possible regimes. More precisely, as the parameters b, J, h are
tuned (here for simplicity Jij . 0, Vi, j), the system can be either
disordered (i.e. paramagnetic), where spins are randomly oriented
and Æmæ 5 0, or ordered (i.e. ferromagnetic), where spins are con-
sistently aligned and Æmæ ? 0. The phase transition, separating
regions where one state prevails against the other, is a consequence
of the collective microscopic interactions.

In a uniform system where Jij:J , Vi ? j, Jii 5 0, and hi:h, Vi, all
spins display the same expected value, i.e. Æsiæ 5 Æsæ, Vi, which also
corresponds to the average magnetization Æmæ. Remarkably, in this
case the free energy of the system can be expressed through Æmæ by a
straightforward calculation18 that yields

F b,hð Þ~{b{1 ln 2{b{1 ln cosh b J mh izhð Þ½ �z J
2

m2
� �

, ð16Þ

whose extremization w.r.t. to Æmæ ensures again that thermodynamic
principles hold and it reads off as

m b,J,hð Þh i~tanh b J mh izhð Þ½ �, ð17Þ

which is the celebrated Curie-Weiss self-consistency. By simply solv-
ing eq. 17 (e.g. graphically or numerically) the macroscopic behavior
can be inferred. Before proceeding, we fix b 5 1, without loss of
generality as it can be reabsorbed trivially by h R bh 5 h and J R
bJ 5 J.

In the non-interacting case (J 5 0), eq. 17 gets m(J 5 0, h) 5

tanh(h), which reminds to an input-output relation for the system.
When interactions are present (J . 0), one can see that the solution of
eq. 17 crucially depends on J. Of course, Æm(J 5 0, h)æ , Æm(J . 0, h)æ,
due to cooperation among spins, and, more remarkably, there exists a
critical value Jc such that when J $ Jc the typical sigmoidal response
encoded by Æm(J, h)æ possibly becomes a step function (a true dis-
continuity is realized only in the thermodynamic limit N R ‘, while
at finite N the curve gets severely steep but still continuous). Hence,
to summarize, the Curie Weiss model exhibits two phases: A small-
coupling phase where the system behaves paramagnetically and a
strong-coupling phase where it behaves ferromagnetically. The fer-
romagnetic states are two, characterized by positive and negative
magnetization, according to the sign of the external field.

Statistical mechanics and chemical kinetics. In this section we
develop the first part of our formal bridge and show how the
Curie-Weiss model can be looked from a biochemical perspective.
We will start from the simplest case of independent sites and later,
when dealing with interacting sites, we will properly generalize this
model in order to consistently include both positive and negative
cooperativity.

The simplest framework: non interacting sites. Let us consider an
ensemble of elements (e.g. identical macromolecules, homo-allos-
teric enzymes, a catalyst surface), whose interacting sites are overall
N and labelled as i 5 1, 2, …, N. Each site can bind one smaller
molecule (e.g. of a substrate) and we call a the concentration of the
free molecules ([S] in standard chemical kinetics language). We
associate to each site an Ising spin such that when the ith site is
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occupied si 5 11, while when it is empty si 5 21. A configuration
of the elements is then specified by the set {s}.

First, we focus on non-collective systems, where no interaction
between binding sites is present, while we model the interaction
between the substrate and the binding site by an ‘‘external field’’ h
meant as a proper measure for the concentration of free-ligand mole-
cules, hence h 5 h(a). One can consider a microscopic interaction
energy given by

E s,hð Þ~{h
XN

i~1

si: ð18Þ

Note that writing h
X

i
si instead of

X
i
hisi implicitly assumes

homogeneity and thermalized reactions: each site displays the same
coupling with the substrate and they all had the time to interact with
the substrate.

We can think at h as the chemical potential for the binding of
substrate molecules on sites: When it is positive, molecules tend to
bind to diminish energy, while when it is negative, bound molecules
tend to leave occupied sites. The chemical potential can be expressed
as the logarithm of the concentration of binding molecules and one
can assume that the concentration is proportional to the ratio of the
probability of having a site occupied with respect to that of having it
empty. In this simple case, and in all mean-field approaches33, the
probability of each configuration is the product of the single inde-
pendent probabilities of each site to be occupied and, applying the
Maxwell-Boltzmann distribution P(si 5 61) 5 e6h, one finds

a!
P si~z1ð Þ
P si~{1ð Þ~

ezh

e{h
, ð19Þ

and we can pose

h~
1
2

log a: ð20Þ

The mean occupation number (close to the magnetization in statist-
ical physics) reads off as

n sf gð Þ~ 1
2

XN

i~1

1zsið Þ:

Therefore, using ergodicity to shift �S into ÆSæ (see eq. 7), the satura-
tion function can be written as

Y að Þ~ S sf gð Þh i
N

~
1
N

X
s

P sf gð Þn sf gð Þ~ 1
2

1z m hð Þh ið Þ: ð21Þ

By using eq. 17 we get

Y að Þ~ 1
2

1ztanh hð Þ½ �, ð22Þ

which, substituting 2h 5 log a, recovers the Michaelis-Menten beha-
vior, consistently with the assumption of no interaction among bind-
ing sites (J 5 0) in eq. 18.

