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Abstract

The mean field Hopfield model is the paradigm for serial processing networks: a system able

to retrieve, one at a time, previously stored patterns of information. On the other side, mul-

titasking associative networks (retrieving several patterns of informations at the same time)

are crucial for the understunding of real biological systems and for the development of parallel

processing artificial machines. In this thesis, I will introduce two different ways to build paral-

lel processing associative networks: by diluting the patterns entries (Diluted Hopfield Model)

or by introducing a topological structure (Hierarchical Hopfield Model) towards a non mean-

field interaction among agents. From a statistical mechanics perspective, passing through the

analogy between the Hopfield model and a bipartite spin glass system, we analyze, in the

former case, the capability of the network by varying the level of load and dilution (from low

to high storage, from fully connected to finite connectivity regime), while, in the last case, we

investigate the possibility of switching from a serial to a parallel processing regime by varying

the level of the temperature.
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The study of the principles behind the information processing in complex networks of

simple interacting, decision-making agents, be these cells in biological systems ( for example

neurons in brain and other nervous tissues or lymphocytes of the immune system ) or com-

ponents in artificial networks (electronnic processors or even softwares), is considered as one

of the most interdisciplinary scientific challenge. The reason is that in this multifaced area of

research, that involves biologists (particularly neuro-biologists [92, 99] and cognitive psycholo-

gists [52, 74]), computer scientists and engineers (mainly interested in electronics and robotics

[67, 81]), physicists (mainly involved in statistical mechanics and stochastic processes[15, 69])

and mathematicians (mainly working in learning algorithms and graph theory [47, 2]), each

discipline gets and offers at the same time something interesting and worthwhile for the col-

laboration with the others: biologists benefit of the new tools offered by the more quantitative

sciences, computer scientists or engineers find inspiration from biology and techniques from

physics and math, physicists and mathematicians meet new interesting challenges, developing

new theories and discovering other application domains. Howewer, this kind of interdisci-

plinarity has also its drawbacks: it is very difficult to keep the disciplines involved connected

each others, beacause of the existence of language barriers or motivation differences, and,

as a result, several important discoveries have to be made more then once, before they find

themselves recognized as such.

Historically, the term complex network have always had a biological flavour being first

associated to the neural one: the study of neural information processing systems probably

started with the birth of programmable computing machines around the second world war.

It came to be realized that programmable machines might be made to think, and, conversely,

that human thinking could perhaps be understood in the language of programmable machines.

According to this framework, the brain (or alternatively an other biological network) is con-

sidered as a piece of hardware, performing quite sophisticated information processing tasks,

using microscopic elements interacting each others. On the other hand biological networks

and conventional computer systems have a lot of differences. For example, in conventional

computers each individual operation is performed, as a rule, sequentially, so that failure of any

part of the chain is mostly fatal, in contrast with biological networks where microscopic agents

operate in parallel. An other important difference is that conventional computers can only

execute a detailed specification of orders, the program, requiring the programmer to know

exactly which data can be expected and how to respond, while biological network can adapt

quite well to changing circumstances. Finally there is biological robustness against physical
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hardware failure.

Roughly speaking, one can distinguish three types of motivation for studying neural net-

works. Biologists aim at understanding information processing in real biological networks;

Engineers and computer scientists would like to use the principles behind neural information

processing for designing adaptive software and artificialinformation processing systems which

can learn and which are structured in such a way that the processors can operate efficiently

in parallel; theoretical physicists and mathematicians are challenged by the fondamental new

problems posed by neural network models, which exhibit a rich and highly non-trivial be-

haviour.

Tracing the genesis and evolution of neural networks back in time is very difficult, probably

due to the broad meaning they have acquired along the years: scientists closer to the robotics

branch often refer to the W. McCulloch and W. Pitts model of perceptron [75] (or the F.

Rosenblatt version [93]) as the first systematic investigation on the information processing

capabilities of neural networks, while researchers closer to the neurobiology branch adopt

usually the D. Hebb work as a starting point [68]. On the other hand, scientists involved in

statistical mechanics, that joined the community in relatively recent times (after a satisfactory

picture of spin glasses was achieved [79, 88]), usually refer to the seminal paper by Hopfield

[70] or to the celebrated work by Amit, Gutfreund and Sompolinsky [16], where the statistical

mechanical analysis of the Hopfield model is effectively carried out.

The Hopfield model rapidly became the "harmonic oscillators" of parallel processing: neu-

rons, thought of as "binary nodes" (spins) of a network, behave collectively to retrieve infor-

mation, the latter being spread over the synapses, thought of as the interconnections among

nodes. However, common intuition of parallel processing is not only the underlying parallel

work performed by neurons to retrieve, say, an image on a book, but rather, for instance, to

retrieve the image and, while keeping the book securely in hand, noticing beyond its edges

the room where we are reading, still maintaining available resources for further retrieves as

a safety mechanism. Standard Hopfield networks are not able to accomplish this kind of

parallel processing [4, 6, 13]. Goal of this work is to relax this kind of limitation so to extend

standard Hopfield model, the paradigm of neural network, toward multitasking capabilities,

whose interest goes far beyond the artificial intelligence framework [95, 3, 5, 8].

Before proceeding, we recall some interesting results about the standard Hopfield model.

To this task, following [29], we start from the Curie-Wiess model, showing that toy models for

paramagnetic-ferromagnetic transition [9] are natural prototypes for the autonomous storage/
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retrieval of information patterns in neural networks model, studied from a statistical mechanic

point of view.

Storing the first pattern: Curie-Weiss paradigm.

The statistical mechanical analysis of the Curie-Weiss model (CW) can be summarized as

follows: starting from a microscopic formulation of the system, i.e. N dichotomic spins

σi ∈ {−1, 1}, i = 1 · · ·N , their pairwise couplings Jij ≡ J , and possibly an external field h,

we define an Hamiltonian

HN (σ|J, h) = − J
N

N∑

i<j

σiσj (1)

and derive an explicit expression for the (macroscopic) free energy

A(β) = lim
N→∞

1
N

ln
2N∑

{σ}

exp [−βHN (σ|J, h)] , (2)

where the sum is performed over the set {σ} of all 2N possible spin configurations, each

weighted by the Boltzmann factor exp[−βHN (σ|J, h)] that tests the likelihood of the related

configuration. From expression (2), we can derive the whole thermodynamic quantities and in

particular the phase-diagrams, that is, we are able to discern regions in the space of tunable

parameters (e.g. temperature/noise level) where the system behaves as a paramagnet or as a

ferromagnet.

Thermodynamical averages, denoted with the symbol 〈.〉, provide for a given observable the

expected value, namely the value to be compared with measures in an experiment. For

instance, for the magnetization m(σ) ≡∑N
i=1 σi/N we have

〈m(β)〉 =
∑

σm(σ)e−βHN (σ|J)

∑
σ e
−βHN (σ|J)

. (3)

When β →∞ the system is noiseless (zero temperature) hence spins feel reciprocally without

errors and the system behaves ferromagnetically (|〈m〉| → 1), while when β → 0 the system

behaves completely random (infinite temperature), thus interactions can not be felt and the

system is a paramagnet (〈m〉 → 0). In between a phase transition appears.

An explicit expression for the free energy in terms of 〈m〉 can be obtained carrying out

summations in (2) and taking the thermodynamic limit N →∞ as

A(β) = sup
m
{ln 2 + ln cosh[β(m+ h)]− βJ

2
m2}. (4)

8



The optimal order parameter, that is the mean magnetization of the system 〈m〉, satysfies

〈m〉 = tanh[β(J〈m〉+ h)]. (5)

This expression returns the average behavior of a spin in a magnetic field. In order to see that

a phase transition between paramagnetic and ferromagnetic states actually exists, we can fix

h = 0 (and pose J = 1 for simplicity) and expand the r.h.s. of eq. 5 to get

〈m〉 ∝ ±
√
βJ − 1. (6)

Thus, while the noise level is higher than one (β < βc ≡ 1 or T > Tc ≡ 1) the only

solution is 〈m〉 = 0, while, as far as the noise is lowered below its critical threshold βc,

two different-from-zero branches of solutions appear for the magnetization and the system

becomes a ferromagnet. The branch effectively chosen by the system usually depends on the

sign of the external field or boundary fluctuations.

Clearly, the lowest energy minima correspond to the two configurations with all spins

aligned, either upwards (σi = +1,∀i) or downwards (σi = −1, ∀i), these configurations being

symmetric under spin-flip σi → −σi. Therefore, the thermodynamics of the Curie-Weiss

model is solved: energy minimization tends to align the spins (as the lowest energy states are

the two ordered ones), however entropy maximization tends to randomize the spins (as the

higher the entropy, the most disordered the states, with half spins up and half spins down):

the interplay between the two principles is driven by the level of noise introduced in the system

and this is in turn ruled by the tunable parameter β ≡ 1/T as coded in the definition of free

energy.

A crucial bridge between condensed matter and neural network could now be sighted:

one could think at each spin as a basic neuron, retaining only its ability to spike such that

σi = +1 and σi = −1 represent firing and quiescence, respectively, and associate to each

equilibrium configuration of this spin system a stored pattern of information. The reward is

that, in this way, the spontaneous (i.e. thermodynamical) tendency of the network to relax

on free-energy minima can be related to the spontaneous retrieval of the stored pattern, such

that the cognitive capability emerges as a natural consequence of physical principles.

The route from Curie-Weiss to Hopfield

Actually, the Hamiltonian (1) would encode for a rather poor model of neural network as it

would account for only two stored patterns, corresponding to the two possible minima (that
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in turn would represent pathological network’s behavior with all the neurons contemporarily

completely firing of completely silenced).

This criticism can be easily overcome thanks to the Mattis-gauge, namely a re-definition

of the spins via σi → ξ1
i σi, where ξ

1
i = ±1 are random entries extracted with equal probability

and kept fixed in the network (in statistical mechanics these are called quenched variables to

stress that they do not contribute to thermalization). Fixing J ≡ 1 for simplicity, the Mattis

Hamiltonian reads as

HMattis
N (σ|ξ) = − 1

N

N∑

i<j

ξ1
i ξ

1
jσiσj − h

N∑

i

ξ1
i σi. (7)

The Mattis magnetization is defined as m1 =
∑

i ξ
1
i σi. To inspect its lowest energy min-

ima, we perform a comparison with the CW model: in terms of the (standard) magne-

tization, the Curie-Weiss model reads as HCW
N ∼ −(N/2)m2 − hm and, analogously we

can write HMattis
N (σ|ξ) in terms of Mattis magnetization as HMattis

N ∼ −(N/2)m2
1 − hm1.

It is then evident that, in the low noise limit (namely where collective properties may

emerge), as the minimum of free energy is achieved in the Curie-Weiss model for 〈m〉 → ±1,

the same holds in the Mattis model for 〈m1〉 → ±1. However, this implies that now

spins tend to align parallel (or antiparallel) to the vector ξ1, hence if the latter is, say,

ξ1 = (+1,−1,−1,−1,+1,+1) in a model with N = 6, the equilibrium configurations of

the network will be σ = (+1,−1,−1,−1,+1,+1) and σ = (−1,+1,+1,+1,−1,−1), the lat-

ter due to the gauge symmetry σi → −σi enjoyed by the Hamiltonian. Thus, the network

relaxes autonomously to a state where some of its neurons are firing while others are quiescent,

according to the stored pattern ξ1.

If we want a network able to cope with P patterns, the starting Hamiltonian should have

simply the sum over these P previously stored1 patterns, namely

HN (σ|ξ) = − 1
N

N∑

i<j




P∑

µ=1

ξµi ξ
µ
j


σiσj , (8)

where we neglect the external field (h = 0) for simplicity. As we will see in the next section, this

Hamiltonian constitutes indeed the Hopfield model, namely the harmonic oscillator of neural

networks, whose coupling matrix is called Hebb matrix as encodes the Hebb prescription for

neural organization.
1The part of neural network’s theory we are analyzing is meant for spontaneous retrieval of already stored

information -grouped into patterns (pragmatically vectors)-. Clearly it is assumed that the network has already

overpass the learning stage.
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Despite the extension to the case P > 1 is formally straightforward, the investigation of the

system as P grows becomes by far more tricky. Indeed, neural networks belong to the so-called

“complex systems” realm. We propose that complex behaviors can be distinguished by simple

behaviors as for the latter the number of free-energy minima of the system does not scale with

the volume N , while for complex systems the number of free-energy minima does scale with

the volume according to a proper function of N . For instance, the Curie-Weiss/Mattis model

has two minima only and it constitutes the paradigmatic example for a simple system. As

a counterpart, the prototype of complex system is the Sherrington-Kirkpatrick model (SK)

that has an amount of minima that scales ∝ exp(cN) with c 6= f(N), and its Hamiltonian

reads as

HSK
N (σ|J) =

1√
N

N∑

i<j

Jijσiσj , (9)

where, crucially, coupling are Gaussian distributed as P (Jij) ≡ N [0, 1]. This implies that links

can be either positive (hence favoring parallel spin configuration) as well as negative (hence

favoring anti-parallel spin configuration), thus, in the large N limit, with large probability,

spins will receive conflicting signals and we speak about “frustrated networks”.

The mean-field statistical mechanics for the low-noise behavior of spin-glasses has been

first described by Giorgio Parisi and it predicts a hierarchical organization of states and a

relaxational dynamics spread over many timescales. Here we just need to know that their

natural order parameter is no longer the magnetization (as these systems do not magnetize),

but the overlap qab, as we are explaining. Spin glasses are balanced ensembles of ferromagnets

and antiferromagnets (this can also be seen mathematically as P (J) is symmetric around

zero) and, as a result, 〈m〉 is always equal to zero, on the other hand, a comparison between

two realizations of the system (pertaining to the same coupling set) is meaningful because

at large temperatures it is expected to be zero, as everything is uncorrelated, but at low

temperature their overlap is strictly non-zero as spins freeze in disordered but correlated

states. More precisely, given two “replicas” of the system, labeled as a and b, their overlap qab
can be defined as the scalar product between the related spin configurations, namely as qab =

(1/N)
∑N

i σ
a
i σ

b
i , thus the mean-field spin glass has a completely random paramagnetic phase,

with 〈q〉 ≡ 0 and a ”glassy phase” with 〈q〉 > 0 split by a phase transition at βc = Tc = 1.

The Sherrington-Kirkpatrick model displays a large number of minima as expected for a

cognitive system, yet it is not suitable to act as a cognitive system because its states are too

”disordered". We look for an Hamiltonian whose minima are not purely random like those in
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SK, as they must represent ordered stored patterns (hence like the CW ones), but the amount

of these minima must be possibly extensive in the number of spins/neurons N (as in the SK

and at contrary with CW), hence we need to retain a “ferromagnetic flavor” within a “glassy

panorama”: we need something in between.

Remarkably, the Hopfield model defined by the Hamiltonian (8) lies exactly in between a

Curie-Weiss model and a Sherrington-Kirkpatrick model. Let us see why: when P = 1 the

Hopfield model recovers the Mattis model, which is nothing but a gauge-transformed Curie-

Weiss model. Conversely, when P →∞, (1/
√
N)
∑P

µ ξ
µ
i ξ

µ
j → N [0, 1], by the standard central

limit theorem, and the Hopfield model recovers the Sherrington-Kirkpatrick one. In between

these two limits the system behaves as an associative network.

Such a crossover between CW (or Mattis) and SK models, requires for its investigation

both the P Mattis magnetization 〈mµ〉, µ = (1, ..., P ) (for quantifying retrieval of the whole

stored patterns, that is the vocabulary), and the two-replica overlaps 〈qab〉 (to control the

glassyness growth if the vocabulary gets enlarged), as well as a tunable parameter measuring

the ratio between the stored patterns and the amount of available neurons, namely α =

limN→∞ P/N , also referred to as network capacity.

As far as P scales sub-linearly with N , i.e. in the low storage regime defined by α = 0,

the phase diagram is ruled by the noise level β only: for β < βc the system is a paramagnet,

with 〈mµ〉 = 0 and 〈qab〉 = 0, while for β > βc the system performs as an attractor network,

with 〈mµ〉 6= 0 for a given µ (selected by the external field) and 〈qab〉 = 0. In this regime

no dangerous glassy phase is lurking, yet the model is able to store only a tiny amount of

patterns as the capacity is sub-linear with the network volume N .

Conversely, when P scales linearly with N , i.e. in the high-storage regime defined by α > 0,

the phase diagram lives in the α, β plane.When α is small enough the system is expected to

behave similarly to α = 0 hence as an associative network (with a particular Mattis magne-

tization positive but with also the two-replica overlap slightly positive as the glassy nature is

intrinsic for α > 0). For α large enough (α > αc(β), αc(β → ∞) ∼ 0.14) however, the Hop-

field model collapses on the Sherrington-Kirkpatrick model as expected, hence with the Mattis

magnetizations brutally reduced to zero and the two-replica overlap close to one. The transi-

tion to the spin-glass phase is often called "blackout scenario" in neural network community.

Making these predictions quantitative is a non-trivial task in statistical mechanics and, nowa-

days several techniques are available, among which we quote the replica-trick (originally used

by the pioneers Amit-Gutfreund-Sompolinsky [16]), the martingale method (originally devel-
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oped by Pastur, Sherbina and Tirozzi [89]) and the cavity field technique (recently developed

by Guerra in [25, 26, 30]).

Although the Hopfield model has been extensively studied since it was introduced in [70],

both from a physical [17, 33, 47, 51] and a more mathematical [14, 89, 90, 34, 35, 36, 37, 96, 97]

point of view, from the rigorous perspective many points about its properties remain unsolved,

which also prompts further efforts in developing new mathematical techniques and different

physical perspectives. Obtaining rigourus results is simpler if we introduce an analogical ver-

sion of the standard Hopfield model, namely a mean-field structure with N dichotomic neurons

(spins) interconnected through Hebbian couplings whose P patterns are stored according to

a standard Gaussian N [0, 1]. Some of these results can be easily translated for the original

dichotomic model.

