
DOI: 10.1142/S0217979210057687

March 16, 2011 10:50 WSPC/140-IJMPB S0217979210057687

International Journal of Modern Physics B
Vol. 24, No. 32 (2010) 6351–6363
c© World Scientific Publishing Company

A NUMERICAL INVESTIGATION OF THE JAMMING

TRANSITION IN TRAFFIC FLOW ON DILUTED

PLANAR NETWORKS

GABRIELE ACHLER
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In order to develop a toy model for car’s traffic in cities, in this paper we analyze, by
means of numerical simulations, the transition among fluid regimes and a congested
jammed phase of the flow of kinetically constrained hard spheres in planar random
networks similar to urban roads.

In order to explore as timescales as possible, at a microscopic level we implement
an event driven dynamics as the infinite time limit of a class of already existing model
(Follow the Leader) on an Erdos–Renyi two-dimensional graph, the crossroads being
accounted by standard Kirchoff density conservations. We define a dynamical order
parameter as the ratio among the moving spheres versus the total number and by varying
two control parameters (density of the spheres and coordination number of the network)
we study the phase transition.

At a mesoscopic level it respects an, again suitable, adapted version of the Lighthill–
Whitham model, which belongs to the fluid-dynamical approach to the problem.

At a macroscopic level, the model seems to display a continuous transition from a
fluid phase to a jammed phase when varying the density of the spheres (the amount of
cars in a city-like scenario) and a discontinuous jump when varying the connectivity of
the underlying network.

Keywords: Phase transition and critical phenomena; traffic flow; glassy behavior.

1. Introduction

In the past decades an always increasing interest has been paid to the flow of cars in

urban roads (e.g., see Refs. 1 or 2 for a beautiful modern review): a primary challenge

is the reduction of time delays and CO emissions, in a nutshell, the congested traffic

flow.3

Despite progresses developed by engineers and physicist (i.e., see Refs. 4 and 5),
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essentially focused on large streets or small tree-like graphs,6,7 very little is known

concerning the behavior of traffic on large two-dimensional networks.2

In a completely different context, last 20 years saw the statistical mechanics

of disordered and complex systems8 experience an increasing development as well

as its range of applicability (see for instance Refs. 9–11) and, inspired by these

successes, we want to investigate the nature of the transition among a fluid state

and a jammed counterpart in traffic flow on planar networks, investigating the

presence (or the lacking) of criticality12,13 within a out of equilibrium statistical

mechanics framework.14,15

Furthermore, statistical mechanics of disordered systems recently pointed out

a deep connection among replica symmetry breaking scenario,8,16 the paradigm of

the transition among fluid and glass and the P → NP transition in problem solving

of hard satisfiability problems.17,18

Interesting, if the mapping among jamming transition and P → NP complete-

ness would apply to traffic jams too, it would vanish every attempt to an online

control of car flow by external massive macro-computing giving more firm ground

to interacting local optimizers (as i.e., neural networks).19–21

Deepening our knowledge concerning the jam transition in traffic flow should be

then of great importance, in our traffic optimization planning, if, varying tunable

parameters, glassy-like criticality arises.22

From a practical viewpoint, as a rigorous formulation of out of equilibrium

statistical mechanics is far from being exhausted,14,23–25 we do not have a paved

mathematical way to follow for checking, i.e., the involved timescales26 or the reach

of a stationary state27 (which is a primary requirement for giving meaning to the

averages) and consequently there is the need of fastest simulation algorithms28,29

to cover as timescales as possible.

Even though we will move toward a molecular-dynamics-like approach,30 we

stress that for similar reasons the biggest amount of works on this subject uses in

fact cellular automata5,31–34 which are quite faster than the continuous models.35–37

Fast simulations are in fact hard tasks, especially in models with continuum

potentials as they need to be made discrete generally by using Trotter expansions

of the Liouvillean30 describing the motion in the phase space, forbidding a very

long simulation time (i.e., by Liapounov constrictions38).

Avoiding these potentials, a very fast integration of the dynamics is offered by

the Verlet event driven dynamics of hard spheres39: these spheres are without a real

potential; they move on straight lines, up to a core distance at which they touch one-

other and they feel an infinite barrier of potential which converts instantaneously

the kinetic energy into potential energy.