A refined framework: two-sites interactions. We now focus on pair-
wise interactions and, seeking for a general scheme, we replace the
fully-connected network of the original Curie-Weiss model by a
complete bipartite graph: sites are divided in two groups, referred
to as A and B, whose sizes are NA and NB (N 5 NA 1 NB), respect-
ively. Each site in A (B) is linked to all sites in B (A), but no link within
the same group is present. With this structure we mirror dimeric
interactions [Note: Notice that for the sake of clearness, we intro-
duced the simplest bipartite structure, which naturally maps dimeric
interactions, but one can straightforwardly generalize to the case of
an n-mer by an n-partite system and of course values of rA ? rB can
be considered too. We did not perform these extensions because we
wanted to recover the broader phenomenology with the smaller

amount of parameters, namely J, a only.], where a ligand belonging
to one group interacts in a mean field way with ligands in the other
group (cooperatively or competitively depending on the sign of the
coupling, see below), and they both interact with the substrate. As a
result, given the parameters J and h, the energy associated to the
configuration {s} turns out be

E sf g J,hjð Þ~{
1

NAzNBð Þ
XNA

i~1

XNB

j~1

Jijsisj{
XNAzNB

i~1

hisi: ð23Þ

Some remarks are in order now. First, we stress that in eq. 23 the
sums run over all the binding sites. As we will deal with the ther-
modynamic limit (N R ‘), this does not imply that we model macro-
molecules of infinite length, which is somehow unrealistic. Rather,
we consider N as the total number of binding sites, localized even on
different macromolecules, and the underlying mean-field assump-
tion implies that binding sites belonging to the same group are all
equivalent, despite some may correspond to the bulk and others to
the boundaries of the pertaining molecule; such differences can be
reabsorbed in an effective renormalization of the couplings. In this
way the system, as a whole, can exhibit (anti) cooperative effects, as
for instance shown experimentally in34.

Moreover, for the sake of clearness, in the following we will assume
that couplings between sites belonging to different groups are all the
same and equal to J and, similarly, hi 5 h, for any i. This homogeneity
assumption allows to focus on the simplest cooperative effects and
can be straightforwardly relaxed.

We also notice that this two-groups model can mimic both coop-
erative and non-cooperative systems but, while for the former case
bipartition is somehow redundant as qualitatively analogous results
are obtained by adopting a fully-connected structure, for the latter
case the underlying competitive interactions intrinsically require a
bipartite structure.

Now, the two groups are assumed as equally populated, i.e., NA 5

NB 5 N/2, such that their relative densities are rA 5 NA/N 5 rB 5

NB/N 5 1/2. The order parameter can be trivially extended as

mA~
1

NA

XNA

i~1

si, mB~
1

NB

XNB

j~1

sj, ð24Þ

and, according to statistical mechanics prescriptions, we minimize
the free energy coupled to the cost function (23) and we get, in the
thermodynamic limit, the following self-consistencies

mAh i~tanh JrB mBh izh½ �, ð25Þ

mBh i~tanh JrA mAh izh½ �: ð26Þ

Through eqs. 25 and 26, the number of occupied sites can be com-
puted as

nA sf gð Þ~
XNA

i~1

1
2

1zsið Þ~NA
1zmA

2
,

nB sf gð Þ~
XNB

j~1

1
2

1zsj
� �

~NB
1zmB

2
,

ð27Þ

from which we get the overall binding isotherm

Y að Þ~ nA að Þh iz nB að Þh i
N

: ð28Þ

From eqs. 25–28 one can see that Y (a) fulfills the following free-
energy minimum condition

Y a; Jð Þ~ 1
2

1ztanh J 2Y{1ð Þz 1
2

log a

� 	
 �
: ð29Þ
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This expression returns the average fraction of occupied sites corres-
ponding to the equilibrium state for the system. We are now going to
study separately the two cases of positive (J . 0) and negative (J , 0)
cooperativity.