Turning to the applied side, despite the fact that in neural networks (in their original

artificial intelligence framework) the interest in continuous patterns is reduced or moved to

rotators (e.g. Kuramoto oscillators [73]), as digital processing by Ising spins works as a better

approximation for the standard integrate and fire models of neurons [39], in several other

fields of science (as, for instance, in chemical kinetics [49, 50] or theoretical immunology [7])

continuous values of patterns can instead be preferred ([33, 46]) and a rigorous mathematical

control of completely continuous models (namely with both continuous patterns and neurons)

has to be certainly considered, for further investigations, as necessary and worthwhile. For

the moment, we limit ourselves in presenting a clear scenario for the hybrid model made of

by continuous patterns and dichotomic variables.
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Chapter 1

Hopfield model and bipartite networks

Within our approach, the equilibrium statistical mechanics of the neural network is shown to

be equivalent to the one of a bipartite spin glass [27, 28] whose parts consist of the original N

neurons (belonging to the first party, hence made of by dichotomic variables) and the other

hand P Gaussians that give rise to the second part (hence consisting of continuous variables).

This is a very useful perspective in order to model real biological networks: in the second part

of this thesis, we will use the fact that a biological system in which two or more parties of

units interact can be be mapped and studied into a marginalized neural Hopfield-like network

concerning just one party. In this way it is possible to read the features of a bipartite systems

in terms of attractors of a neural networks able to retrieve patterns of informations previously

stored.

Before proceeding in that direction, mainly following [25], a walk in the opposite direction

can be very interesting, understanding how an Hopfield model is equivalent to a bipartite

system and investigating the deep relation among this two statistical mechanics model.

1.1 The analogical Hopfield model

We introduce a large network of N two-state neurons (1, .., N) 3 i → σi = ±1, which are

thought of as quiescent when their value is −1 or spiking when their value is +1. They interact

throughout a synaptic matrix Jij defined according to the Hebb rule for learning [68, 70]

Jij =
p∑

µ=1

ξµi ξ
µ
j . (1.1)
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Each random variable ξµ = {ξµ1 , .., ξµN} represents a learned pattern: While in the standard lit-

erature these patterns are usually chosen at random independently with values ±1 taken with

equal probability 1/2, we chose them as taking real values with a unit Gaussian probability

distribution, i.e.

dµ(ξµi ) =
1√
2π
e−(ξµi )2/2. (1.2)

The analysis of the network assumes that the system has already stored p patterns (no learning

is investigated here), and we will be interested in the case in which this number asymptotically

increases linearly with respect to the system size (high storage level), so that p/N → α as

N →∞, where α ≥ 0 is a parameter of the theory denoting the storage level.

The Hamiltonian of the model has a mean-field structure and involves interactions between

any pair of sites according to the definition

HN (σ; ξ) = − 1
N

p∑

µ=1

N∑

i<j

ξµi ξ
µ
j σiσj . (1.3)

1.1.1 Morphism in the bipartite model

By splitting the summations
∑N

i<j = 1
2

∑N
ij −1

2

∑N
i δij in the Hamiltonian (1.3), we can

introduce and write the partition function ZN,p(β; ξ) in the following form

ZN,p(β; ξ) =
∑

σ

exp
( β

2N

p∑

µ=1

N∑

ij

ξµi ξ
µ
j σiσj −

β

2N

p∑

µ=1

N∑

i

(ξµi )2
)

(1.4)

= Z̃N,p(β; ξ)e
−β
2N

∑p
µ=1

∑N
i=1(ξµi )2

where β ≥ 0 is the inverse temperature, and denotes here the level of noise in the network.

We have defined

Z̃N,p(β; ξ) =
∑

σ

exp(
β

2N

p∑

µ=1

N∑

ij

ξµi ξ
µ
j σiσj). (1.5)

Notice that the last term at the r.h.s. of eq. (1.4) does not depend on the particular state of

the network, hence the control of the last term can be easily obtained [30] and simply adds a

factor αβ/2 to the free energy.

Consequently we focus just on Z̃(β; ξ). Let us apply the Hubbard-Stratonovich lemma [54]

to linearize with respect to the bilinear quenched memories carried by the ξµi ξ
µ
j .

We can write

Z̃N,p(β; ξ) =
∑

σ

∫
(
p∏

µ=1

dzµ exp(−z2
µ/2)√

2π
) exp(

√
β/N

∑

i,µ

ξµi σizµ). (1.6)
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For a generic function F of the neurons, we define the Boltzmann state ωβ(F ) at a given level

of noise β as the average

ωβ(F ) = ω(F ) = (ZN,p(β; ξ))−1
∑

σ

F (σ)e−βHN (σ;ξ) (1.7)

and often we will drop the subscript β for the sake of simplicity. The s-replicated Boltzmann

state is defined as the product state Ω = ω1×ω2× ...×ωs, in which all the single Boltzmann

states are at the same noise level β−1 and share an identical sample of quenched memories ξ.

For the sake of clearness, given a function F of the neurons of the s replicas and using the

symbol a ∈ [1, .., s] to label replicas, such an average can be written as

Ω(F (σ1, ..., σs)) =
1

ZsN,p

∑

σ1

∑

σ2

...
∑

σs

F (σ1, ..., σs) exp(−β
s∑

a=1

HN (σa, ξ)). (1.8)

The average over the quenched memories will be denoted by E and for a generic function of

these memories F (ξ) can be written as

E[F (ξ)] =
∫

(
p∏

µ=1

N∏

i=1

dξµi e
−

(ξ
µ
i

)2

2√
2π

)F (ξ) =
∫
F (ξ)dµ(ξ), (1.9)

with E[ξµi ] = 0 and E[(ξµi )2] = 1.

Hereafter we will often denote the average over the gaussian spins as dµ(z). We use the

symbol 〈.〉 to mean 〈.〉 = EΩ(.).

We recall that in the thermodynamic limit it is assumed

lim
N→∞

p

N
= α,

α being a given real number, which acts as free parameter of the theory.

1.1.2 The thermodynamical observables

The main quantities of interest are the intensive pressure, defined as

lim
N→∞

AN,p(β, ξ) = −β lim
N→∞

fN,p(β, ξ) = lim
N→∞

1
N

lnZN,p(β; ξ), (1.10)

the quenched intensive pressure, defined as

lim
N→∞

A∗N,p(β) = −β lim
N→∞

f∗N,p(β) = lim
N→∞

1
N

E lnZN,p(β; ξ), (1.11)

and the annealed intensive pressure, defined as

lim
N→∞

ĀN,p(β) = −β lim
N→∞

f̄N,p(β) = lim
N→∞

1
N

ln EZN,p(β; ξ). (1.12)
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According to thermodynamics, here fN,p(β, ξ) = uN,p(β, ξ)− β−1sN,p(β, ξ) is the free energy

density, uN,p(β, ξ) is the internal energy density and sN,p(β, ξ) is the intensive entropy (the

star and the bar denote the quenched and the annealed evaluations as well).

According to the exploited bipartite nature of the Hopfield model, we introduce two other

order parameters: the first is the overlap between the replicated neurons, defined as

qab =
1
N

N∑

i=1

σai σ
b
i ∈ [−1,+1], (1.13)

and the second the overlap between the replicated Gaussian variables z, defined as

pab =
1
p

p∑

µ=1

zaµz
b
µ ∈ (−∞,+∞). (1.14)

These overlaps play a considerable role in the theory as they can express thermodynamical

quantities.

1.2 A detailed description of the annealed region

1.2.1 The interpolation scheme for the annealing

In this section we present the main idea of the work, used here to get a complete control of

the high-temperature region: We interpolate between the neural network (described in terms

of a bipartite spin glass) and a system consisting of two separate spin glasses, one dichotomic

and one Gaussian. Note that, by the Jensen inequality, namely

E lnZN,p(β) ≤ ln EZN,p(β),

we can write

A∗N,p ≤
1
N

ln E
∑

σ

∫ p∏

µ=1

dµ(zµ)e
√

β
N

∑
iµ ξ

µ
i σizµ = ln 2− p

2N
log(1− β), (1.15)

where we emphasize that the integral inside eq. (1.15) exists only for β < 1.

The N → ∞ limit then offers immediately limN→∞A
∗
N,p(β) ≤ ln 2 − α ln(1 − β)/2. The

next step is to use interpolation to prove the validity of the Jensen bound in the whole region

defined by the line βc = 1/(1+
√
α), which defines the boundary of the validity of the annealed

approximation, in complete agreement with the well known picture of Amit, Gutfreund and

Sompolinsky [15][17].

To understand which is the proper interpolating structure, let us note that the exponent of
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the Boltzmann factor yields a family of random variables indexed by the configurations (σ, z).

For a given realization of the noise, H(σ, z|ξ) =
√

β
N

∑
iµ ξi,µσizµ is a randomly centered

variable with variance

E(H(σ, z|ξ)H(σ′, z′|ξ)) =
β

N

∑

iµ

σiσ
′
izµz

′
µ = βpqσσ′pzz′ .

The presence of the product qσσ′pzz′ in the variance suggests the correct interpolating structure

among this bipartite network and two other independent spin glasses, namely a Sherrington-

Kirkpatrick model with variance q2
σσ′ and another spin glass model with Gaussian spin and

variance p2
zz′ . It is in fact clear that a proper interpolating structure can be held by

ϕN (t) =
1
N

E ln
∑

σ

∫ p∏

µ=1

dµ(zµ) exp (
√
t

√
β

N

∑

iµ

ξµi σizµ) (1.16)

· exp (
√

1− t(β1

√
N

2
K(σ) + β2

√
p

2
K̄(z)))

· exp ((1− t)(pβ
2
pzz −

pβ2
2

4
p2
zz)),

where we have set

K(σ) =
1
N

∑

ij

Jijσiσj

and

K̄(z) =
1
p

∑

ij

J̄ijzizj

and the average E is taken with respect to all the i.i.d. normal random variables ξij , Jij , J̄ij .

The interpolation is performed such that for t = 1 the interpolating structure ϕ(t = 1)

returns the free energy of the bipartite model, namely of the neural network, while for t = 0

it coincides with a factorization in an SK spin glass and a (suitably regularized) Gaussian one

(see Appendix A); β1, β2, which will be then fixed as opportune noise levels, for the moment

are simply free parameters.

As in [26][64], the plan is now to evaluate the flow under a changing t of the interpolating

structure in order to get a positive defined sum rule by tuning opportunely β1, β2; hence,

if we generalize the states as 〈.〉t = EΩt, where the subscript t accounts for the extended

interpolating structure defined in (1.16) we can write

dϕN (t)
dt

=
1
N

1
2
βp
(
〈pzz〉t − 〈qσσ′pzz′〉t

)
− 1

4
β2

1

(
1− 〈q2

σσ′〉t
)

+ (1.17)

− p

N

1
4
β2

2

(
〈p2
zz〉t − 〈p2

zz′〉t
)

+
p

N

1
4
β2

2〈p2
zz〉t −

β

2
p

N
〈pzz〉t, (1.18)

18



then, calling α = p/N even at finite size N (with a little language abuse), we can write

dϕN (t)
dt

= −β
2
1

4
+

1
4
〈β2

1q
2
σσ′ + αβ2

2p
2
zz′ − 2αβqσσ′pzz′〉t. (1.19)

If we now impose on β1, β2 the constraint β1β2 =
√
αβ we get a perfect square in the brackets

of the flow under a changing t, and calling St(α, β) = 〈(β1qσσ′−
√
αβ2pzz′)2〉t the source term,

we can write
dϕN
dt
≥ −1

4
β2

1 + St(α, β). (1.20)

We can then integrate back between [0, 1] to get the following inequality

ϕN (1) =
1
N

E ln
∑

σ

∫ p∏

µ

dµ(zµ)e
√

β
N

∑
iµ ξ

µ
i σizµ

≥ 1
N

E ln
∑

σ

e
β1

√
N
2
K(σ)

− β2
1

4
+

p

N

1
p

E ln
∫ ∏

µ

dµ(zµ)eβ2

√
p
2
K̄(z)e−

β2
2p

4
pzz′e

p
2
βpzz ,

under the constraint β1β2 =
√
αβ.

Note that K(σ) in the above expression defines the SK-model, while the last term defines the

regularized Gaussian spin glass deeply investigated in Appendix A (see also [60]).

Now the advantages of this interpolation scheme become evident: As we have extremely

satisfactory descriptions of the two independent models, namely the SK and the Gaussian

spin glass, by these properties we can infer the behavior of the neural network (again thought

of as the bipartite spin glass).

In particular, we know that the free energies of each single part spin glass approach their

annealed expression in the region where β1 ≤ 1 [98] and β + β2 ≤ 1. Within this region, at

the r.h.s. of eq. (1.21) we get, in the thermodynamic limit, exactly ln 2− (α/2) ln(1− β).

Furthermore, if α and β respect the constraint β(1 +
√
α) ≤ 1, then finding β1, β2 such that

the conditions (A), (B), (C) hold, being

β1β2 =
√
αβ (A), β1 ≤ 1 (B), β + β1 ≤ 1 (C),

is certainly possible. In particular, using the SK critical behavior for the sake of simplicity,

hence posing β1 = 1, and setting β2 =
√
αβ, conditions (A) and (B) are automatically

satisfied and, for the latter, being β2 =
√
αβ, we get

β + β2 ≡ β +
√
αβ = β(1 +

√
α) ≤ 1,

such that also condition (C) is verified. We can then state the following
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Theorem 1.2.1. In the α, β plane there exist a critical line, defined by

βc(α) =
1

1 +
√
α
, (1.21)

such that for β ≤ βc(α) the annealed approximation of the free energy holds

lim
N→∞

1
N

E ln
∑

σ

∫ ∏

µ

dµ(zµ)e

(√
β
N

∑
iµ ξ

µ
i σizµ

)
= ln 2− α

2
ln(1− β). (1.22)

Remark 1. We stress that the Borel-Cantelli lemma allows straightforwardly to determine

the correct annealed regions for the SK model [98] and, through a careful check of convergence

of the integral defining the partition function, the same holds for the Gaussian case too (see

Appendix A); however, the direct application of the Borel-Cantelli argument on the neural

network gives a weaker result as shown for instance in [30]. The interpolation scheme allows

to exploit and transfer the results for the SK and Gaussian models to the neural network, and

enlarges the area of validity of the annealed expression for the free energy to the whole expected

region, obtained e.g. via the replica method [15].

1.2.2 The control of the annealed region

As a consequence, we can now extend the previous results exposed in [30] to the whole annealed

region: Summarizing, we get the following

Theorem 1.2.2. There exists βc(α), defined by eq. (1.21), such that for β < βc(α) we have

the following limits for the intensive free energy, internal energy and entropy, as N →∞ and

p/N → α > 0:

−β lim
N→∞

fN,p(β; ξ) = lim
N→∞

N−1 lnZN,p(β; ξ) (1.23)

= ln 2− (α/2) ln(1− β)− (αβ/2),

lim
N→∞

uN,p(β; ξ) = − lim
N→∞

N−1∂β lnZN,p(β; ξ) (1.24)

= −αβ/(2(1− β)),

lim
N→∞

sN,p(β; ξ) = lim
N→∞

N−1(lnZN,p(β; ξ)− β∂β lnZN,p(β; ξ)) (1.25)

= ln 2− (α/2) ln(1− β)− (αβ2)/(2(1− β))− (αβ/2),

ξ-almost surely. The same limits hold for the quenched averages, so that in particular

lim
N→∞

N−1E lnZN,p(β; ξ) = ln 2− α

2
ln(1− β)− αβ

2
,
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where, in all these formulas, the last term, namely −αβ/2, arises due to the diagonal contri-

bution of the complete partition function (1.4).

Theorem 1.2.3. There exists βc(α), defined by eq. (1.21), such that for β < βc(α) we have

the following convergence in distribution

ln Z̃N,p(β; ξ)− ln EZ̃N,p(β; ξ)→ C(β) + χS(β) (1.26)

where χ is a unit Gaussian in N [0, 1] and

C(β) = −1
2

ln
√

1/(1− σ2β2α) (1.27)

S(β) =
(

ln
√

1/(1− σ2β2α)
) 1

2
, (1.28)

with σ = (1− β)−1.

1.3 Extension to the replica symmetric solution

Once the correct interpolating structure is understood, and spurred by the observation that

the replica symmetric expression for the quenched free energy of the three models, namely

the analogical neural network, the SK spin glass and the Gaussian one, are well known and

investigated (for instance in [64][21][59][22][30][24]) we want to push further the equivalence

among neural network and spin glasses, giving a complete picture also of the replica symmetric

approximation.

To this task, let us recall that the replica symmetric approximation of the quenched free

energy of the analogical neural network ARSNN (α, β) is given by the following expression [30]

ARSNN (α, β) = ln 2 +
∫
dµ(z) ln cosh(z

√
αβp̄) +

α

2
ln(

1
1− β(1− q̄)) +

+
αβ

2
q̄

1− β(1− q̄) −
αβ

2
p̄(1− q̄), (1.29)

where the order parameters denoted with a bar (to mean their RS approximation) are given

by

q̄ =
∫
dµ(z) tanh2

(
z
√
αβp̄

)
, (1.30)

p̄ = βq̄/
(

1− β(1− q̄)
)2
. (1.31)
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Let us introduce further β1 and β2 as

β1 =
√
αβ

1− β(1− q̄) , (1.32)

β2 = 1− β(1− q̄), (1.33)

such that β1β2 =
√
αβ. We need also the RS approximation ARSSK(β1) of the quenched free

energy of the SK model, at the noise level β1, namely

ARSSK(β1) = ln 2 +

∫
dµ(z) ln cosh(β1

√
q̄SKz) +

1

4
β2

1(1− q̄SK)2, (1.34)

where

q̄SK =
∫
dµ(z) tanh2

(
β1z
√
q̄SK

)
. (1.35)

By a direct comparison among the overlap expressions (1.30, 1.35) we immediately conclude

that we must have

β2
1 q̄SK = αβp̄,

which indeed holds as it can be verified easily, bearing in mind the expression (1.31) and

(1.32) for p̄ and β1.