In this way, the motion against two successive collisions does not require inte-

gration. It is in fact propagated from collision to collision, the new positions and

momenta are worked out by imposing conservation of particles (Kirchoff rule), en-

ergy, and momenta, (we will preserve just the Kirchoff rule in our framework) and

the motion is propagated again and so on40 (we emphasize that this approach has
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been tackled also to granular systems,41 which are glassy systems sharing several

features with traffic flow42,43).

Of course there exist already several very sharp models for traffic flow but we

introduce ours because we are moving in an opposite way for a different scope with

respect to the standard approach: as we want a large amount of cars as well as long

simulation time for a thermodynamical approach, we allow ourself to skip as details

of the motion as possible, retaining just the main features (as usually happens when

looking at criticality in statistical mechanics44).

Once defined the microscopic dynamics we then focus at first at the mesoscopic

level (order 102 cars) to recover the Lighthill–Whitham (LW) scenario,45 for showing

consistence with pre-existing works, then we focus on a macroscopic scale (up to 104

cars) to study its thermodynamics. We introduce the ratio of the moving particle as

a standard dynamical order parameter,2 labeled by φ that we call fluidity for the

sake of clearness, and define it as

φ = 1−N−1

N
∑

i

vi , vi ∈ [0, 1] (1)

(such that it is trivially one in the jammed phase (where there is no longer any

motion) and decreases toward zero in the liquid phases) and study its behavior:

average, distribution, and fluctuations.

The model seems to display a jammed phase where the fluidity is strictly zero

and its fluctuations are delta-like centered on the average (the congested phase

where all the spheres are caged among their nearest neighbors) and a flowing phase

in which the fluidity seems to decrease continuously to zero (cages smoothly disap-

pear) by decreasing the density or discontinuously by increasing the connectivity

and its fluctuations appear Gaussians.

The whole suggesting the model undergoes a second order like transition in the

density and a first order like in the connectivity.

For the sake of clearness we aim to label with α the connectivity of the network,

with ρ the density of the N cars (even though, from practical comparison of different

size networks it will sometimes be easier to deal directly with the un-normalized

amount of car N) and with vi = v ∀i ∈ (1, . . . , N) the velocity of the ith car.

It is worth noting that the standard technique of statistical mechanics on diluted

systems46,47 merges the two parameters via the relation α tanh(ρ) = ρ′, ρ′ being an

equivalent density in a fully connected network, so actually do not display clearly

the transition split among the two control parameters.a

Furthermore, we want to stress that there already exist works on dilute hard

spheres in different contexts (as on the Bethe lattice)48,49 but, to our knowledge,

not on networks with topology close to urban one.

aStrictly speaking the investigated systems we meant are spins on lattice, whose order parameter
is the temperature, which is well known, for model with discontinuous potentials, substituted by
the density.

In
t. 

J.
 M

od
. P

hy
s.

 B
 2

01
0.

24
:6

35
1-

63
63

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
IN

G
`S

 C
O

L
L

E
G

E
 L

O
N

D
O

N
 M

A
U

G
H

A
N

 L
IB

R
A

R
Y

 &
 I

N
FO

R
M

A
T

IO
N

 S
E

R
V

IC
E

S 
C

E
N

T
R

E
 (

IS
C

) 
- 

JO
U

R
N

A
L

 S
E

R
V

IC
E

S 
on

 1
0/

08
/1

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



March 16, 2011 10:50 WSPC/140-IJMPB S0217979210057687

6354 G. Achler & A. Barra

2. Microscopic Model

In this section, we point out the simulation scheme, which, for the sake of simplicity

we spit in two parts: the choice of the underlying network (the topology) and the

choice of the dynamics on the network (the interactions).

2.1. The network

At first we must introduce the graph. In order to mimic a real urban center we

think at a graph whose links represent the roads and vertices represent intersec-

tions and end points. For their high connectivity, scale free50 and fully connected51

networks are inappropriate to describe such a graph and for the extremum order

and homogeneity they present, also Voronoi tessellation52 and regular grids are

avoided.53

Real data show a linear dependence among the number of roads versus the

number of intersections,54 whose ratio must be obviously between one (tree-like

structures with no loops) and two (2D regular lattice) with an empirical slope

close to 3/2.55 Even though clever growth algorithms for these networks recently

developed,55 for computational simplicity (as we will have to average over several

configurations and we want the fastest procedure) we choose the planar Erdos–

Renyi graph50 above the giant component threshold, which is close to the requested

class of random graphs56 and is of immediate realization on a computer as no

growing is concerned.

All the links represent streets built by two lanes so as to have both an incoming

and an outgoing flux from each node.

