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Abstract. We prove that the Aizenman–Contucci relations, well known for
fully connected spin glasses, hold in diluted spin glasses as well. We also prove
more general constraints in the same spirit for multi-overlaps, systematically
confirming and expanding previous results. The strategy that we employ makes
no use of self-averaging, and allows us to generate hierarchically all such relations
within the framework of random multi-overlap structures. The basic idea is to
study, for these structures, the consequences of the closely related concepts of
stochastic stability, quasi-stationarity under random shifts, factorization of the
trial free energy. The very simple technique allows us to prove also the phase
transition for the overlap: it remains strictly positive (on average) below the
critical temperature if a suitable external field is first applied and then removed
in the thermodynamic limit. We also deduce, from a cavity approach, the general
form of the constraints on the distribution of multi-overlaps found within quasi-
stationary random multi-overlap structures.
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1. Introduction

Dilute spin glasses are studied mostly for two reasons: their finite connectivity makes
them in a certain sense close to finite-dimensional systems, while retaining a mean
field character; and they are mathematically equivalent to some important random
optimization problems (such as X-OR-SAT and K-SAT [15]). The proper setting for the
study of mean field dilute spin glasses are the random multi-overlap structures (RaMOSt),
and the whole physics behavior of dilute spin glasses is carried by the probability
distribution of the multi-overlaps [7], which play the same role as the 2-overlap does
for fully connected models. In the case of the latter, it is known that the Ghirlanda–
Guerra identities [12] allow for the computation of the critical exponents governing the
critical behavior of the 2-overlap [1], and guarantee that the 2-overlap is positive below the
critical temperature [15]. The relations due to Aizenman and Contucci [2], on the other
hand, imply [1] that the expectation of the 2-overlap is strictly positive below the critical
temperature (due to a phase transition triggered by an external field). Ghirlanda–Guerra
identities are a consequence of the self-averaging of the energy density, and extend to
dilute spin glasses, where one can also find more general relations for multi-overlaps [9].
By contrast, Aizenman–Contucci (AC) relations are a consequence of stochastic stability
[2, 5], but they also follow from a certain kind of self-averaging, as shown by Franz et al
[10], who extended the AC relations to dilute spin glasses and multi-overlaps. In this paper
we provide a new proof of the AC relations for dilute spin glasses, and of their generalized
version for multi-overlaps. We emphasize that stochastic stability (and similar concepts)
are intimately related to self-averaging properties. Moreover, both approaches can be
used with observable of various forms, not just the with the energy. The joint use of
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the techniques developed in [1] within the approach developed in [7] is at the basis of
the present work. The latter is organized as follows. The next two sections introduce the
model and our notation, and illustrate the cavity perspective which the RaMOSt approach
relies on. In section 4 we show that simple symmetry arguments within the cavity method
lead to the proof of the phase transition of the expectation of the overlap: below its critical
temperature the overlap remains strictly positive, if an external (cavity) field is applied
and then removed in the thermodynamic limit. Section 5 is devoted to a proof that AC
relations hold in dilute glasses, along with relations in the same spirit for multi-overlaps.
We have already stressed that our proof is radically different from the one hinted at in [10].
Section 6 presents the form of the derivative with respect to a perturbing parameter of the
expectation of a generic function of some replicas. The result makes it possible to develop
systematically the constraints on multi-overlaps, whose critical behavior control can be
here improved as compared to section 4 (although the critical exponents are not found
yet). The straightforward but tedious and long calculations needed in some expansions
are reported in the appendices, preceded by concluding remarks.

2. Model and notation

Consider N points, indexed by italic letters i, j, etc, with an Ising spin attached to each
of them, so to have spin configurations

σ : {1, . . . , N} � i → σi = ±1.

Hence we may consider σ ∈ {−1, +1}N . Let Pζ be a Poisson random variable of mean
ζ , let {Jν} be independent identically distributed copies of a random variable J with
symmetric distribution. For the sake of simplicity we will assume J = ±1, without
loss of generality [13]. We want to consider randomly chosen points, we therefore
introduce {iν}, {jν} as independent identically distributed random variables, with uniform
distribution over 1, . . . , N . Assuming there is no external field, the Hamiltonian of the
Viana–Bray (VB) model for dilute mean field spin glass is the following symmetric random
variable

HN(σ, α;J ) = −
PαN∑

ν=1

Jνσiνσjν , α ∈ R+.

E will be the expectation with respect to all the (quenched) variables, i.e. all the random
variables except the spins, collectively denoted by J . The non-negative parameter α is
called degree of connectivity. The Gibbs measure ω is defined by

ω(ϕ) =
1

Z

∑

σ

exp(−βH(σ))ϕ(σ)

for any observable ϕ : {−1, +1}N → R, and clearly

ZN(β) =
∑

σ

exp(−βHN(σ)),

which is the well known partition function. When dealing with more than one
configuration, the product Gibbs measure is denoted by Ω, and various configuration
taken from the each product space are called ‘replicas’. As already done above, we will
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often omit the dependence on β and on the size of the system N of various quantities.
In general, we will commit some slight notational abuses to lighten the expressions when
there is no risk of confusion. The free energy density fN is defined by

−βfN (β) =
1

N
E ln ZN(β).

The whole physical behavior of the model is encoded by [7] the even multi-overlaps
q1···2n, which are functions of several configurations σ(1), σ(2), . . . defined by

q1···2n =
1

N

N∑

i=1

σ
(1)
i · · ·σ(2n)

i .

3. Cavity approach and random multi-overlap structures

The thermodynamic limit of the free energy density exists if and only if the sequence
of the increments (due to the addition of a particle to the system) is convergent in the
Cesàro sense (indicated by a boldface C):

lim
M→∞

1

M
E ln ZM ≡ lim

M→∞

1

M

M−1∑

n=0

E ln
Zn+1

Zn
≡ C lim

M→∞
E ln

ZM+1

ZM
.