As a last ingredient we need to introduce also the replica symmetric expression ARSGauss(β2, β)

of the Gaussian spin glass at a noise level β2 as (see Appendix A)

ARSGauss(β2, β) =
1
2

lnσ +
1
2
β2

2 p̄Gσ
2 +

1
4
β2

2 p̄
2
G, (1.36)

where

p̄G = (β2 − (1− β))/β2
2 , (1.37)

σ2 = 1/(1− β + β2p̄G). (1.38)

Note that the definition of the overlap between continuous variables encoded by eq. (1.31) is in

perfect agreement with the same overlap defined within the framework of eq.(1.37), because,

being β2 = 1− β(1− q̄), we can write

p̄Gauss =
β2 − (1− β)

β2
2

=
1− β(1− q̄)− (1− β)

(1− β(1− q̄))2
=

βq̄

(1− β(1− q̄))2
. (1.39)

As a consequence, through a direct verification by comparison (that we omit as it is long and

straightforward), we can state the following
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Theorem 1.3.1. Fixed, at noise level β, β1 and β2 as in (1.32) and (1.33), the replica

symmetric approximation of the quenched free energy of the analogical neural network can

be linearly decomposed in terms of the replica symmetric approximation of the Sherrington-

Kirkpatrick quenched free energy, at noise level β1, and the replica symmetric approximation

of the quenched free energy of the Gaussian spin glass, at noise level β2, such that

ARSNN (β) = ARSSK(β1)− 1
4
β2

1 + αAGauss(β2, β), (1.40)

and the inequality (1.21) becomes an identity for the RS behavior.

Remark 2. We stress that the above Theorem is in agreement with the sum rule (1.20) of

Section 2 as, in the replica symmetric approximation, qσσ′ = q̄ and pzz′ = p̄, hence

β1q̄ −
√
αβ2p̄ =

√
αβq̄

(1− β(1− q̄))2
−√α

(
1− β(1− q̄)

) βq̄

(1− β(1− q̄))2
= 0. (1.41)

Remark 3. Approaching the high-temperature region we have q̄ → 0 and p̄→ 0, and clearly

β → 1/(1 +
√
α). As a consequence we have

β2 = 1− β(1− q̄)→ 1− 1/(1 +
√
α), (1.42)

β1 =
√
αβ

1− β(1− q̄) → 1, (1.43)

then β + β2 → 1, such that also the single-party counterparts approaches their critical points.

Coherently, inside the annealed region we get q̄ = 0, then with the expressions for β1, β2

we can write β2 + β = 1 that is the boundary of the annealed region for the Gaussian spin

glass, while β1 =
√
αβ/(1− β) because β ≤ 1/(1 +

√
α) we get β1 ≤ 1, namely the annealed

region of the SK model.

These results open very interesting perspectives. The structure of the neural network

as a linear combination of spin glasses is very rich: in fact we know that, as the SK model

presents a very glassy full RSB structure [65], in the Gaussian one this is absent, since the true

solution is infact RS even without external field (see Appendix A). Thus one could aspect in

our analogical neural network a competition of these two effects: rather a new feature in the

complex systems scenario, that has to be deeply investigated. Furthermore, the analogical

model shares many features with the original Hopfield model (which is even harder from a

mathematical point of view) for which one could study in what measure this structure is

preserved. Future outlooks should cover also the completely analogical model in order to

develop mathematical techniques beyond the standard ones required in artificial intelligence

and closer to system biology.
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Part II

Multitasking networks
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Chapter 2

Diluted Hopfield models

In the previous chapter we illustrated the connection between the Hopfield model and a bi-

partite spin glass system. We started from a system of two sets of spins, σi, i = 1, . . . , N

and τµ, µ = 1, . . . , P , connected by links ξµi and described by the Spin Glass Hamilto-

nian HSG(σ, τ |ξ) ∝ −∑i,µ ξ
µ
i σiτµ. Marginalizing over τ in the partition function Z =

∑
σ,τ e

−βHSG(σ,τ |ξ) =
∑
σ e
−βHNN (σ|ξ), the σ represent a neural network with Hamilto-

nian HNN (σ|ξ) = −β−1
∑

µ ln[2 cosh(β
∑

i ξ
µ
i σi)] or, up to an additive constant, HNN (σ|ξ)=

−β2
∑

µ,i,j(ξ
µ
i ξ

µ
j )σiσj+. . . . Higher order interactions are not written explicitly here; these are

fully absent if the τi are continuous rather than discrete and have a Gaussian prior. Bipartite

network are very useful in modelling biological systems, where agents of a different nature

interact each other. In these kind of models the ξ’s describe the topology of the interaction

among different species. In a fully connected model, as the Hopfield one, each units can in-

teract with all the others. This hypothesis is far from being realistic because the biology is

not embedded in a mean field structure: there is always a kind of distance and the interaction

surely decades between units that are very far each others. Consequently the concept of

neighborhood is very important. The simpler modification we can carry to the model is re-

producing at least the correct number of neighbors of a single agent of the bipartite network.

To this task we consider diluted patterns entries, i.e. ξµi ∈ {0,±1}, where the probability

of a null entry is different from zero. As we are going to see, the most important result is

that, while standard neural networks retrieved patterns sequentially (one at time), associative

networks with diluted patterns, as resulting from the marginalization of a diluted bipartite

spin glass, are able to accomplish parallel retrieval in appropriate dilution and load regimes

[4, 3, 5].
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2.1 Medium storage regime in extremely diluted connectivity:

retrieval region

This section, mainly following [3], is dedicated to the statistical mechanics analysis of a

network composed of N binary spins (σi, i = 1, . . . , N) and P patterns, such that the number

ratio scales as

lim
N→∞

P/N δ = α, δ ∈ (0, 1), α > 0. (2.1)

We refer to it as the medium storage regime, meaning that the number of memorized patterns

is growing with the size of the network but less than extensively. The effective interaction is

described by the Hamiltonian

H(σ|ξ) = − 1
2N τ

N∑

i,j=1

P∑

µ=1

ξµi ξ
µ
j σiσj , (2.2)

where the patterns entries ξµi ∈ {0,±1} are quenched random variables, independently and

identically distributed according to

P(ξµi = 1) = P(ξµi = −1) = c/2Nγ , P(ξµi = 0) = 1− c/Nγ (2.3)

with γ ∈ [0, 1). The parameter τ must be chosen such that H(σ|ξ) scales linearly with N , and

must therefore depend on γ and δ. Heuristically, since the number of non-zero entries Nnz in

a generic pattern (ξµ1 , . . . , ξ
µ
N ) is O(N1−γ), we expect that the network can retrieve a number

of patterns of order O(N/Nnz) = O(Nγ). We therefore expect to see changes in τ only when

crossing the region in the (γ, δ) plane where pattern sparseness prevails over storage load (i.e.

δ < γ, where the system can recall all patterns), to the opposite situation, where the load is

too high and frustration by multiple inputs on the same entry drives the network to saturation

(i.e. δ > γ). To validate this scenario, we carry out a statistical mechanical analysis, based

on computing the free energy

f(β) = − lim
N→∞

1
βN
〈logZN (β, ξ)〉ξ. (2.4)

2.1.1 Free energy computation and physical meaning of the parameters

If the number of patterns is sufficiently small compared to N , i.e. δ < 1, we do not need the

replica method; we can simply apply the steepest descent technique using the P � N/ logN

Mattis magnetizations as order parameters:

f(β) = − 1
β

log 2− lim
N→∞

1
βN

log
∫

dm e
− 1

2
m2+N

〈
log cosh

(√
β/Nτξ·m

)〉
ξ . (2.5)
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with m = (m1, . . . ,mNB ), ξ = (ξ1, . . . , ξNB ) and ξ ·m =
∑

µ ξ
µmµ. Rescaling of the order

parameters via mµ → mµ
√
βcN τ/2+θ then gives

f(β) = − 1
β

log 2− lim
N→∞

1
βN

log
∫

dm e
N

(
−βc

2

2
Nτ+2θ−1m2+〈log cosh(βcNθξ·m)〉

ξ

)

, (2.6)

Hence, provided the limit exists, we may write via steepest descent integration:

f(β) = − 1
β

log 2− 1
β

lim
N→∞

extrm

[〈
log cosh

(
βcN θξ ·m

)〉
ξ
− βc2

2
N τ+2θ−1m2

]
. (2.7)

Differentiation with respect to the mµ gives the self consistent equations for the extremum:

mµ =
N1−τ−θ

c
〈ξµ tanh(βcN θξ ·m)〉ξ. (2.8)

With the additional new parameter θ, we now have two parameters with which to control

separately two types of normalization: the normalization of the Hamiltonian, via τ , and the

normalization of the order parameters, controlled by θ. To carry out this task properly, we

need to understand the physical meaning of the order parameters. This is done in the usual

way, by adding suitable external fields to the Hamiltonian:

H → H−
P∑

µ=1

λµ

N∑

i=1

ξµi σi (2.9)

Now, with 〈g(σ)〉σ = Z−1
N (β, ξ)

∑
σ e−βH(σ|ξ)g(σ) and the corresponding new free energy

f(β,λ),

lim
N→∞

1
N
〈
N∑

i=1

ξµi σi〉σ = −∂f(β,λ)
∂λµ

∣∣∣
λ=0

, (2.10)

with the short-hand λ = (λ1 . . . , λP ). The new free energy is then found to be

f(β,λ) = − 1
β

log 2− 1
β

lim
N→∞

extrm

[〈
log cosh

(
βξ · [cN θm+λ]

)〉
ξ
− βc2

2
N τ+2θ−1m2

]

(2.11)

Upon differentiation with respect to λµ we find (2.10) taking the form

lim
N→∞

1
N
〈
N∑

i=1

ξµi σi〉σ = lim
N→∞

〈ξµ tanh(βcN θξ ·m)〉ξ. (2.12)

We can then use expression (2.8) for mµ to obtain the physical meaning of our order param-

eters:

mµ = lim
N→∞

N1−(τ+θ)

c
〈ξµ tanh(βcN θξ ·m)〉ξ

= lim
N→∞

〈 1
cN τ+θ

N∑

i=1

ξµi σi〉σ. (2.13)
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Let us summarize the status of the various remaining control parameters in the theory, in the

interest of transparency. Our model has three given external parameters:

• γ ∈ [0, 1): this quantifies the dilution of stored patterns, via P(ξµi 6= 0) = cN−γ ,

• δ ∈ (0, 1) and α > 0: these determine the number of stored patterns, via limN→∞ P/N
δ =

α.

It also has two ‘internal’ parameters, which must be set in such a way for the statistical

mechanical calculation to be self-consistent, i.e. such that various quantities scale in the

physically correct way for N →∞:

• τ ≥ 0: this must ensure that the energy H = −〈12N−τ
∑P

µ=1(
∑N

i=1 ξ
µ
i σi)

2〉σ scales as

O(N),

• θ ≥ 0: this must ensure that the order parameter mµ =
〈
(1/cN τ+θ)

∑
i ξ
µ
i σi
〉
σ
are of

order O(1).

2.1.2 Setting of internal scaling parameters

To find the appropriate values for the internal scaling parameters θ and τ we return to the

order parameter equation (2.8) and carry out the average over ξµ. This gives

mµ =
N1−τ−θ

c
〈tanh

(
βcN θ

(
(ξµ)2mµ + ξµ

P∑

ν 6=µ
ξνmν

))
〉ξ. (2.14)

= N1−τ−θ−γ〈tanh
(
βcN θ

(
mµ +

P∑

ν 6=µ
ξνmν

))
〉ξ. (2.15)

Having non-vanishing mµ in the limit N → ∞ clearly demands θ + τ ≤ 1 − γ. If θ > 0 the

mµ will become independent of β, which means that any phase transitions occur ar zero or

infinite noise levels, i.e. we would not have defined the scaling of our Hamiltonian correctly.

Similarly, if θ + τ < 1− γ the effective local fields acting upon the σi (viz. the arguments of

the hyperbolic tangent) and therefore also the expectation values 〈σi〉σ, would be vanishingly

weak. We therefore conclude that a natural ansatz for the free exponents is:

(τ, θ) = (1− γ, 0) (2.16)

This simplifies the order parameter equation to

mµ = 〈tanh
(
βc
(
mµ +

P∑

ν 6=µ
ξνmν

))
〉ξ. (2.17)
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Let us analyze this equation further. Since P(ξµi 6= 0) ∼ N−γ with γ > 0, we can for N →∞
replace in (2.14) the sum over ν 6= µ with the sum over all µ; the difference is negligible in the

thermodynamic limit. In this way it becomes clear that for each solution of (2.14) we have

mµ ∈ {−m, 0,m}. Using the invariance of the free energy under mµ → −mµ, we can from

now on focus on solutions with non-negative magnetizations. If we denote with K ≤ P the

number of µ with mµ 6= 0, then the value of m > 0 is to be solved from

m = 〈tanh
(
βcm

(
1 +

K∑

ν=1

ξν
))
〉ξ. (2.18)

It is not a priori obvious how the number K of nonzero magnetizations can or will scale with

N . We therefore set K = φN δ′ , in which the condition K ≤ P then places the following

conditions on φ and δ′: δ′ ∈ [0, δ], and φ ∈ [0,∞) if δ′ < δ or φ ∈ [0, α] if δ′ = δ. We expect

that if K is too large, equation (2.18) will only have the trivial solution for N →∞, so there

will be further conditions on φ and δ′ for the system to operate properly. If δ′ > γ, the noise

due to other condensed patterns (i.e. the sum over ν) becomes too high, and m can only be

zero:

E


(

K∑

µ=1

ξµ
)2

 =

K∑

µ=1

E[ξµ2] = φc
N δ′

Nγ
→∞. (2.19)

On the other hand, if δ′ < γ this noise becomes negligible, and (2.18) reduces to the Curie-

Weiss equation, whose solution is just the Mattis magnetization [45, 15, 20]. It follows that

the critical case is the one where when δ′ = γ. Here we have for N → ∞ the following

equation for m:

m =
∑

k∈Z
π(k|φ) tanh(βcm(1 + k)) (2.20)

with the following discrete noise distribution, which obeys π(−k|φ) = π(k|φ):

π(k|φ) =
〈
δk,
∑∞
µ=1 ξ

µ

〉
ξ

(2.21)
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2.1.3 Computation of the noise distribution π(k)

Given its symmetry, we only need to calculate π(k|φ) for k ≥ 0:

π(k|φ) = lim
K→∞

∫ π

−π

dψ
2π
e−iψk

〈
eiψξ

〉K
ξ

= lim
K→∞

∫ π

−π

dψ
2π
e−iψk

(
1 +

cφ

K
(cosψ − 1)

)K

=
∫ π

−π

dψ
2π
e−iψk+φc(cosψ−1)

= e−φc
∫ π

−π

dψ
2π
e−iψk

∑

n≥0

(φc)n

2nn!
(eiψ + e−iψ)n

= e−φc
∫ π

−π

dψ
2π
e−iψk

∑

n≥0

(φc)n

2nn!

∑

l≤n

n!
l!(n− l)!e

−iψ(k−n+2l)

= e−φc
∑

n≥0

∑

l≤n

(
φc

2

)n 1
l!(n− l)!δn,k+2l

= e−φc
∑

l≥0

(
φc

2

)k+2l 1
l!(k + l)!

= e−φc Ik(φc) (2.22)

where Ik(x) is the k-th modified Bessel function of the first kind [1]. These modified Bessel

functions obey

2
k

x
Ik(x) = Ik−1(x)− Ik+1(x),

2
d

dx
Ik(x) = Ik−1(x) + Ik+1(x). (2.23)

The first identity leads to a useful recursive equation for π(k|φ), and the second identity

simplifies our calculation of derivatives of π(k|φ) with respect to φ, respectively:

π(k−1|φ)− π(k+1|φ)− 2π(k|φ)
k

φc
= 0, (2.24)

d
dφ
π(k|φ) = c

(1
2
π(k−1|φ) +

1
2
π(k+1|φ)− π(k|φ)

)
(2.25)

2.1.4 Retrieval in the zero noise limit

To emphasize the dependence of the recall overlap on φ, viz. the relative storage load, we

will from now on write m→ mφ. With the abbreviation 〈g(k)〉k =
∑

k π(k|φ)g(k), and using

(2.24) and the symmetry of π(k|φ), we can transfer our equation (2.20) into a more convenient

form:

mφ =
1
2
〈
[

tanh(βcmφ(1+k)) + tanh(βcmφ(1−k))
]
〉k

=
1
2

∑

k∈Z

[
π(k−1|φ)− π(k+1|φ)

]
tanh(βcmφk) =

1
φc
〈k tanh(βcmφk)〉k (2.26)
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In the zero noise limit β →∞, where tanh(βy) → sgn(y), this reduces to mφ = 1
φc〈|k|〉k, or,

equivalently,

mφ = lim
β→∞

〈tanh(βcm(1+k))〉k = 〈sign(1+k)〉k

=
∑

k>−1

π(k)−
∑

k<−1

π(k) = π(0|φ) + π(1|φ), (2.27)

Hence we always have a nonzero rescaled magnetization, for any relative storage load φ. To

determine for which value of φ this state is most stable, we have to insert this solution into

the zero temperature formula for the free energy and find the minimum with respect to φ.

Here, with mµ = mφ for all µ ≤ K = φNγ and mµ = 0 for µ > K, the free energy (2.7) takes

asymptotically the form

f(β) =
1
2
c2φm2

φ −
1
β
〈log cosh (βcmφk)〉k −

1
β

log 2 (2.28)

So for β →∞, and using our above identity 〈|k|〉k = φcm, we find that the energy density is

u(φ) = lim
β→∞

f(β) =
1
2
c2φm2

φ − cm〈|k|〉k = −1
2
c2φm2

φ (2.29)

= −1
2
c2φ
(
π(0|φ)+π(1|φ)

)2 (2.30)

To see how this depends on φ we may use (2.25), and find

1
c2

d
dφ
u(φ) = −1

2
m2
φ − φmφ

d
dφ
(
π(0|φ)+π(1|φ)

)

= −1
2
m2
φ − φcmφ

(
− 1

2
π(0|φ) +

1
2
π(2|φ)

)
= −1

2
m2
φ +mφπ(1|φ)

= −1
2
mφ

(
mφ − 2π(1|φ)

)
= −1

2
mφ

(
π(0|φ)− π(1|φ)

)
< 0 (2.31)

The energy density u(φ) is apparently a decreasing function of φ, which reaches its minimum

when the number of condensed patterns is maximal, at φ = α. However, the amplitude of

each recalled pattern will also decrease for larger values of φ:

d
dφ
mφ =

d
dφ
π(0|φ) +

d
dφ
π(1|φ) = −π(1|φ)/φ < 0 (2.32)

Hence mφ starts at m0 = 1, due to π(k|0) = δk,0, and then decays monotonically with φ.