On this network, we can vary its averaged connectivity — the coordination

number — (denoted by α) so to explore from the region of extreme dilution near

the percolation threshold up to a fully ordered grid.

Of course to check convergence to the infinite volume limit we will test our

simulations varying also the size of the grid (Fig. 1).

2.2. The dynamics

On this network we let live N cars for which we want to manage two limits at the

same time (which conflict in terms of CPU time): the large N limit to have enough

data for the averages and the infinite time behavior so to approach to a steady

state: the need of the fastest plausible algorithm follows straightforwardly.

One of the most important class of models which aim to mimic car dynamics is

the so called follow the leader,6,57,58 where the dynamics of the ith car is assumed

to respect the following differential equation (or some suitable variants2), where

(i + 1)th labels the car in front of the ith, following the direction of motion:

d2xi

dt2
∼ (vi − vi+1) . (2)
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Fig. 1. Examples of generated networks. At left a high connectivity topology, at right a low one.
We start from a fully ordered grid in which each node has exactly eight links then we dilute the
links with a Poisson distribution with mean 4, such that the main nodes are ordinary crossroads.
If a node has two, one or zero links is removed too.

In a nutshell, the car i accelerates if the car in front is accelerating too (this happens

both for positive and negative accelerations).

As a solution for the long time steady state behavior of the follow the leader

model is given by the same constant velocity for all the cars (as it appears clearly

by solving Eq. (2) in the large time limit by imposing d2xi/dt
2 = 0) we choose

for our microscopic dynamics an event driven hard-sphere-like dynamics,40 which

is known to be one of the fastest achievable dynamics in terms of CPU time29,59

and is in agreement with these continuous potential in the regime where we are

interested in (t → ∞).

On every lane overtaking is forbidden (FIFO principle58) and every car has an

energy Ei = v2i /2 during the free motion, whose dynamics is propagated between

collisions among two cars or one car and a crossroad.

There the collision rules are worked out with a remarkable difference with respect

to canonical physics: nor detailed balance neither the third law of dynamics do hold.

When a collision happens there is no conservation of momenta and the incoming

car loses all the energy then starts again following the collided car (crossroads

apart which confer a certain degree of randomness), for this reason we call our hard

spheres kinetically constrained.60,61 However, as for instance elegantly explained

in Refs. 15, 62, 63 this is not a too serious limitation when investigating out of

equilibrium steady state (the same is not true of course in equilibrium44).

The potential felt by the cars is the classical hard core potential29,40 V , which,

by using |xij | to evaluate the distance between the two cars situated, respectively

at xi and xj , can be written as

V (|xij |) ≡

{

V0 = 0 if |xij | ≥ d

V1 = ∞ if |xij | < d

}

, (3)
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where d can be thought of as a security distance, the minimal distance allowed

among two consecutive cars (we stress that varying d changes also the maximum

number of admitted cars inside a network Nmax — which sets ρ = 1 — and conse-

quently the critical density for the transition, so we fix d = 1 once for all).

So far we defined the network and the dynamics along a link (street); we must

further specify what happens when more links merge in a node (crossroad): several

decision rules can be implemented; in this preliminary work, we impose a simple

random walk at the nodes: if a car is at the end of a link and has n possible

directions to take it chooses one of them with probability n−1.

Of course the total number of machines is conserved along the dynamics and

we impose Kirchoff rules2 for the flow at the nodes.

3. The Adapted Lighthill–Whitham Theory

As we want to move from a microscopic prescription toward a macroscopic de-

scription, there should be a mesoscopic lengthscale at which well-known models,

the most famous being the LW model,45 should be recovered. With mesoscopic we

mean we are dealing with an ensemble of cars such that their concentration as a

function of the space (labeled by x) and time (labeled by t) is meaningful whilst the

average overall the concentrations can still be thought of in terms of a probabilistic

description.64

From a practical viewpoint, let us now concentrate just on a big street with an

amount M of cars inside and analyze the flow at this level.

Assuming that the cars move from smaller to larger values of x, we define the

concentration C of an element of the traffic on the street as the amount of cars

moving within the space delimited by two generic points C ⊃ x ∈ [xa, xb], xa < xb.

It follows that C(x, t) = M−1
∑M

i (θ(xi(t)− xa)− θ(xi − xb)) and let us also write

the velocity of the generic ith particle as vi(t) = 1− δ((xi(t) + d) − xi+1(t)), such

that if the car is moving, its velocity is one, otherwise is zero.