The idea at the basis of the cavity approach is in fact to measure the effect on the free
energy of the addition of one spin to the system (see [4] for a beautiful summary). Let us
denote the given M spins by τ , as we want to save the symbol σ for the added spin(s).
Now, following [7], we can write, in distribution,

−HM+1(τ, σ; α) ∼
Pα(M2/(M+1))∑

ν=1

Jντkντlν +

Pα(2M/(M+1))∑

ν=1

J̃ντmν σiν , (1)

where we have neglected a term which does not contribute when M is large [7], {J̃ν}
are independent copies of J ; {kν}, {mν}, and {lν} are independent random variables all
uniformly distributed over {1, . . . , M}; {iν} are independent random variables uniformly
distributed over the set {1, . . . , N ≡ 1}, consisting of {1} only. So σiν ≡ σ1. Notice that
we can also write, in distribution,

HM+1(τ, σ; α) ∼ HM(τ ; α′) + h̃τσ1 (2)

where

α′ = α
M

M + 1
, h̃τ = −

P2α′∑

ν=1

J̃ντkν .

Notice also that similarly

HM(τ ; α) = HM(τ ; α′,J ) + HM(τ ; α′/M, Ĵ ), (3)

thanks to the additivity property of Poisson variables, and the two Hamiltonians in the
right-hand side have independent quenched random variables J , Ĵ . Hence, if we call

HM(τ ; α′/M, Ĵ ) = Ĥτ (α
′) = −

Pα′∑

ν=1

Ĵντkντlν ,
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then

E ln
ZM+1

ZM
= E ln

∑
τ,σ ξτ exp(−βh̃τσ)

∑
τ ξτ exp(−βĤτ )

,

with

ξτ = exp(−βHM(τ ; α′)).

As elegantly explained in [4], this equation expresses the incremental contribution to the
free energy in terms of the mean free energy of a particle (a spin) added to a reservoir

whose internal state is described by (τ, ξτ), corrected by an inverse-fugacity term Ĥ,
which encodes a connectivity shift. The latter may be thought of as the free energy of a
‘place holder’: the cavity into which the (M + 1)st particle is added. One may note that
the addition of a particle to the reservoir of M particles has an effect on the state of the
reservoir. For M � 1, the value of the added spin, σ, does not affect significantly the field
which would exist for the next increment in M . Hence, for the next addition of a particle
we may continue to regard the state of the reservoir as given by just the configuration
τ . However, the weight of the configuration (which is still to be normalized to yield its
probability) undergoes the change:

ξτ → ξτe
−βh̃τσ.

This transformation is called cavity dynamics.
When we add more particles to the system, they do not interact, as there will just

be copies of the cavity fields h̃i acting paramagnetically on each added spin (see [7] for
details). Therefore if we add infinitely many particles (to an already infinite reservoir), we
can replace the initial complicated model with a simpler (at least in principle) paramagnet.
The reasoning just illustrated thus paves the way to the proper concept to introduce for
the computation of the free energy [7].

Definition 1. Given a probability space {Ω, μ(dω)}, a Random multi-overlap structure R
is a triple (Σ, {q̃2n}, ξ) where

• Σ is a discrete space;

• ξ : Σ → R+ is a system of random weights, such that
∑

γ∈Σ ξγ ≤ ∞ μ-almost surely;

• q̃2n : Σ2n → R, n ∈ N is a positive semi-definite multi-overlap kernel (equal to 1 on
the diagonal of Σ2n, so that by Schwartz inequality |q̃| ≤ 1).

By looking at the properties of h̃, Ĥ in (2) and (3), we know that when many
particles (say N) are added to the system, we need [7] in general N + 1 random variables

{h̃i
γ(α; J̃)}N

i=1 and Ĥγ(α; Ĵ), γ ∈ Σ, such that

d

dα
E ln

∑

γ∈Σ

ξγ exp(−βh̃i
γ) = 2

∑

n>0

1

2n
tanh2n(β)(1 − 〈q̃2n〉) (4)

d

dα
E ln

∑

γ∈Σ

ξγ exp(−βĤγ) =
∑

n>0

1

2n
tanh2n(β)(1 − 〈q̃2

2n〉). (5)
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These are the fields to plug into the ‘trial pressure’ (−βfN(β))

GN(R) =
1

N
E ln

∑
γ,σ ξγ exp(−β

∑N
i=1 h̃i

γσi)
∑

γ ξγ exp(−βĤγ)
. (6)

The Boltzmann RaMOSt [7] is the one we started from, constructed by thinking of a
reservoir of M spins τ

Σ = {−1, 1}M � τ, ξτ = exp(−βHM(τ)), q̃1···2n =
1

M

M∑

k=1

τ
(1)
k · · · τ (2n)

k

with

h̃i
τ (α) =

P2α∑

ν=1

J̃ i
ντki

ν
, Ĥτ (αN) = −

PαN∑

ν=1

Ĵντkντlν

and all the Ĵ ’s are independent copies of J , independent of any other copy.
The next theorem will not be used, but it justifies the whole machinery described so

far.

Theorem 1 (Extended Variational Principle). Taking the infimum for each N separately
the trial function GN(R) over the whole RaMOSt space, the resulting sequence tends to
the limiting pressure −βf of the VB model as N tends to infinity:

−βf = lim
N→∞

inf
R

GN(R).

A RaMOSt R is said to be optimal if G(R) = −βf(β)∀β. We will denote by Ω the
measure associated with the RaMOSt weights ξ as well.

Is it possible to show [7] that optimal RaMOSts enjoy the same factorization property
enjoyed by the Boltzmann RaMOSt, described in the following.

Theorem 2 (factorization of optimal RaMOSts). In the whole region where the parame-
ters are uniquely defined, the following Cesàro limit is linear in N and ᾱ

C lim
M

E ln ΩM{c1 · · · cN exp[−βĤ(ᾱ)]} = N(−βf + αA) + ᾱA,

where ci = 2 cosh(βh̃i),

A =
∞∑

n=1

1

2n
tanh2n(β)(1 − 〈q2

2n〉), (7)

and the averages in both sides of the equation are assumed to taken by means of weights
at connectivity α.