Moreover, it follows from 〈|k|〉2k ≤ 〈k2〉k = 〈∑µ≤K(ξµ)2〉ξ = φc that

mφ = 〈|k|〉k/φc ≤ 1/
√
φc, u(φ) = −1

2
c2φm2

φ ≥ −
1
2
c (2.33)

If we increase the number of condensed patterns, the corresponding magnetizations decrease

in such a way that the energy density remains finite.
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2.1.5 Retrieval at nonzero noise levels

To find the critical noise level (if any) where pattern recall sets in, we return to equation (2.8),

which for (τ, θ) = (1−γ, 0) and written in vector notation becomes

m =
Nγ

c
〈ξ tanh(βcξ ·m)〉ξ. (2.34)

We take the inner product on both sides with m and obtain a simple inequality:

m2 =
Nγ

c
〈(ξ ·m) tanh(βcξ ·m)〉ξ

= βNγ〈(ξ ·m)2

∫ 1

0
dx [1− tanh2(βcxξ ·m)]〉ξ

≤ βNγ〈(ξ ·m)2〉ξ = βcm2 (2.35)

Since m2(1 − βc) ≤ 0, we are sure that m = 0 for βc ≤ 1. At βc = 1 nontrivial solutions

of the previously studied symmetric type are found to bifurcate continuously from the trivial

solution. This can be seen by expanding the amplitude equation (2.26) for small m:

mφ =
1
φc
〈k tanh(βcmφk)〉k

= βcmφ −
1
3
β3c2m3

φ〈k4〉k/φ+O(m4
φ) (2.36)

This shows that the symmetric solutions indeed bifurcate via a second-order transition, at the

φ-independent critical temperature Tc = c, with amplitude mφ ∝ (βc − 1)
1
2 as βc → 1. All

the above predictions are confirmed by the results of numerical simulations, and by solving

the order parameter equations and calculating the free energy numerically, see Figure 2.1.

We can now summarize the phase diagram in terms of the scaling exponents (γ, δ). The

number of stored patterns is P = αN δ, of which K = φN δ′ can be recalled simultaneously,

with δ′ = min(γ, δ):

δ < γ : φmax = α, all stored patterns recalled simultaneously, with Curie-Weiss overlap

m

δ = γ : φmax = α, all stored patterns recalled simultaneously, with reduced but finite

m

δ > γ : φmax = ∞, at most φNγ patterns recalled simultaneously, with φ → ∞ and

mφ → 0
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Figure 2.1: Left: energy density u versus the relative fraction of retrieved patterns, in terms

of φ̂ = cφ and T̂ = T/c = 1/βc. The minimum energy density is reached when φ̂ is maximal,

i.e. when all stored patterns are simultaneously retrieved, but with decreasing amplitude for

each. Right: critical noise levels for different values of φ̂, confirming that T̂−1
c = β̂c = 1,

independently of φ̂. In both the panels, solid lines represent our theoretical predictions, while

symbols represent data from numerical simulations on systems withN = 5×104, γ = δ = 0.45,

c = 2 and with with standard sequential Glauber dynamics.

2.2 High storage regime in extremely diluted connectivity: ab-

sence of retrieval

In this section we consider the same network, composed of N binary spins (σi, i = 1, . . . , N)

and P patterns, but now at high storage load:

lim
N→∞

P/N = α, α > 0 (2.37)

The effective interaction is described by the Hamiltonian (2.2), and the entries ξµi ∈ {0,±1}
are generated again from (2.3), i.e. in the extremely diluted regime γ < 1. Again we must

choose τ such that the Hamiltonian will be of order N . Heuristically, since the number of non-

zero entries Nnz in a typical pattern (ξµ1 , . . . , ξ
µ
N ) scales as O(N1−γ), the number of patterns

with non overlapping entries (i.e. those we expect to recall) will scale as O(N/Nnz) = O(Nγ).

The contribution from K = O(Nγ) such condensed patterns to the Hamiltonian would then
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scale as

HC ∼ N−τ
K∑

µ=1

(
N∑

i=1

ξµi σi)
2 ∼ N−τKN 2

nz ∼ N−τNγN2(1−γ) ∼ N2−γ−τ

The non-condensed patterns, of which there are Nnc = P −Nc ∼ P = O(N), are expected to

contribute

HNC ∼ N−τ
Nnc∑

µ=1

(
N∑

i=1

ξµi σi)
2 ∼ N−τNnc

√
Nnz

2 ∼ N−τNN1−γ ∼ N2−γ−τ .

Thus, we expect to have an extensive Hamiltonian for τ = 1− γ.

2.2.1 Replica-symmetric theory

In the scaling regime P = αN we can no longer use saddle-point arguments directly in

the calculation of the free energy. Instead we calculate the free energy for typical patterns

realizations, i.e. the average

f = − lim
N→∞

1
βN

logZN (β, ξ), (2.38)

Here · · · indicates averaging over all {ξµi }, according to the measure (2.3). The average over the

disorder is done with the replica method, for K = O(Nγ); full details are given in Appendix

B. We solve the model at the replica symmetric (RS) level, which implies the assumption

that the system has at most a finite number of ergodic sectors for N →∞, giving

βfRS = lim
N→∞

extrm,q,r βf̂RS(m, q, r), (2.39)

βf̂RS(m, q, r) = − log 2 +
1
2
αr(βc)2(1−q) +

βc2

2Nγ
m2 − α

2

( βcq

1−βc(1−q) − log[1−βc(1−q)]
)

−
〈∫

Dz log cosh[βc(m · ξ + z
√
αr)]

〉
ξ

(2.40)

in which m = (m1, . . . ,mK) denotes the vector of K = φNγ condensed (i.e. potentially

recalled) patterns, ξ = (ξ1, . . . , ξK), and Dz = (2π)−1/2e−z
2/2dz. As in the analysis of

standard Hopfield networks, this involves the Edward-Anderson spin-glass order parameter q

[45, 15] and the Amit-Gutfreund-Sompolinsky uncondensed-noise order parameter r [45, 15].

We obtain self-consistent equations for the remaining RS order parameters (m, q, r) simply
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by extremizing f̂RS(m, q, r), which leads to

mµ =
Nγ

c

〈
ξµ
∫

Dz tanh[βc(m · ξ+z
√
αr)]

〉
ξ
,

q =
〈∫

Dz tanh2[βc(m · ξ+z
√
αr)]

〉
ξ
,

r =
q

[1−βc(1−q)]2 . (2.41)

As before we deal with the equation for mµ by using the identity ξµ tanh(A) = tanh(ξµA)

(since ξµ ∈ {−1, 0, 1}) and by separating the term mµξµ from the sum m · ξ:

mµ =
Nγ

c

〈∫
Dz tanh[βc(mµ(ξµ)2 +

∑

ν 6=µ≤K
mνξνξµ + zξµ

√
αr)]

〉
ξ

=
〈∫

Dz tanh[βc(mµ +
∑

ν 6=µ≤K
mνξν + z

√
αr)]

〉
ξ

=
〈∫

Dz tanh
[
βc
(
mµ +

K∑

ν=1

mνξν + z
√
αr
)]〉

ξ
+O(N−γ)

Again we see that for N → ∞ we will only retain solutions with mµ ∈ {−m, 0,m} for all

µ ≤ K. Given the trivial sign and pattern label permutation invariances, we can without loss

of generality consider only non-negative magnetizations, and look for solutions where mµ = m

for µ = 1 ≤ K and zero otherwise. We then find

m =
∞∑

k=−∞
π(k)

∫
Dz tanh[βc(m+mk + z

√
αr)] (2.42)

with π(k) given in (2.22). We can now use the manipulations employed in the previous section,

to find

m =
〈
k

φ

∫
Dz tanh[βc(mk + z

√
αr)]

〉

k

(2.43)

q =
〈∫

Dz tanh2[βc(mk + z
√
αr)]

〉

k

, (2.44)

r =
q

[1− βc(1− q)]2 .

The corresponding free energy assumes the form

βf̂RS(m, q, r) = − log 2 +
1
2
αr(βc)2(1−q) +

1
2
βc2φm2− α

2

( βcq

1−βc(1−q)−log[1−βc(1−q)]
)

−
〈∫

Dz log cosh[βc(mk + z
√
αr)]

〉
k

(2.45)

Note that we recover the equations of the medium storage regime simply by putting α = 0.

2.2.2 The zero noise limit
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Figure 2.2: Left panel: Behavior of αr(α) versus α in the spin-glass state (the inset shows

only r(α) versus α), as calculated from the RS order parameter equations. This shows that

r(α) goes to infinity as α approaches zero, such that αr(α) remains positive; this means that

the noise due to non-condensed patterns can never be neglected. Right panel: behavior of the

function G(Ξ) versus Ξ. Since G(Ξ) < 0 for α > 0, equation (2.50) cannot have a solution for

α > 0, and hence no pattern recall is possible even at zero noise.
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We now show that in the high storage case the system behaves as a spin glass, even in the

zero temperature limit β → ∞ where the retrieval capability should be largest. From (2.44)

we deduce that q → 1 in the zero noise limit, while the quantity C = βc(1− q) remains finite.

Let us first send β →∞ in equation (2.43):

m =
〈k
φ

∫
Dz sgn

[
mk +

z
√
α

1−C
]〉

k
=
〈k
φ

Erf
(mk(1−C)√

2α

)〉
k
, (2.46)

with the error integral Erf(x) = (2/
√
π)
∫ x

0 dt e−t
2. A second equation for the pair (m,C)

follows from (2.44):

C = lim
β→∞

βc
〈

1−
∫

Dz tanh2[βc(mk + z
√
αr)]

〉
k

= lim
β→∞

∂

∂m

〈1
k

∫
Dz tanh

[
βc
(
mk +

z
√
αq

1−C
)]〉

k
,

=
∂

∂m

〈
1
k

Erf
(mk(1−C)√

2α

)〉

k

=

√
2
απ

(1−C)
〈

exp
(
−m

2k2(1−C)2

2α

)〉
k

(2.47)

We thus have two coupled nonlinear equations (2.46,2.47), for the two zero temperature

order parameters m and C. They can be further reduced by introducing the variable Ξ =

m(1−C)/
√

2α, with which we obtain

m =
〈
k

φ
Erf(kΞ)

〉

k

(2.48)

and rewriting Ξ = m(1−C)/
√

2α gives

C = 1−
√

2αΞ
m

= 1−
√

2αΞ
〈k
φ

Erf(kΞ)
〉−1

k
. (2.49)

Using (2.47) and excluding the trivial solution Ξ = 0 (which always exists, but represents

the spin glass state without pattern recall) we obtain after some simple algebra just a single

equation, to be solved for Ξ:

√
2α = G(Ξ) =

1
Ξ

〈k
φ

Erf(kΞ)
〉
k
− 2√

π

〈
e−k

2Ξ2
〉
k

(2.50)

One easily shows that

lim
Ξ→0

G(Ξ) = 0, lim
Ξ→∞

G(Ξ) = − 2√
π
π(0|φ). (2.51)

In fact further analytical and numerical investigation reveals that for Ξ > 0 the function G(Ξ)

is strictly negative; see Figure 2.2. Hence there can be no m 6= 0 solution for α > 0, so the

system cannot recall the patterns in the present scaling regime P = αN .
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2.3 High storage regime in a finite connectivity: replica ap-

proach

In this section, mainly following [5], we turn to a statistical mechanics analysis of an Hop-

field like network, again near the saturation regime (P = αN), but in a finite connectivity

regime, i.e. the pattern entries ξµi ∈ {−1, 0, 1} are quenched random variables, identically and

independently distributed according to

P (ξµi = 1) = P (ξµi = −1) =
c

2N
, P (ξµi = 0) = 1− c

N
, (2.52)

with c finite. The effective interactions among spins is described by the usual Hamiltonian

H(σ|ξ) = − 1
2c

N∑

i,j

P∑

µ

ξµi ξ
µ
j σiσj . (2.53)

It is not a priori obvious that solving this model analytically will be possible. Most methods

for spins systems on finitely connected heterogeneous graphs rely (explicitly or implicitly)

on these being locally tree-like; due to the pattern dilution, the underlying topology of the

system (2.53) is a heterogeneous graph with many short loops.

The Hamiltonian is normalized correctly: since the term
∑N

i=1 ξ
µ
i σi is O(1) both for

condensed and non condensed patterns [3], (2.53) is indeed extensive in N . The aim of this

section is to compute the disorder-averaged free energy f , at inverse temperature β = T−1,

where · · · denotes averaging over the αN2 variables {ξµi } and

f = − lim
N→∞

1
βN

logZN (β, ξ), (2.54)

where ZN (β, ξ) is the partition function

ZN (β, ξ) =
∑

σ∈{−1,1}N
e
β
2c

∑αN
µ=1(

∑N
i=1 ξ

µ
i σi)

2

. (2.55)

The state of the system can be characterized in terms of the αN (non-normalised) Mattis

magnetizations, i.e. the overlaps between the system configuration and each pattern

Mµ(σ) =
N∑

i=1

ξµi σi. (2.56)

However, since in the high load regime the number of overlaps is extensive, it is more conve-

nient to work with the overlap distribution

P (M |σ) =
1
αN

αN∑

µ=1

δMµ(σ),M . (2.57)
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Although Mµ(σ) can take (discrete) values in the whole range {−N,−N + 1, · · · , N}, we

expect that, due to dilution, the number of values that the Mµ(σ) assume remains effectively

finite for large N , so that (2.57) represents an effective finite number of order parameters. In

order to probe responses of the system to selected perturbations we introduce external fields

{ψµ} coupled to the overlaps {Mµ(σ)}, so we consider the extended Hamiltonian

H(σ, ξ) = − 1
2c

N∑

i,j

αN∑

µ

ξµi ξ
µ
j σiσj −

αN∑

µ=1

ψµMµ(σ). (2.58)

We also define the field distribution P (ψ) and the joint distribution P (M,ψ|σ) of magneti-

zations and fields (and of which P (ψ) is a marginal):

P (ψ) =
1
αN

αN∑

µ=1

δ(ψ − ψµ), P (M,ψ|σ) =
1
αN

αN∑

µ=1

δM,Mµ(σ)δ(ψ − ψµ). (2.59)

2.3.1 The free energy

The free energy per spin (2.54) for the Hamiltonian (2.58) can be writen as

f = − lim
N→∞

1
βN

log
∑

σ
e
β
2c

∑αN
µ=1M

2
µ(σ)+β

∑αN
µ=1 ψµMµ(σ). (2.60)

We insert the following integrals of delta-functions written in Fourier representation

1 =
∏

M

∏

ψ

∫
dP (M,ψ) δ

[
P (M,ψ)− 1

αN

αN∑

µ=1

δM,Mµ(σ)δ(ψ − ψµ)
]

=
∏

M

∏

ψ

∫
dP (M,ψ)dP̂ (M,ψ)

2π/∆N
eiN∆P̂ (M,ψ)[P (M,ψ)− 1

αN

∑αN
µ=1 δM,Mµ(σ)δ(ψ−ψµ)].(2.61)

In the limit ∆ → 0 we use ∆
∑

ψ . . . →
∫

dψ . . ., and we define the path integral measure

{dPdP̂} = lim∆→0 dP (M,ψ)dP̂ (M,ψ)∆N/2π. This gives us

1 =
∫
{dPdP̂} eiN

∫
dψ
∑
M P̂ (M,ψ)P (M,ψ)− i

α

∑αN
µ=1 P̂ (Mµ(σ),ψµ). (2.62)

Insertion into (2.60) leads us to an expression for f involving the density of states Ω[P̂ ]:

f = − lim
N→∞

1
βN

log
∫
{dPdP̂} eN

{
i
∫

dψ
∑
M P (M,ψ)P̂ (M,ψ)+βα

∫
dψ
∑
M P (M,ψ)

(
M2

2c
+Mψ

)
+Ω[P̂ ]

}

(2.63)

Ω[P̂ ] = lim
N→∞

1
N

log
∑

σ
e−

i
α

∑
µ P̂ (Mµ(σ),ψµ). (2.64)
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Hence via steepest descent integration for N → ∞, and after avering the result over the

disorder, we obtain:

f = − 1
β

extr{P,P̂}
{

i
∫

dψ
∑

M

P (M,ψ)P̂ (M,ψ) + βα

∫
dψ
∑

M

P (M,ψ)(
M2

2c
+Mψ) + Ω[P̂ ]

}
,

(2.65)

with

Ω[P̂ ] = lim
N→∞

1
N

log
∑

σ
e−

i
α

∑
µ P̂ (Mµ(σ),ψµ). (2.66)

Working out the functional saddle-point equations that define the extremum in (2.65) gives

P̂ (M,ψ) = iαβ
(M2

2c
+Mψ

)
, P (M,ψ) = i

δΩ[P̂ ]
δP̂ (M,ψ)

, (2.67)

and inserting the first of these equations into (2.65) leads us to

f = − 1
β

Ω[P̂ ]
∣∣∣
P̂ (M,ψ)=iαβ(M

2

2c
+Mψ)

. (2.68)

Hence calculating the disorder-averaged free-energy boils down to calculating (2.66). This can

be done using the replica method, which is based on the identity logZ = limn→0 n
−1 logZn,

yielding

Ω[P̂ ] = lim
N→∞

lim
n→0

1
Nn

log
∑

σ1...σn
e−

i
α

∑n
α=1

∑αN
µ=1 P̂ (Mµ(σα),ψµ). (2.69)

The free energy (2.68) could also have been calculated directly from (2.60), by taking the

average over disorder and using the replica identity. The advantage of working with the log-

density of states is that, working out Ω[P̂ ] first for arbitrary functions P̂ gives us via (2.67)

a formula for the distribution P (M,ψ), from which we can obtain useful information on the

system retrieval phases and response to external perturbations. Finally we set P̂ (M,ψ) =

iαβχ(M,ψ) with a real-valued function χ, to compactify our equations, with which we can

write our problem as follows

f = f [χ]
∣∣∣
χ(M,ψ)=M2

2c
+Mψ

f [χ] = − lim
N→∞

lim
n→0

1
βNn

log
∑

σ1...σn
eβ
∑n
α=1

∑αN
µ=1 χ(Mµ(σα),ψµ),(2.70)