The cooperative case: Chemical kinetics. When J . 0 interacting
units tend to ‘‘imitate’’ each other. In this ferromagnetic context one
can prove that the bipartite topology does not induce any qualitative
effects: results are the same (under a proper rescaling) as for the Curie
Weiss model; indeed, in this case one can think of bipartition as a
particular dilution on the previous fully-connected scheme and we
know that (pathological cases apart), dilution does not affect the
physical scenario35–38.

Differently from low-dimensional systems such as the linear Ising-
chains, the Curie-Weiss model admits sharp (eventually discontinu-
ous in the thermodynamic limit) transitions from an empty (ÆmAæ 5

ÆmBæ 5 0) to a completely filled (ÆmAæ 5 ÆmBæ 5 1) configuration as
the field h is tuned. More precisely, eqs. 25 and 26 describe a trans-
ition at a 5 1 and such a transition is second order (Y changes
continuously, but its derivative may diverge) when J is smaller than
the critical value Jc 5 1, while it is first order (Y has a discontinuity)
when J . Jc. The latter case is remarkable as a discontinuous behavior
is experimentally well evidenced and at the basis of the so-called
ultra-sensitive chemical switches39.

On the other hand, when J R 0, the interaction term disappears
and we expect to recover Michaelis-Menten kinetics. In fact, eq. 29
can be rewritten as

Y a; Jð Þ~ ae2J 2Y{1ð Þ

1zae2J 2Y{1ð Þ , ð30Þ

which, for J 5 0, recovers the Michaelis-Menten equation Y (a) 5 a/
(1 1 a) [Note: Note that we do not lose generality when obtaining eq.
(7) and not Y (a) 5 a/(K 1 a) (which is the more familiar MM
expression) because we can rewrite the latter as Y (a) 5 K21a/(1 1

K21a) by shifting a R aK21 and h R [log(a/K)]/2.]. In this case there
is no signature of phase transition as Y (a) is continuous in any of its
derivatives.

In general, the Hill coefficient can be obtained as the slope of Y (a)
in eq. 29 at the symmetric point Y 5 1/2, namely

nH~
1

Y 1{Yð Þ
LY
La

Y~1=2~
1

1{J
,

���� ð31Þ

where the role of J is clear: a large J, i.e. J close to 1, implies a strong
cooperativity and vice versa.

One step forward, as the whole theory is now described through
the functions appearing in the self-consistency, we can expand them
obtaining polynomials at all the desired orders, more typical of the
standard route of chemical kinetics. In particular, expanding eq. 30 at
the first order in J we obtain

Y að Þ< 1{Jð Þaza2

1z2 1{Jð Þaza2
, ð32Þ

which is nothing but the Adair equation (eq. 2) as far as we set

J~ 1{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 1ð Þ3 K 2ð Þ

p .
2

� �
and we rescale a?a

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 1ð ÞK 2ð Þ

p
. These

results and, in particular, the expression in eq. 30 are shown in
complete generality in figs. 1 and 2.

The expression in eq. 30 can also be used to fit experimental data
for saturation versus substrate concentration. Indeed, through an
iterative fitting procedure, implied by the self-consistency nature of
our theoretical expression, we can derive an estimate for the para-
meter J and, from this, evaluate the Hill coefficient through eq. 31. As
shown in fig. 3, fits are successful for several sets of experimental data,
taken from different fields of biotechnology. The Hill coefficients
derived in this way and the related estimates found in the literature
are also in excellent agreement.

Cooperative kinetics and cybernetics: Amplifiers and comparators.
Having formalized cooperativity through statistical mechanics, we
now want to perform a further translation in cybernetic terms. In
particular, we focus on the electronic declination of cybernetics
because this is probably the most practical and known branch. We
separate the small coupling case (J , Jc, cooperative kinetics) from
the strong coupling case (J . Jc, ultra-sensitive kinetics) and we
mirror them to, respectively, the saturable operational amplifier
and the analog-to-digital converter40. The plan is to compare the
saturation curves (binding isotherms) in chemical kinetics with
self-consistencies in statistical mechanics and transfer functions in
electronics so to reach a unified description for these systems.