As we extended the use of Ω from the Gibbs measure to any RaMOSt measure, we
are clearly extending to any RaMOSt the notation EΩ(·) = 〈·〉 too. We will use only part
of the previous theorem, or more precisely a modification of the part involving the inverse
fugacity only. Notice that in the definition (6) of the trial pressure G the part with the
cavity fields and the part with the inverse fugacity are taken already factorized (the inverse
fugacity appears at the denominator). If we therefore focus on the fugacity part only in

the theorem above, by setting all the cavity fields h̃i to zero, the property described in
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theorem 2 becomes what is often called stochastic stability (of the measure Ω with respect

to the perturbation Ĥ), which we will prove and exploit in section 5. It should be now
clear, from the construction described about equations (2) and (3), that this perturbation
can be either due to the addition of N particles, or due to a connectivity shift, and leads
to a linear response of the free energy. Hence the theorem above combines two invariance
properties of the optimal RaMOSt measure Ω: the one of the cavity part with respect to
the cavity dynamics, and the one of the fugacity part with respect to connectivity shifts.
The invariance with respect to the cavity dynamics is a special case of quasi-stationarity,
i.e. the invariance up to a correcting factor under random shifts (see [3, 4] for a detailed
introduction). The Parisi ultrametric ansatz, both for dilute and for fully connected
Gaussian models [15], is based on hierarchical random probability cascades, which exhibit
the quasi-stationarity of the generalized random energy model [4, 15]. A very stimulating
conjecture is that random probability cascades include all the quasi-stationary structures.

As an aside remark, we point out that for stochastically stable systems, a dynamical
order parameter can be defined and related to the static order parameter. Ultrametricity
in the dynamics implies static ultrametricity, which is in turn implied by so-called
separability, and connected to the idea of overlap equivalence. We refer to [11, 14, 9] for
details, here we just wish to stress that all these concepts and the one of self-averaging
are intimately related, and have deep physical meanings.

4. Non-negativity of the average of multi-overlaps

We know from [8, 13] that above the critical temperature βc all the multi-overlaps
(including the 2-overlap) are identically zero, as the replica symmetric solution holds.
We also know, from [13], that the (rescaled) 2-overlap shows diverging fluctuations at the
critical temperature βc where the replica symmetry is broken, while the (rescaled) multi-
overlaps of more than two replicas do not exhibit diverging fluctuations at this inverse
temperature. If the expression of the fluctuations of the rescaled multi-overlaps given
in [13] could be proven to be valid down to suitable lower temperatures, we would have

what is physically a common belief [16], i.e. that the critical temperature β
(2n)
c at which

the fluctuations of
√

Nq2n diverge is given by

tanh2n(β(2n)
c ) =

1

2α
, α >

1

2
.

So that q2n would be zero up to β
(2n)
c , where it would start its concave increase toward 1

as β → ∞.
We want to show that the 2-overlap exhibit the same phase transition as in

the Gaussian SK model [1]: if we apply an external field and then remove it in
the thermodynamic limit, the 2-overlap remains strictly positive below its critical
temperature, where its variance becomes non-zero. The same is expected to hold for
all multi-overlaps.

Let us introduce the following notation: ωᾱ(·), 〈·〉ᾱ denote the usual expectations
except for a perturbation in the Boltzmannfaktor, which is assumed here to be

exp

⎡

⎣−β

(
HN(σ; α) −

N∑

i=1

( P i
ᾱ∑

ν=1

J̃ i
ν

)
σi

)⎤

⎦ ,
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i.e. the initial Boltzmannfaktor is perturbed with independent copies of an external field
h̃(ᾱ) =

∑Pᾱ

ν=1 J̃ν modulated by ᾱ.
This section is devoted to the next

Theorem 3. The following holds:

(1) for any inverse temperature β

lim
N→∞

〈q2n〉ᾱ=2α/N ≥ 0;

(2) for any β > β
(2)
c , defined by 2α tanh2(β

(2)
c ) = 1,

lim
N→∞

〈q12〉ᾱ=2α/N > 0.

We will see that our method would imply immediately the analogous statement for
all multi-overlaps, should the formula for their fluctuation be proven to hold at lower
temperatures as well.

The theorem will be a simple consequence of two lemmas, which require a definition
as well.

Lemma 1. Consider the set of indices {i1, . . . , ir}, with r ∈ [1, N ]. Then

lim
ᾱ→2α/N

ωN,ᾱ(σi1 · · ·σir) = ωN+1(σi1 · · ·σirσ
r
N+1) + O

(
1

N

)
,

where r is an exponent (not a replica index) and we have made explicit the dependence of
ω on the size of the system.

This lemma is a consequence of the fact that with the chosen ᾱ the presence of the
external field is equivalent to the introduction of an additional particle, labelled N + 1.
This should be clear from (1) and (2) above, and from the gauge symmetry with respect
to the transformation σi → σiσN+1, but the reader may want to refer to lemma 1 in [1]
for details. Notice that in the case of monomials with r even the previous lemma tells us
that the presence of the external field has no influence in the thermodynamic limit. This
will be important in the rest, and we hence proceed with the next

Definition 2. A polynomial function of some overlaps is called

• filled if every replica appears an even number of times in it;

• fillable if it can be made filled by multiplying it by exactly one multi-overlap of
appropriately chosen replicas.

The exponent r is always even for filled polynomials, whose average is therefore not
altered by the external field, so to have, for instance

〈q12q23q13〉ᾱ = 〈q12q23q13〉.
From the previous lemma we will deduce the following.

Proposition 1. Let Q1···2n be a fillable polynomial of the overlaps, such that q1···2nQ1···2n is
filled. Then

lim
N→∞

〈Q1···2n〉ᾱ=2α/N = 〈q1···2nQ1···2n〉,

where the right-hand side is understood to be evaluated in the thermodynamic limit.

doi:10.1088/1742-5468/2007/08/P08025 8
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Proof. Let us assume for a generic overlap correlation function Q, of s replicas, the
following representation

Q =

s∏

a=1

∑

ial

na∏

l=1

σa
ial

I({ial })

where a labels the replicas, the internal product takes into account the spins (labelled
by l) which contribute to the a part of the overlap qa,a′ and runs to the number of
time that the replica a appears in Q, the external product takes into account all the
contributions of the internal one and the I factor fixes the constraints among different
replicas in Q; so, for example, Q = q12q23 can be decomposed in this form noting
that s = 3, n1 = n3 = 1, n2 = 2, I = N−2δi11,i31

δi21,i32
, where the δ functions fixes the

links between replicas 1, 2 → q1,2 and 2, 3 → q2,3. The averaged overlap correlation
function is

〈Q〉 =
∑

ial

I({ial })
s∏

a=1

ωα

(
na∏

l=1

σa
ial

)
.