P (M,ψ) = − 1
α

δf [χ]
δχ

∣∣∣
χ(M,ψ)=M2

2c
+Mψ

. (2.71)

For simple tests of (2.70) and (2.71) in special limits see C.1.
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2.3.2 Derivation of saddle-point equations

From now on, unless indicated otherwise, all summations and products over α, i, and µ will

be understood to imply α = 1 . . . n, i = 1 . . . N , and µ = 1 . . . αN , respectively. We next need

to introduce order parameters that allow us to carry out the disorder average in (2.70). The

simplest choice is to isolate the overlaps themselves by inserting

1 =
∏

αµ

[ N∑

Mαµ=−N
δMαµ,

∑
i ξ
µ
i σ

α
i

]
=
∏

αµ

[ N∑

Mαµ=−N

∫ π

−π

dωαµ
2π

eiωαµ(Mαµ−
∑
i ξ
µ
i σ

α
i )
]
. (2.72)

This gives

f [χ] = − lim
N→∞

lim
n→0

1
βNn

log
{∏

αµ

[ ∞∑

Mαµ=−∞

∫ π

−π

dωαµ
2π

]
ei
∑
αµ ωαµMαµ+

∑
αµ βχ(Mα

µ ,ψµ)

×
∑

σ1...σn
e−i

∑
i

∑
αµ ωαµξ

µ
i σ

α
i

}
. (2.73)

We can carry out the disorder average

e−i
∑
i

∑
αµ ωαµξ

µ
i σ

α
i =

∏

iµ

{
1− c

N
+

c

2N

(
ei
∑
α ωαµσ

α
i +e−i

∑
α ωαµσ

α
i

)}

= e
c
N

∑
iµ

[
cos(

∑
α ωαµσ

α
i )−1

]
+O(N0), (2.74)

which leads us to

f [χ] = − lim
n→0

lim
N→∞

1
βNn

log
{∏

αµ

[∑

Mαµ

∫ π

−π

dωαµ
2π

]
.ei
∑
αµ ωαµMαµ+

∑
αµ βχ(Mα

µ ,ψµ)

×
[ ∑

σ1...σn

e
c
N

∑
µ

[
cos(

∑
α ωαµσα)−1

]]N}
(2.75)

where we have also interchanged the limits n→ 0 and N →∞, as usually done to progress in

the calculation by using the saddle-point method. We next introduce n-dimensional vectors:

σ = (σ1, . . . , σn) ∈ {−1, 1}n, Mµ = (M1µ, . . . ,Mnµ) ∈ ZZn and ωµ = (ω1µ, . . . , ωnµ) ∈
[−π, π]n. This allows us to write (2.75) as

f [χ] = − lim
n→0

lim
N→∞

1
βNn

log
{∏

µ

[∑

Mµ

∫ π

−π

dωµ

(2π)n
]
· ei

∑
µωµ·Mµ+

∑
µ βχ(Mµ,ψµ)

×
[∑

σ
e
c
N

∑
µ[cos(ωµ·σ)−1]

]N}
. (2.76)
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This last expression invites us to introduce the distribution P (ω) = (αN)−1
∑

µ δ(ω − ωµ),

for ω ∈ [−π, π]n, via path integrals. We therefore insert

1 =
∏

ω

∫
dP (ω) δ

[
P (ω)− 1

αN

∑

µ

δ(ω − ωµ)
]

=
∏

ω

∫
dP (ω)dP̂ (ω)

2π/∆N
e

iN∆P̂ (ω)

[
P (ω)− 1

αN

∑
µ δ(ω−ωµ)

]
. (2.77)

In the limit ∆→ 0 we use ∆
∑
ω . . .→

∫
dω . . ., and we define the usual path integral measure

{dPdP̂} = lim∆→0 dP (ω)dP̂ (ω)∆N/2π. This converts the above to

1 =
∫
{dPdP̂} eiN

∫
dω P̂ (ω)P (ω)−(i/α)

∑
µ P̂ (ωµ). (2.78)

and upon insertion into (2.76) we get

f [χ] = − lim
n→0

lim
N→∞

1
βNn

log
∫
{dPdP̂} eiN

∫ π
−πdω P̂ (ω)P (ω)

[∑

σ
eαc

∫
dω P (ω)[cos(ω·σ)−1]

]N

×
αN∏

µ=1

(∑

M

∫ π

−π

dω
(2π)n

eiω·M+
∑
α βχ(Mα,ψµ)− i

α
P̂ (ω)

)
. (2.79)

In the limit N →∞, evaluation of the integrals by steepest descent leads to

f [χ] = − lim
n→0

1
βn

extr{P,P̂} Ψn[{P, P̂}], (2.80)

Ψn[{P, P̂}] = i
∫ π

−π
dω P̂ (ω)P (ω) + α

〈
log
(∑

M

∫ π

−π

dω
(2π)n

eiω·M+
∑
α βχ(Mα,ψ)− i

α
P̂ (ω)

)〉
ψ

+ log
(∑

σ
eαc

∫ π
−πdω P (ω)[cos(ω·σ)−1]

)
, (2.81)

in which 〈. . .〉ψ =
∫

dψ P (ψ) . . .. We mostly write 〈. . .〉 in what follows, when there is no

risk of ambiguities. The saddle-point equations are found by functional variation of Ψn with

respect to P and P̂ , leading to

P̂ (ω) = icα
∑
σ
[

cos(ω · σ)− 1
]
eαc

∫ π
−πdω′ P (ω′)[cos(ω′·σ)−1]

∑
σ eαc

∫ π
−πdω′ P (ω′)[cos(ω′·σ)−1]

, (2.82)

P (ω) =

〈 ∑
M eiω·M+

∑
α βχ(Mα,ψ)− i

α
P̂ (ω)

∑
M

∫ π
−πdω′ eiω′·M+

∑
α βχ(Mα,ψ)− i

α
P̂ (ω′)

〉
. (2.83)

The joint distribution of fields and magnetizations now follows directly from (2.71) and

(2.80, 2.81), and is seen to require only knowledge of the conjugate order parameters P̂ (ω):

P (M,ψ)
P (ψ)

= lim
n→0

∑
M

(
1
n

∑
γ δM,Mγ

) ∫ π
−πdω eiω·M+β

∑
α χ(Mα,ψ)− i

α
P̂ (ω)

∑
M

∫ π
−πdω eiω·M+β

∑
α χ(Mα,ψ)− i

α
P̂ (ω)

∣∣∣∣∣
χ=M2

2c
+ψM

.(2.84)
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Thus the right-hand side is an expression for P (M |ψ). A last simple transformation F (ω) =

− i
cα P̂ (ω) + 1 converts the saddle point equations into

F (ω) =
∑
σ cos(ω · σ)eαc

∫ π
−πdω′ P (ω′) cos(ω′·σ)

∑
σ eαc

∫ π
−πdω′ P (ω′) cos(ω′·σ)

, (2.85)

P (ω) =

〈
ecF (ω)

∏
αDψ(ωα|β)∫ π

−πdω′ ecF (ω′)∏
αDψ(ωα|β)

〉
, (2.86)

where we have introduced

Dψ(ω|β) =
1

2π

∑

M∈ZZ

eiωM+βχ(M,ψ). (2.87)

Similarly, (2.84) and (2.80) can now be expressed as, respectively,

P (M |ψ) = lim
n→0

∑
M

(
1
n

∑
γ δM,Mγ

) ∫ π
−πdω eiω·M+β

∑
α χ(Mα,ψ)+cF (ω)

∑
M

∫ π
−πdω eiω·M+β

∑
α χ(Mα,ψ)+cF (ω)

∣∣∣∣∣
χ=M2/2c+Mψ

, (2.88)

and

f [χ] = − lim
n→0

1
βn

{
− cα

∫ π

−π
dω F (ω)P (ω) + log

(∑

σ
eαc

∫ π
−πdω P (ω)[cos(ω·σ)−1]

)

+α
〈

log
(∑

M

∫ π

−π

dω
(2π)n

eiω·M+
∑
α βχ(Mα,ψ)+cF (ω)

)〉}
.(2.89)

We note that the saddle-point equations guarantee that P (ω) is normalised correctly on

[−π, π]n, while for F (ω) we have (see C.2)
∫ π

−π
dω F (ω) = 0. (2.90)

We observe that in the absence of external fields, i.e. for ψ = 0, the function (2.87) is real

and symmetric:

D0(ω|β) =
1

2π

∑

M∈ZZ

eiωM+ β
2c
M2 ∈ IR, ∀ω ∈ [−π, π] : D0(−ω|β) = D0(ω|β).(2.91)

The introduction of external fields breaks the symmetry of Dψ(ω|β) under the transformation

ω → −ω.

2.3.3 The RS ansatz – route I

To solve the saddle point equations for n→ 0 we need to make an ansatz on the form of the

order parameter functions P (ω) and F (ω). Since the conditioned overlap distribution (2.88)
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depends on F (ω) only, a first route to proceed is eliminating the order function P (ω) from

our equations and making a replica-symmetric (RS) ansatz for F (ω). Since ω ∈ [−π, π]n is

continuous, the RS ansatz for F (ω) reads:

F (ω) =
∫
{dπ} W [{π}]

n∏

α=1

π(ωα), (2.92)

where W [. . .] is a measure over functions, normalised according to
∫
{dπ} W [{π}] = 1 and

nonzero (in view of (2.90)) only for functions π(. . .) that are real and obey
∫ π
−πdω π(ω) = 0.

The RS ansatz (2.92) is to be inserted into the saddle point equations. Insertion into (2.86)

gives, with a normalization factor Cn(ψ),

P (ω) =
〈
C−1
n (ψ)

∏

α

Dψ(ωα|β) ec
∫
{dπ}W [{π}]

∏
α π(ωα)

〉

=
〈
C−1
n (ψ)

∏

α

Dψ(ωα|β)
∑

k≥0

ck

k!

[ ∫
{dπ}W [{π}]

∏

α

π(ωα)
]k〉

=
〈
C−1
n (ψ)

∑

k≥0

ck

k!

∫ k∏

`=1

[
{dπ`}W [{π`}]

]∏

α

Rk(ωα)
〉
, (2.93)

with

Rk(ω) = Dψ(ω|β)
k∏

`=1

π`(ω). (2.94)

Next we turn to (2.85). We first work out for σ ∈ {−1, 1}n the quantity

L(σ) = αc

∫ π

−π
dω P (ω) cos(ω · σ)

= αc〈C−1
n (ψ)

∑

k≥0

ck

k!

∫ k∏

`=1

[
{dπ`}W [{π`}]

]

×
[1

2

∏

α

∫ π

−π
dωαRk(ωα)eiωασα+

1
2

∏

α

∫ π

−π
dωαRk(ωα)e−iωασα

]
〉,

(2.95)

with
∫ π
−πdω P (ω) = 1 requiring L(0) = αc. For Ising spins one can use the general identity

R̃k(σ) =
∫ π

−π
dωRk(ω)eiωσ = B({Rk})eiA({Rk})σ, (2.96)

where B and A are, respectively, the absolute value and the argument of the complex function

R̃k evaluated at the point 1, R̃k(1) = |R̃k(1)| eiφR̃(1) , i.e.

B({Rk}) = |R̃k(1)|, A({Rk}) = φR̃(1) = arctan
( Im[R̃k(1)]

Re[R̃k(1)]

)
. (2.97)
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This simplifies (2.95) to

L(σ) = αc〈C−1
n (ψ)

∑

k≥0

ck

k!

∫ k∏

`=1

[
{dπ`}W ({π`})

]
Bn({Rk}) cos

[
A({Rk})

∑

α

σα
]
〉. (2.98)

In order to have L(0) = αc in the limit n→ 0, one must have C0(ψ) = ec ∀ψ. Inserting L(σ)

into (2.85) gives

KnF (ω) =
∑

σ
cos(ω ·σ)ecα〈C

−1
n (ψ)

∑
k≥0

ck

k!

∫ ∏k
`=1

[
{dπ`}W [{π`}]

]
Bn({Rk}) cos

[
A({Rk})

∑
α σ

α
]
〉,

(2.99)

with

Kn =
∑

σ
ecα〈C

−1
n (ψ)

∑
k≥0

ck

k!

∫ ∏k
`=1

[
{dπ`}W [{π`}]

]
Bn({Rk}) cos

[
A({Rk})

∑
α σ

α
]
〉. (2.100)

Upon isolating the term
∑

α σ
α via

∑
m

∫ π
−π

dθ
2π eimθ−iθ

∑
α σ

α
= 1 we obtain

KnF (ω) =
∑

m

∫ π

−π

dθ
2π

eimθ+cα〈C−1
n (ψ)

∑
k≥0

ck

k!

∫ ∏k
`=1

[
{dπ`}W [{π`}]

]
Bn({Rk}) cos[A({Rk})m]〉

×
∑

σ
e−iθ

∑
α σ

α
(1

2
ei
∑
α σ

αωα+
1
2

e−i
∑
α σ

αωα
)

= 2n−1
∑

m

∫ π

−π

dθ
2π

eimθ+cα〈C−1
n (ψ)

∑
k≥0

ck

k!

∫ ∏k
`=1

[
{dπ`}W [{π`}]

]
Bn({Rk}) cos[A({Rk})m]〉

×
[∏

α

cos(ωα−θ) +
∏

α

cos(ωα+θ)
]
. (2.101)

The two terms inside the square brackets in the last line yield identical contributions to the

θ-integral, so

KnF (ω) = 2n
∑

m

∫ π

−π

dθ
2π

eimθ+cα〈C−1
n (ψ)

∑
k≥0

ck

k!

∫ ∏k
`=1

[
{dπ`}W [{π`}]

]
Bn({Rk}) cos[A({Rk})m]〉∏

α

cos(ωα−θ),
(2.102)

with K0 simply following from the demand F (ω = 0) = 1, as required by (2.85). Next we

insert

1 =
∫
{dπ}

∏

ω

δ
[
π(θ)− cos(ω−θ)

]
, (2.103)

where we have used the symbolic notation
∏
ω δ[π(ω) − f(ω)] for the functional version of

the δ-distribution, as defined by the identity
∫
{dπ}G[{π}]∏ω δ[π(ω)− f(ω)] = G[{f}]. This

leads us to

KnF (ω) = 2n
∑

m

∫ π

−π

dθ
2π

eimθ+cα〈C−1
n (ψ)

∑
k≥0

ck

k!

∫ ∏k
`=1

[
{dπ`}W [{π`}]

]
Bn({Rk}) cos[A({Rk})m]〉

×
∫
{dπ}

∏

ω

δ
[
π(θ)−cos(ω−θ)

]∏

α

π(ωα). (2.104)
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Substituting (2.92) for F (ω) in the left-hand side of this last equation shows that in the replica

limit n→ 0, our RS ansatz indeed generates a saddle point if

W [{π}] =
∫ π

−π

dθ
2π

λ(θ|W )
∏

ω

δ
[
π(ω)− cos(ω−θ)

]
, (2.105)

with the short-hand

λ(θ|W ) = K−1
0

∑

m∈ZZ

eimθ+cα
∑
k≥0

cke−c
k!
〈
∫ ∏k

`=1

[
{dπ`}W [{π`}]

]
cos[A({Rk})m]〉. (2.106)

The constantK0 follows simply from normalisation, which now takes the form
∫ π
−π

dθ
2π λ(θ|W ) =

1, giving

K0 =
∫

dθ
2π

∑

m∈ZZ

eimθ+cα
∑
k≥0

cke−c
k!
〈
∫ ∏k

`=1

[
{dπ`}W [{π`}]

]
cos[A({Rk})m]〉

=
∑

m∈ZZ

δm,0 ecα
∑
k≥0

cke−c
k!
〈
∫ ∏k

`=1

[
{dπ`}W [{π`}]

]
cos[A({Rk})m]〉 = ecα. (2.107)

We then arrive at

λ(θ|W ) =
∑

m∈ZZ

eimθ+cα
∑
k≥0

cke−c
k!
〈
∫ ∏k

`=1

[
{dπ`}W [{π`}]

][
cos[A({Rk})m]−1

]
〉. (2.108)

It is convenient to write D(ω|β) = D′(ω|β) + iD′′(ω|β), with D′(ω|β) = Re[D(ω|β)] and

D′′(ω|β) = Im[D(ω|β)]. Similarly, we write Rk(ω) = R′k(ω) + iR′′k(ω). We note that for

χ(M,ψ) = M2/2c+Mψ the function Dψ(ω|β) defined in (2.87) has several useful properties,

e.g.

∀ω ∈ [−π, π] : D′ψ(−ω|β) = D′ψ(ω|β), D′′ψ(−ω|x) = −D′′ψ(ω|x), (2.109)
∫ π

−π
dω Dψ(ω|β) =

∑

M∈ZZ

eβχ(M,ψ)

∫ π

−π

dω
2π

eiωM =
∑

M∈ZZ

eβχ(M,ψ)δM,0 = 1, (2.110)

Dψ(ω|0) =
1

2π

∑

M∈ZZ

eiωM = δ(ω) for ω ∈ [−π, π]. (2.111)

From (2.97) we have

A({Rk}) = arctan
[ Im[R̃k(1)]

Re[R̃k(1)]

]
= arctan

[∫ π
−πdω [R′k(ω) sinω +R′′k(ω) cosω]∫ π
−πdω [R′k(ω) cosω −R′′k(ω) sinω]

]
, (2.112)

and insertion in (2.108) gives

λ(θ|W ) =
∑

m∈ZZ

eimθ+cα
∑
k≥0

cke−c
k!

∫ ∏k
`=1

[
{dπ`}W [{π`}]

]{
cos[m arctan fk({π1,...,πk})]−1

}
, (2.113)
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with

fk({π1, . . . , πk}) =

∫ π
−πdω [D′(ω|β) sinω +D′′(ω|β) cosω]

∏k
`=1 π`(ω)

∫ π
−πdω [D′(ω|β) cosω −D′′(ω|β) sinω]

∏k
`=1 π`(ω)

. (2.114)

For high temperatures D′(ω|0) = δ(ω) and D′′(ω|0) = 0, so fk({π1, . . . , πk}) = 0 and

λ(θ|W ) = δ(θ). Hence

β = 0 : W [{π}] =
∏

ω

δ
[
π(ω)− cos(ω)

]
. (2.115)

We note that for any symmetric set of functions {π1, . . . , πk} one has, from (2.114), fk({π1, . . . , πk}) =

0 due to the symmetry properties (2.109) of Dψ, and thus λ(θ|W ) = δ(θ). Hence, (2.115) is

a solution of (2.105) for all temperatures, and the only solution at infinite temperature.