Figure 1 | Theoretical predictions of typical binding isotherms obtained from the statistical mechanics approach (see eq. 28) are shown versus the
substrate concentration a (main plot) and versus the logarithm of the concentration (inset). Different colors refer to different systems (hence different

coupling strengths J), as explained by the legend. In particular, as J is varied, all the expected behaviors emerge: ultra-sensitive for J 5 2, cooperative for J 5

1/2, anti-cooperative for J 5 21/2, non-cooperative for J 5 0.
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Before proceeding, we recall a few basic concepts. The core of
electronics is the operational amplifier, namely a solid-state inte-
grated circuit (transistor) which uses feed-back regulation to set its
functions. In fig. 4 we show the easiest representation for operational
amplifiers: there are two signal inputs (one positive received (1) and
one negative received (2)), two voltage supplies (Vsat, 2Vsat) and an
output (Vout). An ideal amplifier is the ‘‘linear’’ approximation of the
saturable one and essentially assumes that the voltage at the input
collectors (Vsat and 2Vsat) is always at the same value so that no
current flows inside the transistor, namely, retaining the obvious
symbols of fig. 4, i1 5 i2 5 040. Obtaining its transfer function is
straightforward as we can apply Kirchhoff law at the node 1 to delete
the afferent currents, hence i1 1 i2 1 i2 5 0. Then, assuming R1 5

1 V (without loss of generality as only the ratio R2/R1 matters), in the
previous equation we can pose i1 5 2V2, i2 5 (Vout 2 V2)/R2 and i2
5 0 (because the amplifier is ideal). We can further note that V2 5

V1 and V1 5 Vin so to rewrite Kirchhoff law as 0 5 2Vin 1 (Vout 2

Vin)/R2, by which the transfer function reads off as

Vout~GVin~ 1zR2ð ÞVin, ð33Þ

where G 5 1 1 R2 is called ‘‘gain’’ of the amplifier.
Therefore, as far as R2 . 0, the gain is larger than one and the

circuit is amplifying the input (R2 , 0 is actually thermodynamically
forbidden, suggesting that anti-cooperativity, from cybernetic per-
spective, must be accounted by the inverter configuration40, see next
section).

Let us emphasize some structural analogies with ferromagnetic
behaviors and cooperative kinetics. First, we notice that all these
systems ‘‘saturate’’. Indeed, it is very intuitive to see that by applying
a magnetic field h . 0 to a collection of spins, they will (at least
partially, depending on the noise level) align with the field, resulting
in Æm(h)æ . 0. However, once reached the critical value ~h such that

m ~h
� �D E

~1, any further increase in the strength of the field (i.e. any

hw
~h) will produce no variations in the output of the system as all the

spins are already aligned. Similarly, in reaction kinetics, once all the
ligands of a given protein have bound to the substrate, any further
growth in the substrate concentration will produce no net effect on
the system. In the same way, given an arbitrary operational amplifier
supplied with Vsat, then its output voltage will be a function of the

input voltage Vin. However, there exists a critical input ~Vin such that
Vout 5 Vsat, and when input is larger than ~Vin no further amplifica-
tion is possible; the amplifier is then said to be ‘‘saturated’’. Of course,
the sigmoidal shape of the hyperbolic tangent is not accounted by
ideal amplifiers, yet for real amplifiers 6 Vsat are upper bounds for
the growth, hence recovering the expected behavior, as shown in the
plot of fig. 6 l [Note: One may notice that the outlined amplifier is
linear, while in chemical kinetics usually slopes are sigmoidal on lin-
log plots. This is only a technical point, and to obtain the logarithmic
amplifier it is enough to substitute R2 with a diode to use the expo-
nential scale of the latter40.]. Moreover, we notice that the transfer
function is an input/output relation, exactly as the equation for the
order parameter m. In fact, the latter, for small values of the coupling
J (so to mirror ideal amplifier), can be written as (see eq. 17)

mh i* 1zJð Þh: ð34Þ

Thus, the external signal Vin is replaced by the external field h, and
the voltage Vout is replaced by the magnetization Æmæ. By comparing
eq. 33 and eq. 34 we see that R2 plays as J, and, consistently, if R2 5 0
the retroaction is lost (see fig. 3) and the gain is no longer possible.
This is perfectly coherent with the statistical mechanics perspective,
where, if J 5 0, spins do not mutually interact and no feed-back is
allowed.

Analogously, in the chemical kinetics scenario, the Hill coefficient
can be written as nH 5 1/(1 2 J) , 1 1 J, in the limit of small J
(namely for J , Jc 5 1, which is indeed the case under investigation).
Therefore, again, we see that if J 5 0 there is no amplification, and the
kinetics returns the Michaelis-Menten scenario, while for positive J
we obtain amplification and a cooperative behavior. This leads to the
conceptual equivalence

nH~
1

1{J
*1zJ

� �
u G~1zJ*

1
1{J

� �
,

hence the Hill coefficient in chemical kinetics plays as the gain in
electronics. This implicitly accounts for a quantitative comparison
between amplification in electronics and in biological devices.