Now if Q is a fillable polynomial, and we evaluate it at ᾱ = 2α/N , let us decompose it,
using the factorization of the ω state on different replica, as

〈Q〉 =
∑

ial ,ibl

I({ial }, {ibl})
u∏

a=1

ωa

(
na∏

l=1

σa
ial

)
s∏

b=u

ωb

⎛

⎝
nb∏

l=1

σb
ibl

⎞

⎠ ,

where u stands for the number of the unfilled replicas inside the expression of Q. So we
split the measure Ω into two different subset ωa and ωb: in this way the replica belonging
to the b subset are always in even number, while the ones in the a subset are always
odds. Applying the gauge σa

i → σa
i σ

a
N+1, ∀i ∈ (1, N) the even measure is unaffected by

this transformation (σ2n
N+1 ≡ 1) while the odd measure takes a σN+1 inside the Boltzmann

measure (lemma 1).

〈Q〉 =
∑

ial ,ibl

I({ial }, {ibl})
u∏

a=1

ω

(
σa

N+1

na∏

l=1

σa
ial

)
s∏

b=u

ω

⎛

⎝σb
N+1

nb∏

l=1

σb
ibl

⎞

⎠ .

At the end we can replace in the last expression the subindex N + 1 of σN+1 by k for any
k �= {ial } and multiply by one as 1 = N−1

∑N
k=0. Up to orders O(1/N), which go to zero

in the thermodynamic limit, we have the proof. ��

At this point the first part of theorem 3 is simply a corollary of this proposition in
the case Q = q. The second part follows from the fact that all multi-overlaps (including

the 2-overlap) are zero above the critical temperature 1/β
(2)
c , and the 2-overlap starts

fluctuating below, so that 〈q2
2〉 is strictly positive and coincides (in the limit) with 〈q2〉 by

proposition 1. The fact that 〈q2
2〉 is strictly positive for β > β

(2)
c is obvious from the fact

that the replica symmetric solution does not hold in this region [13].
We will discuss the generalization of theorem 3 to multi-overlaps in [6].
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5. Stability relations from quasi-stationarity

In this section we want to prove the following.

Theorem 4. The consequences of stochastic stability in fully connected models extend to
dilute spin glasses, and constraints analogous to those found for overlaps of two replicas
only hold for multi-overlaps. More precisely,

(1) the Aizenman–Contucci relations hold in dilute spin glasses. A first example is

〈q2
12q

2
13〉 = 1

4
〈q4

12〉 + 3
4
〈q2

12q
2
34〉;

(2) further relations for multi-overlaps hold in dilute spin glasses. A first example is

〈q2
1234q

2
15〉 = 3

8
〈q2

1234q
2
12〉 + 5

8
〈q2

1234q
2
56〉.

We start addressing the proof of the theorem by proving a lemma that gives the
explicit form of the contribution to the free energy of a connectivity shift.

Lemma 2. Let Ω, 〈·〉 be the usual Gibbs and quenched Gibbs expectations at inverse
temperature β, associated with the Hamiltonian HN(σ, α;J ). Then, in the whole region
where the parameters are uniquely defined

lim
N→∞

E ln Ω exp
(
β ′

Pα′∑

ν=1

J ′
νσi′νσj′ν

)
= α′

∞∑

n=1

1

2n
tanh2n(β ′)(1 − 〈q2

2n〉), (8)

where the random variables Pα′ , {J ′
ν}, {i′ν}, {j′ν} are independent copies of the analogous

random variables appearing in the Hamiltonian in Ω.

Notice that, in distribution

β

PαN∑

ν=1

Jνσiνσjν + β ′
Pα′∑

ν=1

J ′
νσi′νσj′ν ∼ β

P(α+α′/N)N∑

ν=1

J ′′
ν σiνσjν (9)

where {J ′′
ν } are independent copies of J with probability αN/(αN + α′) and independent

copies of Jβ ′/β with probability α′/(αN +α′). In the right-hand side above, the quenched
random variables will be collectively denoted by J ′′. Notice also that the sum of Poisson
random variables is a Poisson random variable with mean equal to the sum of the means,
and hence we can write

At ≡ E ln Ω exp
(
β ′

Pα′t∑

ν=1

J ′
νσi′νσj′ν

)
= E ln

ZN(αt;J ′′)

ZN(α;J )
, (10)

where we defined, for t ∈ [0, 1],

αt = α + α′ t

N
(11)

so that αt → α ∀ t as N → ∞.

Proof. Let us compute the t-derivative of At, as defined in (10)

d

dt
At = E

∞∑

m=1

d

dt
πα′t(m) ln

∑

σ

exp
(
β ′

m∑

ν=1

J ′
νσi′νσj′ν

)
.
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Using the following elementary property of the Poisson measure

d

dt
πtζ(m) = ζ(πtζ(m − 1) − πtζ(m)) (12)

we get

d

dt
At = α′

E

∞∑

m=0

[πα′t(m − 1) − πα′t(m)] ln
∑

σ

exp

(
β ′

m∑

ν=1

J ′
νσi′νσj′ν

)

= α′
E ln

∑

σ

exp(β ′J ′σi′mσj′m) exp

(
β ′

Pα′t∑

ν=1

J ′
νσi′νσj′ν

)

− α′
E ln

∑

σ

exp

(
β ′

Pα′t∑

ν=1

J ′
νσi′νσj′ν

)

= α′
E ln Ωt exp(β ′J ′σi′mσj′m),

where we included the t-dependent weights in the average Ωt. Now use the following
identity

exp(β ′J ′σiσj) = cosh(β ′J ′) + σiσj sinh(β ′J ′)

to get

d

dt
At = α′

E ln Ωt[cosh(β ′J ′)(1 + tanh(β ′J ′)σi′mσj′m)].

It is clear that

Eω2n
t (σimσjm) = 〈q2

2n〉t,
so we now expand the logarithm in power series and see that, in the limit of large N ,
as αt → α the result does not depend on t, everywhere the measure 〈·〉t is continuous
as a function of the parameter t. From the comments that preceded the current proof,
formalized in (9)–(11), this is the same as assuming that Ω is regular as a function of
α, because J ′′ → J in the sense that in the large N limit J ′′ can only take the usual
values ±1 since the probability of being ±β ′/β becomes zero. Therefore integrating over
t from 0 to 1 is the same as multiplying by 1. Due to the symmetric distribution of J ,
the expansion of the logarithm yields the right-hand side of (8), where the odd powers are
missing. ��

Remark 1. The same result holds for the hierarchical Parisi trial structure [8]. In general,
what we study in this section relies only on (8), that holds for quasi-stationary RaMOSts,
to which our results therefore extend.