2.3.4 Conditioned distribution of overlaps

In order to give a physical interpretation to the RS solution (2.92,2.115), we consider the

conditioned overlap distribution (2.88). Insertion of (2.115) into (2.92) gives

F (ω) =
∫
{dπ} W [{π}]

∏

α

π(ωα) =
∏

α

cos(ωα),

and subsequent insertion into (2.88) leads to, with Cn and C̃n representing normalization

constants,

P (M |ψ) = lim
n→0

C−1
n

∑

M

( 1
n

n∑

γ=1

δM,Mγ

)∫ π

−π
dω eiω·M+β

∑
α χ(Mα,ψ)

∑

k≥0

ck

k!

∏

α

cosk(ωα)

= lim
n→0

C̃−1
n

n

∑

k≥0

ck

k!

∫ π

−π
dω
∏

α

cosk(ωα)
∫ π

−π
dλ eiλM

n∑

γ=1

∑

Mγ∈ZZ

ei(ωγ−λ)Mγ+χ(Mγ ,ψ)

×
∏

α 6=γ

∑

Mα

eiωαMα+χ(Mα,ψ)

= lim
n→0

C−1
n

n

∑

k≥0

ck

k!

∫ π

−π
dλ eiλM

n∑

γ=1

∫ π

−π
dωγ cosk(ωγ)Dψ(ωγ−λ|β)

×
∏

α 6=γ

∫ π

−π
dωα cosk(ωα)Dψ(ωα|β)

= lim
n→0

C−1
n

∑

k≥0

ck

k!

∫ π

−π
dλ eiλMIk(λ, β)In−1

k (0, β), (2.116)
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with

Ik(λ, β) =
∫ π

−π
dω cosk(ω)Dψ(ω−λ|β) =

1
2k

k∑

n=0

(k
n

)∫ π

−π
dω e−iω(k−2n)

∑

m∈ZZ

ei(ω−λ)m+βχ(m,ψ)

=
1
2k

k∑

n=0

(k
n

)
e−iλ(k−2n)+βχ(k−2n,ψ) =

1
2k

k∑

m=−k

( k

k−m
2

)
e−iλm+βχ(m,ψ). (2.117)

We can now work out

∫ π

−π
dλ eiλMIk(λ, β) =





2−k
( k

(k−M)/2

)
eβχ(M,ψ) if |M | ≤ k

0 if |M | > k

, (2.118)

and obtain our desired formula for P (M |ψ) corresponding to the saddle-point (2.115), in

which the normalisation constant comes out as C0 = ec. The result then is

P (M |ψ) =
∑

k≥|M |

e−c
ck

k!

( k

(k−M)/2

)
eβχ(M,ψ)

∑k
m=−k

( k

(k−m)/2

)
eβχ(m,ψ)

. (2.119)

We can rewrite this result, with the short-hand pc(k) = e−cck/k!, in the more intuitive form

P (M |ψ) =
∑

k≥0

pc(k)P (M |k, ψ), (2.120)

P (M |k, ψ) = θ(k−|M |+ 1
2

)

( k

(k−M)/2

)
eβχ(M,ψ)

∑k
m=−k

( k

(k−m)/2

)
eβχ(m,ψ)

. (2.121)

We recognise that pc(k) is the asymptotic probability that any pattern (ξµ1 , . . . , ξ
µ
N ) has k

non-zero entries; since each pattern has N independent entries with probability c/N to be

nonzero, k will for N → ∞ indeed be a Poissonian random variable with average c. Hence,

P (M |k, ψ) is the conditional probability to have an overlap of value M , given the pattern

concerned has k non-zero entries and is triggered by an external field ψ. We have apparently

mapped the neural network with N neurons and P = αN diluted stored patterns to a system

of k neurons with a single undiluted binary pattern. We will see that this is due to the fact

that in the regime where replica-symmetric theory holds one is always able, as a consequence
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of the dilution, to decompose the original system into an extensive number of independent

finite-sized subsystems, each recalling one particular pattern.

The solution (2.115), leading to (2.121), is a saddle-point for any temperature. At infinite

temperatures it is the only solution, and simplifies further. For β = 0 expression (2.121) gives

P (M |k, ψ) = 2−k
( k

(k−M)/2

)
θ(k−|M |+ 1

2
), (2.122)

which is the probability that a system of k spins has an overlap M with an undiluted stored

pattern, if each spin behaves completely randomly. This describes, as expected, an immune

network behaving as a paramagnet, i.e. unable to retrieve stored strategies. For the distribu-

tion of overlaps we find

P (M) = e−c
∑

k≥|M |

(1
2c)

k

k!

( k

(k−M)/2

)
. (2.123)

In the limit β → ∞, the sum in the denominator of (2.121) is dominated by the value of m

which maximises χ(m,ψ) = m2/2c+ψm, being m=k sgn(ψ) if ψ 6= 0 and m=±k for ψ = 0.

In either case we obtain

k∑

m=−k

( k

(k−m)/2

)
eβχ(m,ψ) ∼





eβ(k2/2c+k|ψ|) ψ 6= 0

2eβk
2/2c ψ = 0, k 6= 0.

(2.124)

Substitution into (2.121) and (2.120) subsequently gives

lim
β→∞

P (M |ψ) = lim
β→∞





e−c
∑

k≥|M |
ck

k!

( k

(k−M)/2

)
e−β(k2−M2)/2c−β|ψ|(k−sgn(ψ)M) if ψ 6= 0

1
2e−c

∑
k≥|M |

ck

k!

( k

(k−M)/2

)
e−β(k2−M2)/2c if ψ = 0,M 6= 0

=





e−c if M = 0

θ(Mψ) e−cc|M |/|M |! if ψ 6= 0, M 6= 0
1
2e−cc|M |/|M |! if ψ = 0, M 6= 0

. (2.125)

Similarly we have

ψ 6= 0 : P (M |k, ψ) = δ|M |,k

(
δM,0 + θ(ψM)(1−δM,0)

)
, (2.126)

ψ = 0 : P (M |k, ψ) = δ|M |,k

(
δM,0 +

1
2

(1−δM,0)
)
. (2.127)

For k > 0 this describes error-free activation or inhibition of a stored strategy with k nonzero

entries.
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Figure 2.3: Conditioned overlap distribution P (M |k, ψ) corresponding to the state

(2.92,2.115), as given by formula (2.121). Top panels refer to k = c = 3. Left: β = 0, 1, 3 and

ψ = 0; Right: β = 3 and ψ = 0, 0.2, 0.5. Bottom panels refer to ψ = 0, 0.2, 0.5 and β = 2.

Left: c = 3, k = 6. Right: c = k = 6. Note that M ∈ {−k,−k + 1, . . . , k − 1, k}, so that the

lines connecting markers are only guides to the eye.

For intermediate temperatures a plot of (2.121) shows that without external fields, P (M |0)

acquires two symmetric peaks at large overlaps (in absolute value), as β is increased from

β = 0; see Fig. 2.3, top left panel. Unlike typical magnetic systems in the thermodynamic

limit, there is no spontaneous ergodicity breaking at ψ = 0; the system acts effectively as

an extensive number of independent finite subsystems, each devoted to a single pattern.

Each size-k subsystem oscillates randomly between the the two peaks in P (M |0), with a

characteristic switching timescale tk ∼ eβk
2/2c, which grows with the size k of the subsystem

and remains finite at finite temperature.

Introducing a field ψ reduces the overlap peak at M values opposite in sign to the field;

this peak will eventually disappear for sufficiently strong fields (Fig. 2.3, top right panel).

The field-induced asymmetry in the height of the two peaks increases at smaller temperatures

and larger sizes (Fig. 2.3, bottom panels). Thus, external fields trigger the system towards

either activation or inhibition of a strategy, whereas in their absence the system oscillates

stochastically between the two.
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2.3.5 Alternative formulation of the theory before the RS ansatz

The approach developed in the previous section led to transparent formulae for the distribu-

tion of overlaps in the RS state (2.115), and even allows us to derive analytically the condition

defining the (continuous) phase transition where (2.115) ceases to hold (see C.3). However, the

states beyond the transition point are better described within an alternative (but mathemati-

cally equivalent) formulation of the theory. This alternative approach is based on formulating

our equations first in terms of the following quantities:

L(σ) = αc

∫ π

−π
dω P (ω) cos(ω · σ), Q(ω) = ecF (ω). (2.128)

Both P (ω) and Q(ω) are only defined for ω ∈ [−π, π]n. In terms of (2.128) we can write our

earlier saddle point equations (2.86, 2.85) as

P (ω) =
〈 Q(ω)

∑
M∈ZZn eiω·M+

∑
α χ(Mα,ψ)

∫ π
π dω′Q(ω′)

∑
M∈ZZn eiω′·M+

∑
α χ(Mα,ψ)

〉
ψ
, (2.129)

logQ(ω) = c

∑
σ∈{−1,1}n cos(ω · σ)eL(σ)

∑
σ∈{−1,1}n eL(σ)

, (2.130)

and the free energy (2.89) as

f [χ] = − lim
n→0

1
βn

{
log
(∑

σ
eL(σ)−cα

)
−
∑
σ L(σ)eL(σ)

∑
σ eL(σ)

+α
〈

log
(∑

M

∫ π

−π

dω
(2π)n

eiω·M+
∑
α βχ(Mα,ψ)Q(ω)

)〉
ψ

}
, (2.131)

where we used α
∫ π
−πdω P (ω) logQ(ω) =

∑
σ L(σ)eL(σ)/

∑
σ eL(σ). Clearly

∫ π
−πdω P (ω) =

1, Q(ω) ∈ IR, Q(−ω) = Q(ω), and Q(0) = ec. We can now switch from the order parameter

Q(ω) to a new order parameter Q̃(M), defined on M ∈ ZZn, via the following one-to-one

transformations:

Q̃(M) =
∫ π

−π

dω
(2π)n

Q(ω)eiω·M, Q(ω) =
∑

M∈ZZn

Q̃(M)e−iω·M. (2.132)

The validity of these equations follows from the two identities (2π)−1
∫ π
−πdω eiωm = δm0

for m ∈ ZZ, and (2π)−1
∑

M∈ZZ eiωM = δ(ω) for ω ∈ [−π, π]. By construction we now have
∑

M Q̃(M) = ec. Moreover, sinceQ(−ω) = Q(ω) we also know that Q̃(M) = (2π)−n
∫ π
−πdω Q(ω) cos(ω·

M) ∈ IR. One can write the saddle point equations in terms of these order functions (see C.4
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for details):

Q̃(M) =
∫ π

−π
dω cos(ω ·M) exp

[
c

∑
σ cos(ω · σ)eL(σ)

∑
σ eL(σ)

]
, (2.133)

L(σ) = αc e
βn
2c

〈∑
M Q̃(M)eβ

∑
α χ(Mα,ψ) cosh[β(1

cM · σ + ψ
∑

α σ
α)]

∑
M Q̃(M)eβ

∑
α χ(Mα,ψ)

〉
ψ
. (2.134)

and the free energy reads

f [χ] = − lim
n→0

1
βn

{
log
∑

σ
eL(σ)−cα −

∑
σ L(σ)eL(σ)

∑
σ eL(σ)

+ α
〈

log
[∑

M

e
∑
α βχ(Mα,ψ)Q̃(M)

]〉
ψ

}
.

(2.135)

From (2.88) we find that the distribution of overlaps can be written as

P (M |ψ) = lim
n→0

∑
M

(
1
n

∑n
γ=1 δM,Mγ

)
eβ
∑
α χ(Mα,ψ)Q̃(M)

∑
M eβ

∑
α χ(Mα,ψ)Q̃(M)

∣∣∣∣∣
χ(M,ψ)=M2/2c+Mψ

. (2.136)

In C.5 we confirm the correctness of (2.136) in several special limits.

2.3.6 The RS ansatz – route II

We now try to construct the RS solution of our new equations (2.134, 2.133), by applying the

RS ansatz to the functions L(σ) and Q̃(M):

L(σ) = αc

∫
dhW (h)

n∏

α=1

eβhσ
α
, Q̃(M) = ec

∫
{dπ}W [{π}]

∏

α

π(Mα), (2.137)

with
∫

dhW (h) = 1, W (h) = W (−h), and with a (normalised) functional measure W [π] that

is only non-zero for functions π(M) that are themselves normalised according to
∑

M∈ZZ π(M) =

1. This ansatz meets the requirements L(−σ) = L(σ), L(0) = αc and
∑

M Q̃(M) = ec, and

is the most general form of the functions L(σ) and Q̃(M) that is invariant under all replica

permutations. The advantage of this second formulation of the theory is that it allows us to

work with a distribution W (h) of effective fields, instead of functional measures over distri-

butions, which have easier physical interpretations, and are more easy to solve numerically

from self-consistent equations.

We relegate to C.6 all the details of the derivation of the RS equations, based on the form

(2.137), the results of which can be summarised as follows. The RS functional measure W [π]

52



0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

c = 2

c = 1

c = 3

c = 4

αc2

T

W (h) 6= δ(h)
patterns cross talks

W (h) = δ(h)
perfect parallel retrieval

Figure 2.4: Transition lines (2.141) for c = 1, 2, 3, 4, in the (αc2, T ) plane, with T = β−1. The

distribution W (h) represents the statistics of the interfering fields among different patterns,

which are caused by increased connectivity in the graph G. IfW (h) = δ(h), spins are controlled

via signaling patterns that can act independently; we see that this is possible even above

the percolation threshold if the temperature (i.e. the signalling noise) is nonzero. Circles:

transition calculated via numerical solution of (2.140) for c = 1 (see section 2.3.7).

and the field distribution W (h) obey the following closed equations:

W (h) =
∫
{dπ}W [π]

〈〈
δ
[
h− τψ − 1

2β
log
(∑

M π(M)eβ(M2/2c+M(ψ+τ/c))

∑
M π(M)eβ(M2/2c+M(ψ−τ/c))

)]〉
ψ

〉
τ=±1

,(2.138)

W [π] = e−c
∑

k≥0

ck

k!
e−αck

∑

r≥0

(αc)r

r!

∫ ∞

−∞
dh1 . . . dhr

[∏

s≤r
W (hs)

] ∑

`1...`r≤k

×
∏

M

δ


π(M)−

〈
eβ
∑
s≤r hsσ`s δM,

∑
`≤k σ`

〉
σ1...σk〈

eβ
∑
s≤r hsσ`s

〉
σ1...σk


 . (2.139)

Both W (h) and W [π] are correctly normalised, W (h) = W (−h), and W [π] allows only for

functions π such that π(M) = π(−M) and
∑

M π(M) = 1. We can substitute the second

equation into the first and eliminate the functional measure W [π], leaving us with a compact

RS equation for the field distribution W (h) only:

W (h) = e−c
∑

k≥0

ck

k!
e−αck

∑

r≥0

(αc)r

r!

∫ ∞

−∞
dh1 . . . dhr

[∏

s≤r
W (hs)

] ∑

`1...`r≤k
(2.140)

×
〈〈
δ


h− τψ − 1

2β
log



〈
eβ(
∑
`≤kτ`)

2/2c+β(
∑
`≤kτ`)(ψ+τ/c)+β

∑
s≤r hsτ`s

〉
τ1...τk=±1〈

eβ(
∑
`≤kτ`)

2/2c+β(
∑
`≤kτ`)(ψ−τ/c)+β

∑
s≤r hsτ`s

〉
τ1...τk=±1





〉
ψ

〉
τ=±1

.
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We see that W (h) = δ(h) is a solution of (2.140) for any temperature; one easily confirms

that this is in fact the earlier state (2.115), recovered within the alternative formulation

of the theory. If we inspect continuous bifurcations of new solutions with moments mr =
∫

dh hrW (h) different from zero, we find (see C.7) a second order transition along the critical

surface in the (α, β, c)-space defined by

1 = αc2
∑

k≥0

e−c
ck

k!

{∫
Dz tanh(z

√
β/c+β/c) coshk+1(z

√
β/c+β/c)∫

Dz coshk+1(z
√
β/c+β/c)

}2

. (2.141)

We note that the right-hand side obeys 0 ≤ RHS ≤ αc2, with limβ→0 RHS = 0 and

limβ→∞RHS = αc2. Hence a transition at finite temperature Tc(α, c) = β−1
c (α, c) > 0

exists to a new state withW (h) 6= δ(h) as soon as αc2 > 1. The critical temperature becomes

zero when αc2 = 1, consistent with the percolation threshold [86] derived from the network

analysis. We show in C.8 that the critical surface (2.141) is indeed identical to the one found

in (C.26), within the approach involving functional distributions.

Finally, within the new formulation of the theory, the replica-symmetric field-conditioned

overlap distribution is found to be

P (M |ψ) = lim
n→0

∫
{dπ} W [π]

(∑
M ′ π(M ′)eβ(M ′2/2c+ψM ′)

)n−1
π(M)eβ(M2/2c+ψM)

∫
{dπ} W [π]

(∑
M ′ π(M ′)eβ(M ′2/2c+ψM ′)

)n

=
∫
{dπ}W [π]

{ π(M)eβ(M2/2c+ψM)

∑
M ′ π(M ′)eβ(M ′2/2c+ψM ′)

}
. (2.142)

Insertion of (2.139) allows us to eliminate the functional measure in favour of effective field

distributions:

P (M |ψ) = e−c
∑

k≥0

ck

k!
e−αck

∑

r≥0

(αc)r

r!

∫ ∞

−∞
dh1 . . . dhr

[∏

s≤r
W (hs)

] ∑

`1...`r≤k

×





〈
eβ
∑
s≤r hsσ`s δM,

∑
`≤k σ`

〉
σ1...σk

eβ(M2/2c+ψM)

∑
M ′
〈
eβ
∑
s≤r hsσ`s δM ′,

∑
`≤k σ`

〉
σ1...σk

eβ(M ′2/2c+ψM ′)





= e−c
∑

k≥0

ck

k!
e−αck

∑

r≥0

(αc)r

r!