The traffic flow is defined as J(x, t) = vg(x, t)C(x, t) where vg(x, t) is the group

velocity and C(x, t) the concentration. Assuming conservation on the total amount

of cars, the following continuity equation holds45

∂C(x, t)

∂t
+

∂J(x, t)

∂x
=

N
∑

i

ρiin(x, t)−

N
∑

j

ρjout(x, t) , (4)

where ρiin(x, t) = θ(xa−xi(t))− θ(xa−xb−xi(t)) and ρiout(x, t) = 1−ρiin(x, t) take

into account car entries and exits on the street.

The group velocity relates to the local velocity of the particles via2 vg =

(1/M)
∑M

i vi + (1/M)C∂C
∑M

i vi ≤ 1 which in our case reads off as

vg = 〈vi〉 −

〈

1

N

N
∑

i

vi

〉

= 1− φ , (5)
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where the brackets average out the Dirac deltas on some measure (note that vg ≤

〈vi〉).

The scenario is as follows: as far as the system is completely un-frustrated (low

density liquid) the group velocity corresponds to the single velocity; increasing

density of cars (or decreasing the connectivity of the network) frustration arises

and lowers the group velocity up to a threshold where the jamming transition

starts and vg goes to zero such that the only solution to Eq. (4) is C(x, t) = C ∈

[0, 1].

For the sake of simplicity, let us consider a very long piece of a street without

entries or exits such that the LW model in our case obeys the following partial

differential equation

∂C(x, t)

∂t
+ (1− φ)

∂C(x, t)

∂x
= 0 , (6)

whose solutions are Galilean characteristics with slope 1− φ and can be expressed

by generic functions f(x ± (1 − φ)t) (cinematic waves65). If we now focus on two

adjacent elements, C1(x, t), C2(x, t) and suppose that C1(x, t) is in front of C2(x, t)

in the direction of motion, we see that as far as their corresponding fluidities are

zero they both follow straight lines (on the x, t plane) with the same slope. If we

now suppose that C1 changes its status (for example, by internal rearrangements,

that we impose in the simulation by freezing randomly spheres belonging to the

first package) and becomes frustrated φ1 > 0, its group velocity decreases and at

the time ∆X/(vg1(φ) − vg2) the two characteristics meet causing a discontinuity

in the concentration functions, which acts as the starter of the transition, as (due

to the structure of the solution) it propagates both forward and backward on the

street (Fig. 2).
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Fig. 2. Left: Collision time versus the fluidity of the first concentration C1 in our LW model,
theor stands for analytical prediction, exp for the simulation results. Right: Fundamental diagram
for our LW model.
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4. Macroscopic Behavior

Now we turn to the analysis on large-scale networks. We consider three sizes of

(squared) networks, which, at the highest connectivity, are completely filled by

Nmax = 2× 103, 5× 103 and 1× 104 spheres, which set ρ = 1 in the different cities.

The connectivity ranges from 0 to 1 and is changed from the percolation threshold

(which is defined by α = 0) to the fully two-dimensional network (which is defined

by α = 1) in eight steps and the density (again defined in [0, 1]) is investigated at

five different values too.

The analysis works as follows: for every investigated size, degree of connectivity

and density, we average over 20 different runs; for every run we start off spheres

randomly over the network (avoiding pathological overlaps) and study the mean of

the fluidity, its variance, and its distribution by starting to collect data when the

mean does not vary sensibly (less than 5% for an amount of time O(105) collisions),

that we claim to be a stationary state.

At first, even though we do not provide a plot (as it would have just three

points), we stress that we obtained good agreement among the three different city

sizes investigating the monotonicity of the convergence of the averages (of fluidity

and its variances), which is the basis of the thermodynamic limit (fundamental

property for a well-behaved model67).