Proof of theorem 4. Consider once again

Ĥ = −
Pα′∑

ν=1

J ′
νσi′νσj′ν . (13)

We will let again Ω be the infinite volume Gibbs measure associated with the VB
Hamiltonian at connectivity α and inverse temperature β.
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Due to the symmetry of Ω, we have [5]

E ln Ω exp(β ′Ĥ) = 1
2
E ln Ω exp(−β ′(Ĥ − Ĥ ′)),

where we ‘replicated’ Ĥ ′ = Ĥ(σ′).
For the left-hand side of (8), a tedious expansion yields

1
2
ln Ω exp(−β ′(Ĥ − Ĥ ′))

= β ′2 1
4
[2Ω(Ĥ2) − 2Ω2(Ĥ)] + β ′4 1

24
[Ω(Ĥ4) − 4Ω(Ĥ3)Ω(Ĥ) − 3Ω2(Ĥ2)

+ 12Ω(Ĥ2)Ω2(Ĥ) − 6Ω4(Ĥ)] + β ′6
[

1

6!
Ω(Ĥ6) − 1

5!
Ω(Ĥ5)Ω(Ĥ)

− 1
48

Ω(Ĥ4)Ω(Ĥ2) − 1
72

Ω2(Ĥ3) + 1
6
Ω(Ĥ)Ω(Ĥ2)Ω(Ĥ3) + 1

24
Ω3(Ĥ2)

+ 1
24

Ω2(Ĥ)Ω(Ĥ4) − 1
6
Ω(Ĥ3)Ω3(Ĥ) − 3

8
Ω2(Ĥ)Ω2(Ĥ2)

+ 1
2
Ω(Ĥ2)Ω4(Ĥ) − 1

6
Ω6(Ĥ)

]
+ O(β ′8),

of which we have to take the quenched expectation E, using the formulas in appendix A.
For the right-hand side of (8), the expansion of the hyperbolic tangent, performed
explicitly for convenience in appendix A, leads to

α′
∑

n>0

1

2n
tanh2n(β ′)(1 − 〈q2

1···2n〉)

= β ′2α′(1
2
− 1

2
〈q2

12〉) + β ′4α′(− 1
12

+ 1
3
〈q2

12〉 − 1
4
〈q2

1234〉)
+ β ′6α′( 2

90
− 17

90
〈q2

12〉 + 1
3
〈q2

1234〉 − 1
6
〈q2

123456〉) + O(β ′8).

Recall that the averages 〈·〉 do not depend on β ′, so we now have two power series in
β ′ that we can equate term by term. The order zero and the odd orders are absent on
both sides. Let us consider the second order. Taking into account the formulas given in
appendix A, we have two identical (constant) monomials in α′

1
2
(1 − 〈q2

12〉) = 1
2
(1 − 〈q2

12〉)

and we gain no information. Let us move on to order four: using again the formulas given
in appendix A, we have the equality of two polynomials of degree two in α′. There is
no constant term, and no second power in the right-hand side. Equating term by term
we get a trivial identity for the linear part in α′ (and hence no information). From the
quadratic term in α′, on the other hand, we obtain the following relation

〈q2
12q

2
13〉 = 1

4
〈q4

12〉 + 3
4
〈q2

12q
2
34〉 (14)

which is the first AC relation we wanted to prove.
Notice that in the linear part in α′ a multi-overlap is present: q1234, but it cancels.

By contrast, in the quadratic part only 2-overlaps are present.
Let us now focus on the sixth order. Again we get a useless identity from the

linear part in α′, from which 4-overlaps and 6-overlaps get canceled out, and we gain
no information. From the quadratic part, where 4-overlaps are present (but no 6-overlaps
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are there), 〈q2
12〉 disappears, while the other terms with 2-overlaps only cancel because of

the previous AC relation. In fact, from the expansion we have

15

6!
− 15

5!
〈q2

12〉 −
7

48
− 1

6
〈q4

12〉 −
15

72
〈q2

12〉 +
7

6
〈q2

12〉 +
4

3
〈q2

12q
2
23〉 +

1

8
+

1

2
〈q4

12〉 +
1

24
〈q2

12〉

+ 1
3
〈q2

12q
2
23〉 + 1

4
〈q2

12〉 − 1
2
〈q2

1234〉 − 2〈q2
12q

2
34〉 − 9

8
〈q2

12〉 − 3〈q2
12q

2
23〉

− 3
2
〈q2

12q
2
1234〉 + 1

2
〈q2

1234〉 + 3〈q2
12q

2
34〉 + 4〈q2

12q
2
2345〉 − 15

6
〈q2

12q
2
3456〉 = 0.

So we are left, after a few trivial calculations, with the following new relation for multi-
overlaps

〈q2
1234q

2
15〉 = 3

8
〈q2

1234q
2
12〉 + 5

8
〈q2

1234q
2
56〉 (15)

announced in the statement of the theorem.
In the cubic part in α′ only overlaps of two replicas are present, and only the

monomials of order six remain, as the ones of lower degree cancel out directly. The
remaining relation is

1
12
〈q6

12〉 − 〈q2
12q

4
23〉 + 3

4
〈q2

12q
4
34〉 − 1

3
〈q2

12q
2
23q

2
31〉 + 〈q2

12q
2
13q

2
14〉 + 3〈q2

12q
2
23q

2
34〉

− 6〈q2
12q

2
23q

2
45〉 + 5

2
〈q2

12q
2
34q

2
56〉 = 0.

Proceeding further, the expansion generates all the identities due to stochastic stability,
in full agreement with the self-averaging identities found in [10, 9].

We will provide a more general and systematic form of the relations in the next
section.

6. Stability relations from the cavity streaming equation

In this section we study a family of constraints on the distribution of the overlaps. To
address this task we will consider the quenched expectation of a generic function of s
replicas, with respect to the perturbed measure with weights

exp

⎛

⎝−βHN(σ; α) + β ′
P ′

2αt∑

ν=1

J̃νσiν

⎞

⎠ , (16)

whose use will be indicated with a subscript t in the expectations. Once again, {J̃ν} are
independent copies of J .