∫ ∞

−∞
dh1 . . . dhr

[∏

s≤r
W (hs)

] ∑

`1...`r≤k

×





〈
δM,

∑
`≤k τ`

eβ(
∑
`≤k τ`)

2/2c+βψ
∑
`≤k τ`+β

∑
s≤r hsτ`s

〉
τ1...τk=±1〈

eβ(
∑
`≤k τ`)

2/2c+βψ
∑
`≤k τ`+β

∑
s≤r hsτ`s

〉
τ1...τk=±1



 .(2.143)

Again, we can rewrite this result (2.143) in the form (2.120), which is more useful to investigate

the system’s performance since it quantifies the statistics of overlaps relative to their maximum
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value k, with

P (M |k, ψ) = e−αck
∑

r≥0

(αc)r

r!

∫ ∞

−∞
dh1 . . . dhr

[∏

s≤r
W (hs)

] ∑

`1...`r≤k

×





〈
δM,

∑
`≤k τ`

eβ(
∑
`≤k τ`)

2/2c+βψ
∑
`≤k τ`+β

∑
s≤r hsτ`s

〉
τ1...τk=±1〈

eβ(
∑
`≤k τ`)

2/2c+βψ
∑
`≤k τ`+β

∑
s≤r hsτ`s

〉
τ1...τk=±1



 .(2.144)

The latter formula shows very clearly that h is to be interpreted as an interference field

among different patterns, which is caused by overlapping signalling in the bi-partite graph B
and leads to clique interactions in the effective H-H graph G. Fortunately, we see in Figure

2.4 that even above the percolation threshold αc2 = 1, and even in the interfering phase the

signalling performance of the system degrades only smoothly (see the section below).

2.3.7 Population dynamics calculation of the cross-talk field distribution

We solve numerically equation (2.140) for the interference field distribution W (h) with a

population dynamics algorithm [80], which is based on interpreting (2.140) as the fixed-point

equation of a stochastic process and simulating this process numerically. One observes that

(2.140) has the structural form

W (h) =
〈〈
δ [h− h(k, r,h, `, τ, ψ)]

〉〉
k,r,h,`,τ,ψ

, (2.145)

with the following set of random variables:

• k ∼ Poisson(c)

• r ∼ Poisson(αck)

• h = (h1, . . . , hr) : r i.i.d. random fields with probability density W (h)

• ` = (`1, . . . , `r) : r i.i.d. discrete random variables, distributed uniformly over {1, . . . , k}

• τ : dichotomic random variable, , distributed uniformly over {−1, 1}

• ψ : distributed according to P (ψ)

and with

h(k, r,h, `, τ, ψ) = τψ +
1

2β
log



〈
eβ(
∑
`≤kτ`)

2/2c+β(
∑
`≤kτ`)(ψ+τ/c)+β

∑
s≤r hsτ`s

〉
τ1...τk=±1〈

eβ(
∑
`≤kτ`)

2/2c+β(
∑
`≤kτ`)(ψ−τ/c)+β

∑
s≤r hsτ`s

〉
τ1...τk=±1


 .
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We approximateW (h) by the empirical field frequencies computed from a large number (i.e. a

population) of fields, which are made to evolve by repeated numerical iteration of a stochastic

map. We start by initialising S fields hs ∈ IR, with s = 1, . . . , S, randomly with uniform

probabilities over the interval [−hmax, hmax]. Their empirical distribution then represents the

zero-step approximation W0(h) of W (h). We then evolve the fields stochastically via the

following Markovian process, giving at each step n an empirical distribution Wn(h) which as

n increases given an increasingly precise approximation of the invariant measure W (h):

• choose randomly the variables k, r, `, τ, ψ according to their (known) probability distri-

butions

• choose randomly r fields h = h1, . . . , hr from the S fields available, i.e. draw r fields

from the probability distribution Wn−1(h) of the previous step

• compute h(k, r,h, `, τ, ψ)

• choose randomly one field from the set of the S available, and set its value to h(k, r,h, `, τ, ψ)

We iterate the procedure until convergence, checking every O(S2) steps the distance be-

tween different Wn(h), and speed up the computation of h(k, r,h, `, τ, ψ) by rewriting it as

h(k, r,h, `, τ, ψ) = τψ +
1

2β
log



∫

Dz
〈
ez
√
β/c

∑
`≤kτ`+β(

∑
`≤kτ`)(ψ+τ/c)+β

∑
s≤r hsτ`s

〉
τ1...τk=±1

∫
Dz

〈
ez
√
β/c

∑
`≤kτ`+β(

∑
`≤kτ`)(ψ−τ/c)+β

∑
s≤r hsτ`s

〉
τ1...τk=±1




= τψ +
1

2β
log

(∫
Dz

∏
`≤k cosh[z

√
β/c+ β(ψ+τ/c) + β

∑
s≤r hsδ``s ]∫

Dz
∏
`≤k cosh[z

√
β/c+ β(ψ−τ/c) + β

∑
s≤r hsδ``s ]

)
,(2.146)

which requires Gaussian integration instead of the average over {τ1, . . . , τk}. Having computed

W (h), we can build P (M |ψ) using equation (2.143). The latter can be rewritten as

P (M |ψ) =
〈〈〈δM,

∑
`≤k τ`

eβ(
∑
`≤k τ`)

2/2c+βψ
∑
`≤k τ`+β

∑
s≤r hsτ`s

〉
τ1...τk=±1〈

eβ(
∑
`≤k τ`)

2/2c+βψ
∑
`≤k τ`+β

∑
s≤r hsτ`s

〉
τ1...τk=±1

〉〉
k,r,h,`,ψ

=
〈〈〈δM,

∑
`≤k τ`

eβ(
∑
`≤k τ`)

2/2c+βψ
∑
`≤k τ`+β

∑
s≤r hsτ`s

〉
τ1...τk=±1

Z(k, r,h, `, ψ)

〉〉
k,r,h,`,ψ

,(2.147)

with Z(. . .) =
∫

Dz
∏
`≤k cosh[z

√
β
c +β(ψ−τ/c)+β

∑
s≤r hsδ``s ] as determined as in (2.146).

Hence we can carry out the ensemble average over the parameters {τ , k, r,h, `, ψ} in this last

expression as an arithmetic average over a large number L of samples drawn from their joint
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distribution ( we choose L = O(107)). The distribution (2.144) is handled in the same way,

and can be rewritten as

P (M |k, ψ) =
〈〈〈δM,

∑
`≤k τ`

eβ(
∑
`≤k τ`)

2/2c+βψ
∑
`≤k τ`+β

∑
s≤r hsτ`s

〉
τ1...τk=±1

Z(k, r,h, `, ψ)

〉〉
r,h,`,ψ

, (2.148)

i.e. upon simply omitting the averaging over k.

In the interest of transparancy and an intuitive understanding, it helps to identify the

physical meaning of the random variables involved in the above stochastic process. Given a

subsystem of k spins linked to a particular cytokine pattern (say pattern µ = 1, without loss

of generality), we may ask how many other patterns µ 6= 1 interfere with it. This number is

the cardinality of the set

R =
{
ξµi , i=1, . . . , N ; µ=2, . . . , αN : ξµi ξ

1
i 6= 0

}
. (2.149)

With each of the k spins (labelled by i, with ξ1
i 6= 0) correspond αN−1 cytokine variables

ξµi with µ > 1. Hence we have, for a set of k spins, k(αN−1) independent possibilities to

generate interfering cytokine signals, each nonzero with probability c/N . Thus, for N → ∞
the number of possible interferences is a Poissonian random variable with mean αck, which is

recognised to be the variable r. For each value of r we next ask on which of the k spins each

interference acts, i.e. which are the r indices i such that ξµi ξ
1
i 6= 0 for some µ > 1. Each i

refers to one of the k spins selected, so we can describe this situation by r random variables `s,

with s = 1, . . . , r, each distributed uniformly in {1, . . . , k}, with are recognised as the vector

`. The parameters k, r and ` considered so far depend only on the (quenched) structure of

the B-H network. By conditioning on these random variables we can write

P (M |ψ) =
∞∑

k=0

e−c
ck

k!

∞∑

r=0

e−αck
(αck)r

r!

k∑

`1,...,`r=1

k−rP (M |k, r, `, ψ)

=
〈〈 ∑

σ
δM,

∑k
`=1 ξ

1
`σ`
Z−1(k, r, `, ψ)e−βH(σ|k,r,`,ψ)

〉〉
k,r,`

. (2.150)

Inside the brackets we have the overlap M of a single pattern (µ = 1) with k non-null entries,

whose correlation with the other patterns is specified uniquely by the parameters (k, r, `).

We can write the effective Hamiltonian governing this k-spin subsystem by isolating in the

Hamiltonian (2.58) µ = 1 contribution:

Heff(σ) = −M2
1 (σ)/2c− ψM1(σ)−

k∑

i=1

σi
∑

µ>2

ξµi (Mµ(σ)/c+ ψµ). (2.151)
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Upon transforming τ` = ξ1
`σ`, and defining hµ` (τ ) = ξ1

` ξ
µ
` (Mµ/c+ψµ), and using the meaning

of the parameters r and `s, we arrive at a description involving r non zero fields hs(τ ), each

acting on a spin `s:

Heff(τ1, . . . , τk) = −(
∑

`≤k
τ`)2/2c− ψ

∑

`≤k
τ` −

∑

s≤r
hs(τ )τ`s . (2.152)

If we then regard each field hs(τ ) as a independent random field (conditional on (k, r, `)),

with probability distribution W (hs), we arrive at

P (M) =
〈〈∫

dh W (h)
〈
δM,

∑k
`=1 τ`

eβ(
∑
`≤k τ`)

2/2c+βψ
∑
`≤k τ`+β

∑
s≤r hsτ`s

Z(k, r, `, ψ)

〉
τ

〉〉
k,r,`

. (2.153)

This is exactly equation (2.143) obtained within the RS ansatz. Hence the parameters h in

(2.145) represent the effective fields induced by the interferences among the patterns. The

only difference between the rigorous RS derivation and the above heuristic one is that in

the former we effectively find W (h) =
∏
s≤rW (hs), i.e. the random fields are independent.

This may not always be the case: if we recall the definition of the r effective fields, viz.

hµ` (τ ) = ξ1
` ξ
µ
` (Mµ/c+ ψµ), we see that as soon as different patterns have more then one spin

in common, their interference fields will not be independent. One therefore expects that the

RS equation is no longer exact if the bi-partite network is not-tree like but contains loops.

Finally we note that in the absence of external fields, the effective fields take values in ZZ/c, so

that W (h) becomes a superposition of delta functions, consistently with numerical results in

Fig. 2.6. This allows in principle a rewriting of the self-consistency equation (2.140) in terms

of the amplitudes of such superposition, which are scalar parameters rather than distribution

and may be easier to find numerically.
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Figure 2.5: Widths (variances) m2 =
∫

dh W (h)h2 of the distribution of interference field,

shown as markers versus the inverse temperature β for different values of α. In all cases

c = 1. The values of m2 are calculated from the population dynamics solution of (2.145), and

are (modulo finite size fluctuations in population dynamics algorithm) in excellent agreement

with (2.141). The latter predicts that for the α-values considered and for c = 1 the widths

m2 should become nonzero at: βc = 0.6634 (for α = 1.75), βc = 0.5639 (for α = 2.12), and

βc = 0.4707 (for α = 2.75).
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Figure 2.6: The interference field distribution W (h) below the critical temperature and in

the absence of external fields, as calculated (approximately) via the population dynamics

algorithm, for c = 2, α = 2 and β = 6.2. Note that the support of W (h) is ZZ/c. One indeed

observes the weight of W (h) being concentrated on these points; due to the finite population

size in the algorithm (here S = 5000) one finds small nonzero values for h /∈ ZZ/c due to finite

size fluctuations.
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Figure 2.7: Left: degree-conditioned conditioned overlap distribution P (M |k, 0) in the under-

percolated regime, for k = 6, c = 1, and different β values (see legend), without external

fields. Solid lines: theoretical predictions. Markers: results of measuring the overlap statistics

in Monte-Carlo simulations of the spin system with Hamiltonian (2.53), with N = 3.104 spins.

Different symbols represent different values of α, namely α = 0.005 (bullets), α = 0.008

(squares) and α = 0.011 (triangles). The theory predicts that here P (M |k, 0) is independent

of α, which we find confirmed. Right panel: overlap distribution P (M |0) at zero field in

the under-percolated regime, for k = 6, c = 1 and α = 0.5, and different temperatures (see

legend). Note that M ∈ ZZ, so line segments are only guides to the eye.

2.3.8 Critical line, overlap distributions, and interference field distribution

First we use the population dynamics algorithm to validate the location of the critical line

(2.141). To do so we keep α fixed and compute W (h) for different values of the inverse

temperature β. From the solution we compute m2 =
∫

dh h2W (h), and determine for which

β-value it becomes nonzero (starting from the high temperature phase), i.e. where patterns

cross-talk sets in. The result is shown in Figure 2.5, which reveals excellent agreement between

the predicted bifurcation temperatures (2.141) and those obtained from population dynamics.

We also see that there is no evidence for discontinuous transitions. In Figure 2.4 we plotted

the bifurcation temperatures obtained via population dynamics versus αc2 (markers), together

with the full transition lines predicted by (2.141) and again see excellent agreement between

the two.
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Figure 2.8: Left panel: overlap distribution P (M |k) at zero field in the over-percolated regime,

for k = 6, c = 1 and β = 0.8, and different α values (see legend). Right: the same distribution

at β = 0.8, but now for k = 6, c = 3, and different α values (see legend). Note the different

vertical axis scales of the two panels. Solid lines: theoretical predictions, calculated via the

population dynamics method. Markers: results of measuring the overlap statistics in Monte-

Carlo simulations of the spin system with Hamiltonian (2.53), with N = 3.104. The theory

predicts that here P (M |k, 0) is no longer independent of α, which we find confirmed. Note

that M ∈ ZZ, so line segments are only guides to the eye.

In the under-percolated regime αc2 < 1, there is no possbility of a phase transition and the

only solution of (2.140) is W (h) = δ(h). Both equations (2.143,2.144) then lose their depen-

dence on α, and after some simple manipulations we recover our earlier results (2.120,2.121).

In Figure 2.7 we test our predictions for the overlap statistics against the results of numerical

(Monte-Carlo) simulations of the spin process defined by Hamiltonian (2.53), in the absence

of external fields. There is excellent agreement between theory and numerical experiment.

Comparison of P (M |k, 0) to P (M |0) shows that the former changes shape as the inverse

temperature β is increased from zero, from a single peak at M = 0 to two symmetric peaks,

showing that the system behaviour at high versus low noise levels is very different. In contrast,

P (M |0) has always a maximum in M = 0, due to the Poissonian distribution of k, and does

not capture the two different behaviours. Hence P (M |k, 0) is the most useful quantifier of

retrieval behavior, which from now on we will simply denote in the absence of external fields

as P (M |k).
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When αc2 > 1, and below the critical line defined by equation (2.141), the solution of

equation (2.140) in the absence of external fields will exhibit W (h) 6= δ(h), see Figure 2.6.

As a consequence, the effective Boltzmann factor governing the behavior of a set of k spins,

linked to a single pattern, acquires a term β
∑

s≤r hsτ`s (see equation (2.148)). This term

means that each subsystem is no longer isolated as in the underpercolated regime, but feels the

interference due to the other patterns in the form of effective random fields. Numerical results

for P (M |k) in the overpercolated regime, including comparisons between population dynamics

calculations and measurements taken in numerical similations (involving spin systems with

N = 3.104) are shown in Figure 2.8. Again we observe excellent agreement. Moreover, we

see that in the regime of patterns cross talks the system’s signalling preformance degrades

only gracefully; provided α is not yet too large, the overlap distribution maintains its bimodal

form.

2.4 High storage regime in a finite connectivity: cavity ap-

proach.

In the previous section, diluted associative networks have been studied via replica analysis, for

pattern-independent dilution. This setting only accounts for special structures of the under-

lying bipartite graph, with all degrees in each set drawn from the same Poisson distribution.

Here we adapt cavity (i.e. belief-propagation) methods to analyze the more general scenario

where degrees in the two sets of spins have arbitrary distributions, thus allowing for a sig-

nificantly broader range of bipartite structures, and corresponding marginalized associative

networks.

We consider an equilibrated system of N binary neurons σi = ±1 at temperature (fast

noise) T = 1/β, with Hamiltonian

H(σ|ξ) = −1
2

∑

i,j

P∑

µ

ξµi ξ
µ
j σiσj ,

where pattern entries {ξµi } are sparse (i.e. the number of non-zero entries of a pattern is

finite). We can then use a factor graph representation of the Boltzmann weight as
∏
µ Fµ,

with factors

Fµ = e(β/2)
∑
i,j∈O(µ) ξ

µ
i ξ
µ
j σiσj = 〈ez

∑
i∈O(µ) ξ

µ
i σi〉z, (2.154)

where O(µ) = {i : ξµi 6= 0} and z is a zero mean Gaussian variable with variance β. We
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denote by eµ = |O(µ)| the degree of a pattern µ and by di = |N(i)| the degree of a neuron

i, with N(i) = {µ : ξµi 6= 0}. We consider random graph ensembles with given degree

distributions P (d) and P (e), and nonzero ξ’s independently and identically distributed (i.i.d.).

Conservation of links demands N〈d〉 = P 〈e〉 where averages are taken over P (d) and P (e).

The message from factor µ to node j is the cavity distribution Pµ(σj) of σj when this is

coupled to factor µ only, which we can parametrize by an effective field ψµ→j . The message

from node j to factor µ is the cavity distribution P\µ(σj) of σj when coupled to all factors

except µ, which we can parametrize by the field φj→µ. The cavity equations are then [80]

Pµ(σj) = Tr{σk}Fµ(σj , {σk})
∏

k∈O(µ)\j

P\µ(σk), (2.155)

P\ν(σj) =
∏

µ∈N(j)\ν

Pµ(σj), (2.156)

Given the site factorization, conditional on z, of the factors (2.154), translating these to

equations for the effective fields is straightforward:

ψµ→j = tanh−1〈σj〉µ = (2.157)

tanh−1
〈sinh(zξµj )

∏
k∈M(µ)\j cosh(φk→µ + zξµk )〉z

〈cosh(zξµj )
∏
k∈M(µ)\j cosh(φk→µ + zξµk )〉z

,

φj→ν =
∑

µ∈N(j)\ν

ψµ→j . (2.158)

These equations, once iterated to convergence, are exact on tree graphs. They will also

become exact on graphs sampled from our ensemble in the thermodynamic limit, because the

sparsity of the ξµi makes the graphs locally tree-like, with typical loop lengths that diverge

(logarithmically) with N [55, 78].