One step forward, if J . Jc the equation Æm(h)æ becomes discon-
tinuous in statistical mechanics just like the corresponding (ultra-
sensitive) saturation curve in chemical kinetics: The analogy with

Figure 2 | Velocity of reactions versus substrate concentration a. These plots have been included to show the full agreement between our theoretical

outcomes and the results presented in the celebrated paper by Levitzki and Koshland (see fig. 4 in Ref. 50). Different values of nH 5 1/2, 1, 2,

corresponding to J 5 21, 0, 1/2, are shown in different colors. Note that for this analysis there is complete proportionality between the reaction rates v and

the saturation curves Y due to the law of mass action50.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 3458 | DOI: 10.1038/srep03458 6



cybernetics can still be pursued, but with analog-to-digital converters
(ADCs), which are the corresponding limits of operational
amplifiers.

The ADC, roughly speaking a switch, takes a continuous. i.e. ana-
logue, input and has discrete (dichotomic in its basic implementa-
tion) states as outputs. The simplest ADC, namely flash converters,
are built through cascades of voltage comparators40. A voltage com-
parator is sketched in fig. 6h and it simply ‘‘compares’’ the incoming
voltage values between the negative input and the positive one as

follows: Let us use as the negative input the ground (V 5 0) as a
reference value (to mirror one to one the equivalence with chemical
kinetics or statistical mechanics we deal with only one input, namely
the substrate concentration a in the former and the magnetic field h
in the latter). Then, if Vin is positive the output will be Vsat . 0, vice
versa, if Vin is negative, the output will be 2Vsat , 0 as reported in the
plot in fig. 6m, representing the ADC transfer function.

An ADC is simply an operational amplifier in an open loop (i.e. R2

5 ‘), hence its theoretical gain is infinite. Coherently, this corre-

Figure 3 | These plots show comparison between data from recent experiments (symbols) and best-fits through statistical mechanics (lines). Data refer

to non-cooperative and positive-cooperative systems22,51 (left panel) and an ultra-sensitive system52 (right panel). For the latter we report two fits: Dashed

line is the result obtained by constraining the system to be cooperative but not-ultra-sensitive (that is, J # 1), while solid line is the best fit yielding J , 1.1,

hence a ‘‘first order phase transition’’ in the language of statistical mechanics. The relative goodness of the fits are X 2
coop*0:85 and X 2

ultra*0:94,

confirming an ultra-sensitive behavior. The tables in the bottom present the value of J derived from the best fit and the resulting nH; the estimate of the Hill

coefficient taken from the literature is also shown.

Figure 4 | Several sets of experimental data (symbols)53 are fitted by eq. 30 with minus sign (solid line). The values of J corresponding to the best fits are

shown in the table together with the related estimates for nH according to eq. 31. The estimates for nH obtained via standard Hill fit are also shown.
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sponds to values of J R 1 that imply a theoretical divergence in the
Hill coefficient, while, practically, reactions are referred to as ‘‘ultra-
sensitive’’ already at nH?1. Consistently, as J R 1 the curve Æm(h)æ
starts to develop a discontinuity at h 5 0 (see Fig. 6, panels d, e, f),
marking the onset of a first order phase transition. As a last remark,
despite we are not analyzing these systems in the frequency domain
in this first paper, we highlight that, when using time-dependent
fields, for instance oscillatory input signals, full structural consist-
ency is preserved as all these systems display hysteresis effects at high
enough frequencies of the input signal.

The anti-cooperative case: Chemical kinetics and cybernetics. We
can now extend the previous scheme for the description of a
negative-cooperative system, by simply taking a negative coupling
J , 0. Hence, eqs. 25 and 26 still hold and we can analogously Figure 6 | Schematic representation of an operational amplifier.

Figure 5 | This figure summarizes all the analogies described in the paper: In the first row, pictures of three biological systems exhibiting cooperativity,

namely Mitogen-activated protein kinase 14 (positive cooperativity, panel (a), Ca21 calmodulin dependent protein kinases II (ultra-sensitive cooperativity,

panel (b), and Synaptic Glutamate receptors (negative cooperativity, panel (c) are shown. The related saturation curves (binding isotherms) are shown in

the second row (panels (d), (e) and (f), respectively), where symbols with the relative error-bars stand for real data taken from41,52,54 respectively and lines

are best fits performed through the analytical expression in eq. 28, obtained from statistical mechanics. The related best-fit parameters are J 5 0.14, J 5