From now on let us put θ = tanh(β ′), and, assuming J = ±1, we have θ2n =
E tanh2n(β ′J), tanh2n+1(β ′J) = Jθ2n+1 ∀ n ∈ N. Let us also just put ωt = ωt(σ), with a
slight abuse of notation.

Proposition 2. Let Φ be a function of s replicas. Then the following cavity streaming
equation holds

d〈Φ〉t
dt

= −2α〈Φ〉t + 2αE

[
ΩtΦ

{
1 + J

1,s∑

a

σa
i1θ +

1,s∑

a<b

σa
i1σ

b
i1θ

2 + J

1,s∑

a<b<c

σa
i1σ

b
i1σ

c
i1θ

3 + · · ·
}

×
{

1 − sJθωt +
s(s + 1)

2!
θ2ω2

t −
s(s + 1)(s + 2)

3!
Jθ3ω3

t + · · ·
}]

∀ θ. (17)
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Proof. Let us explicitly perform the calculation of the derivative, using (12).

d

dt
EZ−1

t

∑

σ

Φ exp

( s∑

a=1

(
β

P ′
αN∑

ν

Jνσ
a
iνσ

a
jν

+ β ′
P ′

2αt∑

ν

J̃νσ
a
iν

))

= 2αE
Ωt[Φ exp(β ′ ∑s

a=1 Jσa
i1)]

Ωt exp(β ′ ∑s
a=1 Jσa

i1
)

− 2α〈Φ〉t

= 2αE
Ωt[Φ

∏s
a=1(cosh(β ′J) + σa

i1 sinh(β ′J))]

Ωt[
∏s

a=1(cosh(β ′J) + σa
i1

sinh(β ′J))]
− 2α〈Φ〉t

= 2αE
Ωt[Φ

∏s
a(1 + Jθσa

i1)]

(1 + θω)s
− 2α〈Φ〉t.

Now note that

1

(1 + Jθωt)s
= 1 − Jsθωt +

s(s + 1)

2!
θ2ω2

t − J
s(s + 1)(s + 2)

3!
θ3ω3

t

+
s(s + 1)(s + 2)(s + 3)

4!
θ4ω4

t − · · ·

and that
s∏

a=1

(1 + Jθσa
i1
) = 1 + J

1,s∑

a

σa
i1
θ +

1,s∑

a<b

σa
i1
σb

i1
θ2 + J

1,s∑

a<b<c

σa
i1
σb

i1
σc

i1
θ3 + · · · .

The theorem follows immediately. ��
In the limit α → ∞ as βSK = 2αθ2 is kept constant, the powers of θ higher than two

are killed, and we recover the equation for the Gaussian SK model [5]

d〈Φ〉t
dt

=

〈
Φ

( 1,s∑

a<b

qab − s

1,s∑

a

qa,s+1 +
s(s + 1)

2
qs+1,s+2

)〉

t

. (18)

We know from sections 4 and 5 that if in the previous theorem we take Φ to be a
filled polynomial the left-hand side of (17) is zero in the thermodynamic limit, and we
have a polynomial in θ (and hence in β ′) on the right-hand side that can be equated to
zero term by term (we do not need to re-expand in β ′ and equate the new coefficients
to zero). Now if, in each term of the expansion that we equate to zero in this case, we
additionally take β ′ = β, then we also guarantee that the fillable polynomials get filled,
thanks to proposition 1. In other words

Proposition 3. The generator of the constraints on the distribution of the overlap is:

lim
N→∞

∂t〈Φ〉 = 0

where Φ is filled and β ′ = β.

Let us consider the first simple example, Φ = q2
12. Proposition 2 then yields

lim
N→∞

∂t〈q2
12〉t = lim

N→∞
〈q3

12 − 4q2
12q23 + 3q2

12q34〉tθ2 + O(θ4)

= lim
N→∞

〈q3
12 − 4q2

12q23 + 3q2
12q34〉tβ ′2 + O(β ′4) = 0

⇒ 〈q4
12 − 4q2

12q
2
23 + 3q2

12q
2
34〉 = 0,
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which is understood to be taken in the thermodynamic limit and is just the Aizenman–
Contucci relation we have found already in the previous section.

If we choose instead Φ = q2
1234, we obtain

lim
N→∞

∂t〈q2
1234〉t = 〈θ2(3q2

1234q
2
12 − 8q2

1234q
2
15 + 10q2

1234q152) + θ4(q4
1234 − 16q2

1234q
2
1235

+ 60q2
1234q

2
1256 − 80q2

1234q
2
1567 + 35q2

1234q
2
5678)〉 + O(θ6) = 0.

From the order two in β ′ we have the coefficient of θ2, and equating to zero gives

〈q2
1234q

2
15〉 = 3

8
〈q2

1234q
2
12〉 + 5

8
〈q2

1234q
2
56〉.

At the order four in β ′ we have leftover term from the order two, which thus vanish, and
the coefficient of θ4:

〈q4
1234〉 = 〈16q2

1234q
2
1235 − 60q2

1234q
2
1256 + 80q2

1234q
2
1567 − 35q2

1234q
2
5678〉.

In a similar way we can obtain all the other relations, from the higher orders, simply
by equating to zero all the coefficients of the expansion in powers of θ, with no need to
expand in β ′.

When Φ = q2
1···s, notice that the relation we obtain from the lowest order in (17)

is formally identical to equation (18), with zero on the left-hand side, without the limit
α′ → ∞. Hence, using the invariance with respect to permutations of replicas, we have
the general form of the constraint of which (14) and (15) are two special cases. In general,
for a suitable function Φ1···s of s replicas, from proposition 2 we can state the following.

Theorem 5. Given an even integer s, the AC relation

〈Φ1···sq
2
1,s+1〉 =

s − 1

2s
〈Φ1···sq

2
1,2〉 +

s + 1

2s
〈Φ1···sq

2
s+1,s+2〉

holds.