For all the not-jammed stationary states (at fixed α, ρ), we analyzed the dis-

tribution of the fluidity sampling over the whole simulations performed: they turn

out to be close to Gaussians distributions (which we use as a test fit, see Fig. 3),

the variance being almost independent by α and increasing with the density of the

spheres up to the transition point (at given α), immediately later they are delta-

like on the averaged of the fluidity (φ = 1). The average fluidity versus the density

(that we plot directly by using the amount of cars) is shown in Fig. 4: For low

density regimes, flow behavior appears independent by the connectivity of the net-

work (and the scaling is always the same φ ∝ ρ), while, for higher values of the

density a second regime is approached which is highly sensible by the connectivity,

and in which, continuity of the order parameter with respect to the density is still

observed.
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Fig. 3. Fluidity fluctuations in the steady state for the largest size city at a connectivity α = 0.6:
We show the distributions of three different densities (N = 1× 103, 2× 103, 3 × 103) on a lin–lin
scale (left), the spread of their variances, centering the distributions on the smallest average for
easier visualization (center) and a Gaussian fit (χ2 ∼ 0.93) on a log-scale obtained by sampling
over 2000 cars.
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Fig. 4. Left: Behavior of the fluidity versus the total number of cars at six different values of
the connectivity. In the low density regime the dependence of φ versus N is linear and universal.
Right: Example of fluidity versus time on a single network (time is measured by the number of
collisions (modulus 104) showed from the larger city: there exist only two “macroscopic” long-term
behavior: a jammed phase, that for the investigated values appears for N ≥ 7× 103 and a liquid
phase, which however shows a continuous variation in the fluidity versus the density of cars (for
N < 7× 103).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

φ

α

N  =  1000
N  =  2000
N  =  3000
N  =  4000
N  =  5000
N  =  6000

0

0.2

0.4

0.6

0.8

1.0

 500  1000  1500  2000  2500  3000  3500

C

N

α = 0.2
α = 0.4
α = 0.5
α = 0.6
α = 0.8
α = 1.0

Fig. 5. Left: Medium city. Behavior of the fluidity versus the connectivity for five different den-
sities, shown in terms of the total amount of cars N . Right: Smallest city. Self-averaging C of the

order parameter: fluctuations versus the density (expressed in terms of the total amount of cars),
for six different connectivity values. The onset of the jam transition is shown by the peak, which
increases proportionally to α−1.

Finally, for highest level of density a discontinuous jump to the jammed phase

is observed, for all the values of the connectivity (see Fig. 5 where we report results

for the medium city size).

In Fig. 5 furthermore we show the fluctuations of the order parameter for the

smallest city: it is worth noting that a phase transition (marked by a sharp peak

inversely proportional to the connectivity) seems to appear at a critical value of

density. Analyzing again the medium size city, we show in Fig. 5 the behavior of the

order parameter versus the connectivity (for several values of density) and there is

no presence of a continuous behavior: at a critical value (depending on the density)

a jump to a jammed phase is observed (Fig. 6).
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Fig. 6. Phase diagram: The line φ = 1 is the transition line. At right there is the jammed phase
at left the fluid phase. Further, the latter is shown split in six zones accordingly with different
values of the fluidity.

5. Conclusions

In this paper, we implemented a numerical algorithm which mimics the flow of

cars in urban cities: cars are described as kinetically constrained hard spheres and

urban topology is chosen as a planar Erdos Renyi graph. Kinetically constrained

because the one-way roads break detailed balance and the collisions among two

cars do not respect the third law of thermodynamics. Even though mathematically

hard to be analyzed, this model can still be investigated by numerical simulations.

Hard spheres because, as in principle we do not know how many timescales are

involved in the genesis of the congested phase, and being interest in the long time

behavior, we have chosen one of the fastest possible algorithms for the dynamics:

the event driven motion, which requires hard spheres. We investigated the response

of a dynamical order parameter, the fluidity, defined as the ratio among the moving

cars on the whole ensemble, by tuning two control parameters: the density of the

cars and the connectivity of the network.

From this numerical investigation, we found a continuous transition from a

congested phase to a fluid phase by varying the density of the cars (at fixed connec-

tivity) such that the fluidity lowers smoothly from 1 to smaller values (up to zero

where there are no longer cars) and a discontinuous jump of this order parameter

when varying the connectivity of the network at fixed amount of cars.

Furthermore, the timescales involved seem to be several (the longest of which

seems to diverge at the transition to a jammed phase) rising the question on what

kind of traffic optimizer should be developed in order to minimize traffic.

On these first heuristic considerations we believe that interacting local opti-

mizers (as a grid of interacting cross-lights able to detect flow58,68) would work

better than a global ground state searcher and are more stable with respect to

perturbations as new added (or removed) streets.
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Future works concerning the kind of transition will be due to investigate the

relaxation to equilibrium after the stimuli by introducing a car (or a few) or by

introducing a new link, so to check the presence of aging in the network. Further-

more, traffic optimization by properly interacting traffic lights will be considered

as well.
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