1.16, J 5 0.29, respectively. Notice that in panel (d) it is possible to see clearly the ‘‘saturation’’ phenomenon as the first and the last experimental points

are far from the linear fit (red line), while are perfectly accounted by the hyperbolic tangent predicted by statistical mechanics (green line), whose

correspondence with saturation in electronics is represented in panel (l). Notice further that in panel (e), we compared the ultra-sensitive fit (solid line),

with a simple cooperative fit (dashed line): at small substrate concentration the latter case does not match, within its variance, the data points (so

accurately measured that error bars are not reported), while the former case is in perfect agreement with data points. In the third row we sketch the

cybernetic counterparts, i.e., the operational amplifier (panel (g)), represented as an inverted flip-flop mirroring the symmetry by which we presented the

statistical mechanics framework (the standard amplifier is shown in fig. 3), the analog-to-digital converter (panel (h)) and the flip-flop (panel (i)). The

(theoretical) transfer functions corresponding to the circuits are finally shown in the fourth row (panels (l), (m) and (n), respectively) for visual

comparison with the second one.
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reconstruct Y (a) 5 (ÆmAæ 1 ÆmBæ)/N versus a, whose theoretical
outcomes are still shown in figs. 1 and 2, and fit them against
experimental results as shown in the plots of fig. 5.

Again, it is easy to check that there are two possible behaviors
depending on the interaction strength J. If J , Jc, the two partial
fractions nA, nB are always equal, but when the interaction is larger
than Jc, the two partial fractions are different in a region where the
chemical potential log a is around zero, as shown in fig. 1. In this
region, due to the strong interaction and small chemical potential, it is
more convenient for the system to fill sites on a subsystem and keep
less molecules of ligands on the other subsystem. The critical value of
the chemical potential j log aj depends on the interaction strength: it
vanishes when the average interaction equals Jc, and grows from this
value on. The region where the two fractions are different corresponds,
in the magnetic models, to the anti-ferromagnetic phase. When J , Jc,
the binding isotherm, plotted as a function of the logarithm of con-
centration, has a form resembling the Michaelis-Menten curve, even if
anti-cooperativity is at work. Conversely, when J . Jc, in the region
around a 5 1 the curve has a concavity with an opposite sign with
respect to the Michaelis-Menten one. In particular, there is a plateau
around a 5 1, which can be interpreted as the inhibition of the system,
once it is half filled, towards further occupation.

Finally, in order to complete our analogy to electronics, let us
consider the simplest bistable flip-flop40, built through two saturable
operational amplifiers as sketched in fig. 6 i, such that the output of
one of the two amplifiers is used as the inverted input of the other
amplifiers, tuned by a resistor. This configuration, encoded in stat-
istical mechanics by negative couplings among groups, makes the
amplifiers reciprocally inhibiting because (and indeed they are called
’’inverters’’ in this configuration), for instance, a large output from
the first amplifier (say A) induces a fall in the second amplifier (say B)
and vice versa. Since each amplifier pushes the other in the opposite
state, there exist two stationary stable configurations (one amplifier
with positive output and the other with negative output and vice
versa). Thus, it is possible to assign a logical 0 (or 1) to one state
and the other logical 1 (or 0) to the other state which can be regarded
respectively as low concentration versus high concentration of bind
ligands in chemical kinetics; negative or positive magnetization in
ferromagnetic systems, low versus high output voltage of flip-flops in
electronics. In this way, as the flip-flop can serve as an information
storage device (in fact, the information (1 bit) is encoded by the
output itself), the same feature holds also for the other systems.
The behavior of the two flip-flop transfer functions (one for each
inverter) are also shown in fig. 6 n, where the two (opposite) sigmoi-
dal shapes are displayed versus the input voltage.

Still in fig. 6, those behaviors are compared with experimental data
from biochemical anti-cooperativity and their statistical-mechanics
best fits with an overall remarkable agreement.

Possible extensions: Heterogeneity and multiple binding sites. Another
point worth of being highlighted is the number of potential and
straightforward extensions included in the statistical-mechanics
modelization. In fact, as the literature of mean-field statistical-
mechanics model is huge, once self-consistencies are properly
mapped into the saturation curves, one can perturb, generalize, or
adjust the initial energy (cost) function and check the resulting
effects.

As an example, we discuss chemical heterogeneity, which has been
shown by recent experiments41,42 to play a crucial role in equilibrium
reaction rates. To include this feature in our theory we can replace
h
X

isi in eq. 18 with
X

ihisi with hi drawn from, e.g., a Gaussian
distribution

P hið Þ! exp {
hi{hð Þ2

2 1{að Þ2

" #
,

such that for a R 1 homogeneous chemical kinetics is recovered,
while for a R 0 we get standard Gaussian distribution N h, 1½ � for
heterogeneity.