Subtracting the equation above from the well known Ghirlanda–Guerra identity [12]

〈Φ1···sq
2
1,s+1〉 =

1

s
〈Φ1···s〉〈q2

12〉 +
s − 1

s
〈Φ1···sq

2
s+1,s+2〉

we get the other well known relation

〈Φ1···sq
2
s+1,s+2〉 =

2

s + 1
〈Φ1···s〉〈q2

12〉 +
s − 1

s + 1
〈Φ1···sq

2
12〉. (19)

While the Ghirlanda–Guerra identities are a consequence of self-averaging, in the
thermodynamic limit, of the energy density HN/N ≡ K

〈KΦs〉 = 〈K〉〈Φs〉,
the AC relations are a consequence of stochastic stability; but they can also be deduced
from a self-averaging relation:

EΩ(KΦs) = EΩ(K)Ω(Φs).

Clearly the third relation (19) is hence a consequence of

EΩ(K)Ω(Φs) = 〈K〉〈Φs〉.
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We stress that not only the energy density can be used to get the various relations, but
several other quantities (as long as self-averaging is preserved) would do as well.

If we consider 4-overlaps, proposition 2 gives

(s − 1)(s − 2)(s − 3)

4!
〈Φ1···sq

2
1,2,3,4〉 −

s(s − 1)(s − 2)

3!
〈Φ1···sq

2
1,2,3,s+1〉

+
(s − 1)s(s + 1)

4
〈Φ1···sq

2
1,2,s+1,s+2〉 −

s(s + 1)(s + 2)

3!
〈Φ1···sq

2
1,s+1,s+2,s+3〉

+
(s + 1)(s + 2)(s + 3)

4!
〈Φ1···sq

2
s+1,s+2,s+3,s+4〉 = 0

which again can be deduced from a self-averaging relation too [10, 9] and should be
compared with the generalization of Ghirlanda–Guerra relations

s(s − 1)(s − 2)(s − 3)

3!
〈q1,2,3,4Φ〉 −

s(s − 1)(s − 2)

2
〈q1,2,3,s+1Φ〉

+
(s − 1)s(s + 1)

2!
〈q1,2,s+1,s+2Φ〉 −

s(s + 1)(s + 2)

3!
〈q1,s+1,s+2,s+3Φ〉

+ 〈q1234〉〈Φ〉 = 0,

which has been found in [9], as a consequence of the self-averaging of the energy density.
We do not write explicitly the general form of the constraints deduced from

proposition 2, as it is a very simple but tedious computation, which shows that the
relations are in agreement with [10].

6.1. Revisiting the positivity of multi-overlaps

We here hint at how to gain a better control of the phase transition discussed in section 4,
using the expansion of the cavity streaming equation, to justify from a different perspective
what is proven in [13]: the fluctuations of the multi-overlaps diverge at lower temperatures
as the number of replicas increases. This is a first step in the calculation of the critical
exponents of the critical behavior of the multi-overlaps. We only sketch the arguments,
which proceed along the lines described in [1].

We are going to prove that the first contribution to the average of the 2-overlap in
its tanh(β ′) = θ expansion is of order two, while it is of order four for the 4-overlap, and
so on for higher order multi-overlaps, as intuitively expected.

Let us write the streaming equation for 〈q12〉t, with β ′ = β, α′ = α

∂t〈q12〉t = αθ2〈q2
12 − 4q12q23 + 3q12q34〉t + O(θ4).

But 〈q2
12〉t = 〈q2

12〉 because q2
12 is a filled monomial, and it can be integrated offering

〈q12〉t = αθ2〈q2
12〉t + αθ2

∫ 1

0

dt(−4〈q12q23〉t + 3〈q12q34〉t) + O(θ4).

We now prove that the terms inside the integral are of higher order in θ. It is enough
to notice that such terms are fillable but not filled, so we can expand them using the
streaming equation to evaluate the leading order at which they contribute, which is θ3

as can be deduced from the expansions given in appendix B. The same approach can be
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used for the 4-overlap; in fact we can write

∂t〈q1234〉t = αθ2〈10q1234q56 − 16q1234q15 + 6q1234q12〉t + αθ4〈q2
1234 − 16q1234q1235

+ 60q1234q1256 − 80q1234q1567 − 35q1234q5678〉t + O(θ6).

It can be readily seen that the only contribution at the fourth order is due to 〈q2
1234〉,

given that this is the only filled monomial. The calculations in appendix B show that the
three contributions from the second order in θ (i.e. q1234q56, q1234q15, q1234q12) contribute
at orders higher than four, so the first term in the four-replica multi-overlap expansion
is positive (being a square), in agreement with what we showed in section 4. We notice
that, while the first contribution to the 2-overlap is of order two in θ, the first contribution
to the 4-overlap is of order four, and this result extends analogously to the higher order
multi-overlaps. So it is not surprising that at the point where the 2-overlap fluctuations
start diverging, the fluctuations of the 4-overlap do not, and so on for higher orders, in
agreement with what is proven in [13].

7. Conclusion and outlook

We have proven the validity of Aizenman–Contucci relations for dilute spin glasses and
exhibited further relations for multi-overlaps. Some more general relations can be found
with the same stochastic stability methods for internal energy, but also from the cavity
part of the RaMOSt trial function, by means of a control of the response of the average
of generic observables with respect to the change of a perturbing parameter. We also
showed that the multi-overlaps undergo the same transition the 2-overlap exhibits in fully
connected models, i.e. they remain strictly positive, below the critical temperature, if we
apply an external field and then remove it in the thermodynamic limit. The external field is
properly modulated, in diluted systems, by the degree of connectivity of the perturbation.

The further natural development is the study of the extension to multi-overlaps of
the self-averaging identities (known as Ghirlanda–Guerra in fully connected models) to
prove that even multi-overlaps are non-negative with probability one in dilute spin glasses
(the identities will be derived in [9]). This would extend to odd spin interactions the
replica bounds so far rigorously valid only for even interactions, and such a result would
be important for the application of dilute spin glasses to optimization problems like the
K-SAT.

Another development of the current work is the calculation of the critical exponents
of the multi-overlaps, which has been gained for fully connected models in [1] with the
same techniques here shown to be fruitful in dilute models too. We will report on critical
exponents in dilute spin glasses soon, in [6].
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Appendix A. Formulas for the RaMOSt expansions

Let us report for convenience the well known expansion

tanh(x)
∑ 22n

2n!
(22n − 1)B2nx2n−1
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where Bn and the Bernoulli numbers, defined by

x

ex − 1
=

∑ Bnxn

n!

so that

tanh(β) = β − 1

3
β3 +

2

15
β5 − 17

315
β7 +

62

2835
β9 · · · .

We also report here the following results of the computations we used in the expansions
of the previous sections.

Order two:

EΩ(Ĥ2) = α′

EΩ2(Ĥ) = α′〈q2
12〉.

Order four:

EΩ(Ĥ4) = α′ + α′23

EΩ(Ĥ3)Ω(Ĥ) = α′〈q2
12〉 + α′23〈q2

12〉
EΩ2(Ĥ2) = α′ + α′2(1 + 2〈q4

12〉)
EΩ(Ĥ2)Ω2(Ĥ) = α′〈q2

12〉 + α′2(〈q2
12〉 + 2〈q2

12q
2
13〉)

EΩ4(Ĥ) = α′〈q2
1234〉 + α′23〈q2

12q
2
34〉.

Order six:

EΩ(Ĥ6) = α′ + α′215 + α′315

EΩ(Ĥ5)Ω(Ĥ) = α′〈q2
12〉 + α′215〈q2

12〉 + α′315〈q2
12〉

EΩ(Ĥ4)Ω(Ĥ2) = α′ + α′2(7 + 8〈q4
12〉) + α′3(3 + 12〈q4

12〉)
EΩ2(Ĥ3) = α′〈q2

12〉 + α′215〈q2
12〉 + α′3(9〈q2

12〉 + 6〈q6
12〉)

EΩ(Ĥ)Ω(Ĥ2)Ω(Ĥ3) = α′〈q2
12〉 + α′2(7〈q2

12〉 + 8〈q2
12q

2
23〉) + α′3(3〈q2

12〉
+ 6〈q2

12q
2
13〉 + 6〈q2

12q
4
13〉)

EΩ3(Ĥ2) = α′ + α′2(3 + 12〈q4
12〉) + α′3(1 + 6〈q4

12〉 + 8〈q2
12q

2
23q

2
31〉)

EΩ(Ĥ4)Ω2(Ĥ) = α′〈q2
12〉 + α′2(7〈q2

12〉 + 8〈q2
12q

2
23〉) + α′3(3〈q2

12〉 + 12〈q2
12q

2
23〉)

EΩ3(Ĥ)Ω(Ĥ3) = α′〈q2
1234〉 + α′2(3〈q2

1234〉 + 12〈q2
12q

2
34〉) + α′3(9〈q2

12q
2
34〉 + 6〈q2

12q
2
23q

2
34〉)

EΩ2(Ĥ)Ω2(Ĥ2) = α′〈q2
12〉 + α′2(3〈q2

12〉 + 8〈q2
12q

2
23〉 + 4〈q2

12q
2
1234〉)

+ α′3(〈q2
12〉 + 2〈q2

12q
4
34〉 + 4〈q2

12q
2
23〉 + 8〈q2

12q
2
23q

2
34〉)

EΩ(Ĥ2)Ω4(Ĥ) = α′〈q2
1234〉 + α′2(〈q2

1234〉 + 6〈q2
12q

2
34〉 + 8〈q2

12q
2
2345〉)

+ α′3(3〈q2
12q

2
34〉 + 12〈q2

12q
2
23q

2
45〉)

EΩ6(Ĥ) = α′〈q2
123456〉 + α′215〈q2

12q
2
3456〉 + α′315〈q2

12q
2
34q

2
56〉.

Appendix B. Formulas for the cavity expansions

In this appendix we report, to facilitate the reader who wants to perform the calculations
in detail, the streaming equations for the expansion of section 6.

∂t〈q12〉t = αθ2〈q2
12 − 4q12q23 + 3q12q34〉t + O(θ4)

doi:10.1088/1742-5468/2007/08/P08025 18

http://dx.doi.org/10.1088/1742-5468/2007/08/P08025


J.S
tat.M

ech.(2007)
P

08025

Stability properties and probability distributions of multi-overlaps in dilute spin glasses

∂t〈q12q23〉t = αθ2〈6q12q23q45 − 6q12q23q14 − 3q12q23q24 + q12q23q13 + 2q2
12q23〉

+ αθ4〈15q12q23q4567 − 20q12q23q1456 − 10q12q23q2456 + 12q12q23q1245

+ 6q12q23q1345 − 3q12q23q1234〉t + O(θ6)

∂t〈q12q34〉t = αθ2〈10q12q34q56 − 16q12q34q15 + 2q2
12q34 + 4q12q34q13〉t + αθ4〈35q12q34q5678

− 80q12q34q1567 + 20q12q34q1256 + 40q12q34q1356

− 16q12q34q1235 + q12q34q1234〉t + O(θ6)

∂t〈q1234〉t = αθ2〈10q1234q56 − 16q1234q15 + 6q1234q12〉t + αθ4〈q2
1234 − 16q1234q1235

+ 60q1234q1256 − 80q1234q1567 − 35q1234q5678〉t + O(θ6)

∂t〈q1234q12〉t = αθ2〈10q1234q12q56 − 8q1234q12q15 − 8q1234q12q35 + q1234q
2
12

+ 5q1234q12q13〉t + αθ4〈35q1234q12q5678 − 40q1234q12q1567 − 40q1234q12q3567

+ 10q1234q12q1256 + 40q1234q12q1356 + 10q1234q12q3456 − 16q1234q12q1235

+ q2
1234q12〉t + O(θ6)

∂t〈q1234q15〉t = αθ2〈15q1234q15q67 − 15q1234q15q26 − 10q1234q15q56 + 5q1234q15q12

+ 4q1234q15q23 + q1234q
2
15〉t + αθ4〈70q1234q15q6789 − 105q1234q15q2678

− 70q1234q15q1678 + 15q1234q15q1567 + 90q1234q15q1267 + 45q1234q15q2367

+ 20q1234q15q1235 − 25q1234q15q1246 − 5q1234q15q2346 + 4q1234q15q1236

+ q2
1234q15〉t + O(θ6)

∂t〈q1234q56〉t = αθ2〈21q1234q56q78 − 24q1234q56q17 − 12q1234q56q57 + 6q1234q56q12

+ 8q1234q56q57 + q1234q
2
56〉 + αθ4〈126q1234q56q7890 − 112q1234q56q5789

− 224q1234q56q1789 + 21q1234q56q5678 + 168q1234q56q1578 + 126q1234q56q1378

− 24q1234q56q3567 + 14q1234q56q1235 + q2
1234q56〉t + O(θ6)
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