We fitted data from41 through the self-consistencies obtained by
either fixing a 5 1, or by taking a as a free parameter; the results
obtained are in strong agreement with the original one. In particular,
the authors in41 found a ratio R between the ’’real’’ Hill coefficient
(assuming heterogeneity) and the standard (homogeneous) one as R
, 0.53, while, theoretically we found R , 0.57 (and a , 0.3).

Further, we notice that nH grows with ja 2 1j, namely the higher
the degree of inhomogeneity within the system and the smaller nH, in
agreement with several recent experimental findings42,43.

As a last example of possible extension, we discuss quickly also the
multiple binding site case, which can be simply encoded, at least
within the cooperative case, by considering an interaction energy
of the P-spin type as

E sf g J,hjð Þ~ {1P
P
i~1Ni

XN1

i1

XN2

i2

� � �
XNP

iP

Ji1,i2,...,iP si1 si2 . . . siP , ð35Þ

which results in multiple discontinuities for the binding isotherms
as for instance happens when considering surfactants onto a poly-
mer gel44,45, where the affinity of the surfactants to the gel is coo-
peratively altered by a conformational change of the polymer
chains (and actually these systems show hysteresis with respect to
the surfactant concentration, which is another typical feature of
‘‘ferromagnetism’’).

Discussion
In this work, we describe collective behaviors in chemical kinetics
through mean-field statistical mechanics. Stimulated by the suc-
cesses of the latter in formalizing classical cybernetic subjects, as
neural networks in artificial intelligence15,16,18 or NP-completeness
problems in logic46–48, we successfully tested the statistical mechanics
framework as a common language to read from a cybernetic per-
spective chemical kinetic reactions, whose complex features are at the
very basis of several biological devices.

In particular, we introduced an elementary class of models able to
mimic possibly heterogeneous systems covering all the main chem-
ical kinetics behaviors, namely ultra-sensitive, cooperative, anti-
cooperative and non-cooperative reactions. Predictions yielded by
such theoretical frame have been tested for comparison with experi-
mental data taken from biological systems (e.g. nervous system,
plasma, bacteria), finding overall excellent agreement. Further-
more, we showed that our analytical results recover all the standard
chemical kinetics, e.g. Michaelis-Menten, Hills and Adair equations,
as particular cases of this broader theory and confer to these a strong
and simple physical background. Due to the presence of first order
phase transition in statistical mechanics we offer a simple prescrip-
tion to define a reaction as ultra-sensitive: Its best fit is achieved
through a discontinuous function, whose extremization through
other routes is not simple as e.g. least-squares can not be applied
due to the discontinuity itself.

It is worth noticing that, despite we developed mean field tech-
niques, hence we neglected any spatial structure, we get a direct
mapping between statistical-mechanics and chemical kinetics for-
mulas, in such a way that we can derive from the former a simple
estimate for the Hill coefficient, namely for ’’effective number’’ of
interacting binding sites, in full agreement with experimental data
and standard approaches.

One step forward, toward a unifying cybernetic perspective, we
described a conceptual and practical mapping between kinetics of
ultra-sensitive, cooperative and anti-cooperative reactions, with the
behavior of analog-to-digital converters, saturable amplifiers and
flip-flops respectively, highlighting how statistical mechanics can
act as a common language between electronics and biochemistry.
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Remarkably, saturation curves in chemical kinetics mirror transfer
functions of these three fundamental electronic devices which are the
very bricks of robotics.

The bridge built here inspires and makes feasible several chal-
lenges and improvements in biotechnology research. For instance,
we can now decompose complex reactions into a sequence of ele-
mentary ones (modularity property5) and map the latter into an
ensemble of interacting spin systems to investigate potentially hid-
den properties of the latter such as self-organization and computa-
tional capabilities (as already done adopting spin-glass models of
neural networks49). Moreover, we can reach further insights in the
development of better performing biological processing hardware,
which are currently poorer than silico-made references. Indeed, from
our equivalence between Hill and gain coefficients the more power of
electronic devices is clear as G can range over several orders of
magnitude, while in chemical kinetics Hill coefficients higher than
nH , 10 are difficult to find. This, in turn, may contribute in devel-
oping a biological amplification theory whose fruition is at the very
basis of biological computations6–8.

We believe that this is an important, intermediary, brick in the
multidisciplinary research scaffold of biological complexity.

Lastly, we remark that this is only a first step: Analyzing, within
this perspective, more structured biological networks as for instance
the cytokine one at extracellular level or the metabolic one at
intracellular level is still an open point and requires extending the
mean-field statistical mechanics of glassy systems (i.e. frustrated
combinations of ferro and antiferro magnets), on which we plan to
report soon.
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CORRIGENDUM: Collective behaviours: from biochemical kinetics to electronic
circuits

Elena Agliari, Adriano Barra, Raffaella Burioni, Aldo Di Biasio & Guido Uguzzoni

This Article contains an error in the order of the figures. Figure 4, Figure 5, and Figure 6 were published as
Figure 6, Figure 4, and Figure 5 respectively. The figures of this Article appear in the correct order below, with
their respective figure legends. In addition, the x axis of Figure 5 should be negative loga. This is correct in Figure 5
below.
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Figure 1 | Theoretical predictions of typical binding isotherms obtained from the statistical mechanics approach (see eq.
28) are shown versus the substrate concentration a (main plot) and versus the logarithm of the concentration (inset).
Different colors refer to different systems (hence different coupling strengths J), as explained by the legend. In particular, as

J is varied, all the expected behaviors emerge: ultra-sensitive for J 5 2, cooperative for J 5 1/2, anti-cooperative for

J 5 21/2, non-cooperative for J 5 0.
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Figure 2 | Velocity of reactions versus substrate concentration a. These plots have been included to show the full agreement between our theoretical

outcomes and the results presented in the celebrated paper by Levitzki and Koshland (see fig. 4 in Ref. 50). Different values of nH 5 1/2, 1, 2,

corresponding to J 5 21, 0, 1/2, are shown in different colors. Note that for this analysis there is complete proportionality between the reaction rates v and

the saturation curves Y due to the law of mass action50.

Figure 3 | These plots show comparison between data from recent experiments (symbols) and best-fits through statistical mechanics (lines).
Data refer to non-cooperative and positive-cooperative systems22,51 (left panel) and an ultra-sensitive system52 (right panel). For the latter we report two

fits: Dashed line is the result obtained by constraining the system to be cooperative but not-ultra-sensitive (that is, J # 1), while solid line is the best fit

yielding J , 1.1, hence a ‘‘first order phase transition’’ in the language of statistical mechanics. The relative goodness of the fits are x2
coop*0:85 and

x2
ultra*0:94, confirming an ultra-sensitive behavior. The tables in the bottom present the value of J derived from the best fit and the resulting nH; the

estimate of the Hill coefficient taken from the literature is also shown.
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Figure 5 | Several sets of experimental data (symbols)53 are fitted by eq. 30 with minus sign (solid line). The values of J corresponding to the best fits are

shown in the table together with the related estimates for nH according to eq. 31. The estimates for nH obtained via standard Hill fit are also shown.

Figure 4 | Schematic representation of an operational amplifier.
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Figure 6 | This figure summarizes all the analogies described in the paper: In the first row, pictures of three biological systems exhibiting cooperativity,

namely Mitogen-activated protein kinase 14 (positive cooperativity, panel (a), Ca21 calmodulin dependent protein kinases II (ultra-sensitive cooperativity,

panel (b), and Synaptic Glutamate receptors (negative cooperativity, panel (c) are shown. The related saturation curves (binding isotherms) are shown in

the second row (panels (d), (e) and (f), respectively), where symbols with the relative error-bars stand for real data taken from41,52,54 respectively and lines

are best fits performed through the analytical expression in eq. 28, obtained from statistical mechanics. The related best-fit parameters are J 5 0.14, J 5

1.16, J 5 0.29, respectively. Notice that in panel (d) it is possible to see clearly the ‘‘saturation’’ phenomenon as the first and the last experimental points

are far from the linear fit (red line), while are perfectly accounted by the hyperbolic tangent predicted by statistical mechanics (green line), whose

correspondence with saturation in electronics is represented in panel (l). Notice further that in panel (e), we compared the ultra-sensitive fit (solid line),

with a simple cooperative fit (dashed line): at small substrate concentration the latter case does not match, within its variance, the data points (so

accurately measured that error bars are not reported), while the former case is in perfect agreement with data points. In the third row we sketch the

cybernetic counterparts, i.e., the operational amplifier (panel (g)), represented as an inverted flip-flop mirroring the symmetry by which we presented the

statistical mechanics framework (the standard amplifier is shown in fig. 3), the analog-to-digital converter (panel (h)) and the flip-flop (panel (i)). The

(theoretical) transfer functions corresponding to the circuits are finally shown in the fourth row (panels (l), (m) and (n), respectively) for visual

comparison with the second one.
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