For large N , we can describe the solution of the cavity equations on any fixed graph –

and hence also the quenched average over the graph ensemble and the nonzero pattern entries

ξµi – in terms of the distribution of messages or fields, Wψ(ψ) and Wφ(φ). Denoting by

Ψ({φk→µ}, {ξµk }, ξ
µ
j ) the r.h.s. of (2.157), convergence of the cavity iterations then implies the

self-consistency equation

Wψ(ψ) =
∑

e

eP (e)
〈e〉 〈δ

(
ψ −Ψ(φ1, ..., φe−1, ξ

1, ..., ξe)
)
〉,

where the average is over i.i.d. values of the (nonzero) ξ1, ..., ξd and over i.i.d. φ1, ..., φe−1
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Figure 2.9: Histograms Wψ(ψ) of the field ψ for α = 8, c = 2 and β−1 = 1, 2, as shown in

figure.

drawn from Wφ(φ), and similarly

Wφ(φ) =
∑

d

dP (d)
〈d〉 〈δ


φ−

d−1∑

µ=1

ψµ


〉,

where the average is over i.i.d. ψ1, ..., ψd−1 drawn from Wψ(ψ). Field distributions can then

be obtained numerically by population dynamics (PD) [80]. For symmetric ξ-distributions,

a delta function at the origin for both Wψ, Wφ is always a solution, and we find this to be

stable at high temperatures. At low T , the ψ can become large (see Fig. 2.9), hence also the

φ, and the spins σi, will typically be strongly polarized. The fields βξµi
∑

j∈O(µ)\i ξ
µ
j σj then

fluctuate little, and the ψ as suitable averages of these fields cluster near multiples of β (for

ξ = ±1).

Our main interest is in the retrieval properties, encoded in the fluctuating pattern overlaps

mµ =
∑

i∈M(µ) ξ
µ
i σi. Since the joint distribution of the σi inM(µ) is Fµ({σi})

∏
i∈M(µ) P\µ(σi),

the distribution of the pattern overlap mµ is

Tr{σi}
〈
δ(mµ −m) exp(

∑
i∈M(µ)(ξ

µ
i z + φi→µ)σi)

〉
z

Tr{σi}
〈

exp(
∑

i∈M(µ)(ξ
µ
i z + φi→µ)σi)

〉
z

. (2.159)
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Figure 2.10: P (m|e = 6) above (left) and crossing (middle and right) the critical line for

different values of β and α, respectively. Full red (dashed blue and dotted green) curves in

the middle and right panels refer to temperatures above (below) the critical line.

Defining this as P(m, {φi→µ}, {ξµi }), in the graph ensemble we have

P (m) =
∑

e

P (e) 〈P(m,φ1, . . . , φe, ξ1, . . . , ξe)〉 . (2.160)

The average here can be read as P (m|e), the overlap distribution for patterns with fixed degree

e. Whenever Wφ(φ) = δ(φ), P (m|e) is the overlap distribution for an “effectively isolated”

subsystem of size e: the neurons storing each pattern ξµ can retrieve this independently

of other patterns, even though the number of patterns is extensive. Retrieval within each

group of neurons is strongest at low temperatures (see Fig. 2.10 left) as expected on general

grounds. Once nonzero φ appear neuron groups are no longer independent: intuitively, cross-

talk interference between patterns emerges.

2.4.1 Bifurcation

When the “parallel processor” solution with zero cavity fields φ becomes unstable, a bifurcation

to a different stable solution occurs. Depending on the external parameters, this can be seen

in the first or second moment of the field distribution. Expanding for small fields we get

Ψ({φk→µ}, {ξµk }, ξ
µ
j ) ≈

∑

k∈O(µ)\j

φk→µ Ξ(ξµk , ξ
µ
j , {ξ

µ
l }),

with coefficients Ξ(ξµk , ξ
µ
j , {ξ

µ
l }) given by

〈sinh(zξµj ) sinh(zξµk )
∏
l∈O(µ)\{j,k} cosh(zξµl )〉z

〈∏l∈O(µ) cosh(zξµl )〉z
.
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The self-consistency relations for the field distributions Wψ and Wφ then show that as long

as the mean fields are small, they are related to leading order by

〈ψ〉 = 〈φ〉
∑

e

P (e)
e(e− 1)
〈e〉 〈Ξ(ξ1, . . . , ξe)〉, (2.161)

〈φ〉 = Bd〈ψ〉, (2.162)

where Bd =
∑

d P (d)d(d − 1)/〈d〉 is one of the two branching ratios of our locally tree-like

graphs, the other being Be =
∑

e P (e)e(e − 1)/〈e〉. If the means are zero then the onset of

nonzero fields is detected by the variances, which are related to leading order by

〈ψ2〉 = 〈φ2〉
∑

e

P (e)
e(e− 1)
〈e〉 〈Ξ2(ξ1, . . . , ξe)〉, (2.163)

〈φ2〉 = Bd〈ψ2〉. (2.164)

2.4.2 Symmetric pattern distributions

When the ξ are symmetrically distributed, then also the field distributions are always sym-

metric and there can be no instability from growing means; cf. (2.161). The bifurcation has

to result from the growth of the variances, which from (2.164) occurs at A = 1 with

A=Bd
∑

e

P (e)
e(e− 1)
〈e〉 〈Ξ2(ξ1, . . . , ξe)〉. (2.165)

This factorizes as A = BdAe(β) with the dependence on the noise and the distribution of the

e’s contained in the second factor Ae(β). For β → 0 the variance of z goes to zero and Ae(0) =

0. For β →∞, the z-averages are dominated by large values of z where sinh2(z) ≈ cosh2(z),

so Ae(∞) = Be. Hence there is no bifurcation when BdBe < 1, in agreement with the general

bipartite tree percolation condition [86]. For the case P (ξµi = ±1) = c/(2N) considered in the

previous section, the distributions of pattern degrees e and neuron degrees d are Poisson(c)

and Poisson(αc), respectively, so Bd = αc, Be = c and there is no bifurcation for αc2 < 1. The

network acts as a parallel processor here for any T because the bipartite network consists of

finite clusters of interacting spins in which there is no interference between different patterns.

At higher connectivity, the critical line defined by A = 1 indicates the temperature above

which this lack of interference persists even though the network now has a giant connected

component. Fig. 2.11 (left) compares theory to PD results, where we locate the transition as

the onset of nonzero second moments of the field distributions. The impact of the transition

on the overlap probability distribution of a pattern with fixed e can be seen from the PD
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results in Fig. 2.10 (middle and right panels). Crossing the transition line, parallel retrieval is

accomplished at low temperatures, but it degrades when α is increased (see shrinking peaks

in the middle panel), or c is increased, eventually fading away for sufficiently large α and c

(right panel).

One advantage of our present method is that we can easily investigate the parallel pro-

cessing capabilities of a bipartite graph with arbitrary degrees {eµ}. Here we have a pattern-

dependent dilution of the links P (ξ) ∝∏i,µ P (ξµi )
∏
µ δeµ,

∑
i|ξ
µ
i | with

P (ξµi ) =
eµ
2N

(δξµi ,1 + δξµi ,−1) + (1− eµ
N

)δξµi ,0 (2.166)

leading to P (d) = Poisson(α〈e〉) while P (e) = P−1
∑

µ δe,eµ . If we keep the mean degree fixed

at 〈e〉 = c, the critical point for β →∞ is found at

BdBe = αc(
〈
e2
〉
/c− 1) = α [c(c− 1) + Var(e)] = 1

while for large α one obtains for the critical line β−1
c (α) ≈ √α

√
c(c− 1) + Var(e). Similar

results are obtained with soft constraints eµ on the degrees, i.e. by dropping the delta function

constraint in P (ξ) before (2.166): one now finds BdBe = α(c2 + Var(e)) and β−1
c (α) ≈

√
α
√
c2 + Var(e). In both cases, the region where parallel retrieval is obtained is larger for

degree distributions with smaller variance; the optimal situation occurs when all patterns have

exactly the same number c of non zero entries (Fig. 2.11, right): notably, scale free networks

(best performing for information spreading [86]) are not optimal for information processing.

2.4.3 Non-symmetric pattern distributions

To introduce a degree of asymmetry a ∈ [−1,+1] in the pattern distribution, we next take

for the nonzero pattern entries P (ξµi = ±1) = (1± a)/2. Evaluating the ξ-average 〈Ξ(. . .)〉 in
(2.161), the condition for a transition to nonzero field means then becomes

1 = a2Bd
∑

e

P (e)
e(e− 1)
〈e〉

〈
sinh2(z) coshe−2(z)

〉
z

〈coshe(z)〉z
(2.167)

At zero temperature the bifurcation occurs when BdBe = a−2; when a tends to zero the

transition point goes to infinity and we retrieve the symmetric case. Beyond the bifurcation,

non-centered field probability distributions (see Fig. 2.12) produce a non-zero global mag-

netization typical of ferromagnetic systems. One has to bear in mind, however, that even

with a bias in the pattern entry distribution a bifurcation to growing field variances at zero
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Figure 2.11: Transition lines (theory, with symbols from PD numerics) for different pattern

degree distributions. Left: e ∼ Poisson(c=1). Right: changing P (e) at constant 〈e〉 = 3;

P (e) = δe,3 (blue); P (e) = (δe,2 + δe,3 + δe,4)/3 (green); P (e) = (δe,2 + δe,4)/2 (pink); P (e)

power law as in preferential attachment graphs, with 〈e2〉 = 21.66 (orange).
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Figure 2.12: Histogram of the fields ψ in the ferromagnetic region, for c = 1, β = 1 and

different levels of bias: a = 0.9 with α = 9 (left) and a = 1 with α = 8 (right). Field

distributions are obtained by PD starting from positive fields, to break the gauge symmetry.

For a = 1 (right) there are only positive fields as expected: when all patterns have positive

entries there are no conflicting signals, even above the percolation threshold.
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Figure 2.13: Transition lines to growing field means (theory, green) and variances (theory,

red), showing a good match to numerical PD data (dots); here c = 1 and pattern bias

a = 1, 0.95, 0.9 from left to right. The first line to be crossed from high T = β−1 gives the

physical transition.

means can occur; the physical bifurcation is the one occurring first on lowering T . Numerical

evaluation shows that both bifurcation temperatures increase with α. For large α one can

then resort to a low-β expansion:
〈
sinh2(z) coshe−2(z)

〉
≈
〈
z2
〉

= β, 〈coshe(z)〉 ≈ 1. This

gives for the growing mean bifurcation condition 1 ≈ BdBeβa2 while for the growing variance

bifurcation one gets 1 ≈ BdBeβ2. For Poisson graphs BdBe = αc2, giving the transition lines

β−1
c,1 (α) ≈ c2a2α and β−1

c,2 (α) ≈ c
√
α for large α. In the presence of a nonzero pattern bias a

these cross at α = 1/(ca2), with the bifurcation to growing means occurring first for larger α.

The existence of this crossing is confirmed by numerical evaluation of (2.165) and (2.167) for

finite α in Fig. 2.13.

Summarizing, we have developed a cavity/belief-propagation framework to analyze finitely

connected bipartite spin glasses, with arbitrary structure (arbitrary pattern degree distribu-

tions ) and an arbitrary degree of asymmetry in the link distribution, finding that:

-Extensive multitasking features appear quite naturally in these systems.

-A transition surface separates the region in (α, β, c)-space where the network is capable of

parallel extensive retrieval, from the region where pattern interference affects the network

performance as a parallel processor.

-Homogeneous degree distributions in the bipartite network favors parallel retrieval.

-A biased distribution of the sparse pattern entries can yield a macroscopic net magnetization
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and shrinks the region of parameter space where no pattern cross-talk occurs. However, in

this ferromagnetic region, pattern cross-talk may result in a constructive interference between

patterns, which does not disrupt the parallel retrieval performed by the network.
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Chapter 3

Hierarchical Hopfield model

While the Hopfield model acts as the harmonic oscillator for serial processing, once the sys-

tem is allowed to relax, it spontaneously retrieves one of the stored patterns (in suitably

regions of the tunable parameters, e.g. low noise level and not-too-high storage load), the

diluted Hopfield models, as a generalization of this paradigm, appear as candidates mean-field

multitasking networks able to perform spontaneously parallel retrieval, i.e. to retrieve more

patterns at once (without falling into spurious states). While these two networks perform

in a crucial different way (serial versus parallel), they share the same mean-field statistical

mechanics approximation: each unit interacts with all the others it is linked to with the

same strength, unaware of any underlying topology, namely independently of the actual pair-

wise distance among the neurons themselves. This limitation has always been considered as

something to remove as soon as mathematical improvements of available techniques would

allow.

Infact, in the last decade, extensive research on complexity in networks has evidenced

(among many results [87, 100]) the widespread of modular structures and the importance

of quasi-independent communities in many research areas such as neuroscience [38, 72, 101],

biochemistry [58] and genetics [44], just to cite a few. In particular, the modular, hierarchical

architecture of cortical neural networks has nowadays been analyzed in depths [82], yet the

beauty revealed by this investigation is not captured by the statistical mechanics of neural

networks, nor standard ones (i.e. performing single pattern retrieval) [70, 15] neither diluted

ones (performing multiple patterns retrieval) [4, 47], for the lacking of a proper definition of

metric distance among neurons.

Far from Artificial Intelligence, but exactly to this task (i.e. bypassing mean field lim-
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itations), a renewal interest is nowadays raised for hierarchical models, namely models in

which the closer the spins the stronger their links (Fig. 3.1). Starting from the pioneering

Dyson work [53], where the hierarchical ferromagnet was introduced and its phase transi-

tion (splitting an ergodic region from a ferromagnetic one) rigorously proven, recently its

extensions to spin-glasses have also been investigated [41, 71, 43, 18, 91, 48, 19]. Although

an analytical solution is still not available, giant step forward toward a deep comprehension

of the hierarchical statistical mechanics have been obtained [42, 40, 56, 76, 77, 83, 84, 85].

Here we investigate the retrieval capabilities of an Hopfield model embedded in a hiararchical

structure. Following [10, 11, 12], we start studying the Dyson Hierarchical model (DHM) and

we show that, as soon as ergodicity is broken, beyond the pure ferromagnetic state (largely

discussed in the past, see e.g., [57, 32]), a number of metastable states suddenly appear and

become stable in the thermodynamic limit. The emergence of such states stems from the

weak ties connecting distant neurons, which, in the thermodynamic limit, effectively get split

into detached modules. As a result, if the latter are initialized with opposite magnetizations,

they remain stable.

This is a crucial point because, once implemented the Hebbian prescription [70, 15] to

account for multiple pattern storage, it allows proving that the system not only is able to

retrieve any single pattern at a time as a standard Hopfield model, but its communities can

perform autonomously, hence making the simultaneous retrieval of multiple patterns feasible

too. We stress that this feature is essentially due to the notion of metric the system is endowed

with, differently from the multiple retrieval performed by the mean-field multitasking networks

which require blank pattern entries [4, 3, 5, 47]. Therefore, the hierarchical neural network is

able to perform both as a serial processor and as a multitasking processor.

3.1 Analysis of the Dyson hierarchical model

The Dyson Hierarchical Model (DHM) is a system composed -at the microscopic level- by

2k+1 Ising spins σi = ±1, with i = 1, ..., 2k+1 embedded in a hierarchical topology. The

Hamiltonian capturing the model is recursively introduced by the following

Definition 3.1.1. The Hamiltonian of Dyson’s Hierarchical Model (DHM) is defined by

Hk+1(~σ|J, ρ) = Hk( ~σ1) +Hk( ~σ2)− J

22ρ(k+1)

2k+1∑

i<j=1

σiσj , (3.1)
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Figure 3.1: Schematic representation of the hierarchical topology where the associative net-

work insists. Green spots represent Ising neurons (N = 16 in this shapshot) while links are

drawn with different thickness mimicking various interaction strengths: The thicker the line,

the stronger the link.

where J > 0 and ρ ∈ (1/2, 1) are numbers tuning the interaction strength. Clearly ~σ1 ≡
{σi}1≤i≤2k , ~σ2 ≡ {σj}2k+1≤j≤2k+1 and H0[σ] = 0.

Thus, in this model, ρ triggers the decay of the interaction with the distance among spins,

while J uniformly rules the overall intensity of the couplings. Note that this model is explicitly

a non-mean-field model as the distance di,j between two spins i, j ranges in 0 and k (see

Fig.3.1). Indeed, it is possible to re-write the Hamiltonian (3.1) in terms of the di,j as

Hk[{σ1...σ2k}] = −
∑

i<j

σiσjJij (3.2)

Jij =
k∑

l=di,j

(
J

22ρl

)
= J(dij , k, ρ, J) = J

4ρ−di,jρ − 4−kρ

4ρ − 1
. (3.3)

Once the Hamiltonian is given (and we refer mainly to the form (3.1)), it is possible to

introduce the partition function Zk+1(β, J, ρ) at finite volume k + 1 as

Zk+1(β, J, ρ) =
2k+1∑

~σ

exp [−βHk+1(~σ|J, ρ)] , (3.4)

and the related free energy fk+1(β, J, ρ, h), namely the intensive logarithm of the partition
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function, as

fk+1(β, J, ρ) =
1

2k+1
log
∑

~σ

exp


−βHk+1(~σ) + h

2k+1∑

i=1

σi


 . (3.5)

We are interested in an explicit expression of the infinite volume limit of the intensive free

energy, defined as

f(β, J, ρ) = lim
k→∞

fk+1(β, J, ρ),

in terms of suitably introduced magnetizations. To this task we introduce the global magne-

tization m, defined as the limit m = limk→∞mk+1 where

mk+1 =
1

2k+1

2k+1∑

i

σi, (3.6)

and, recursively and with a little abuse of notation, the k magnetizations ma, ...,mk level by

level (over k levels and starting to defined them from the largest bulk), as the same k → ∞
limit of the following quantities (we write explicitly only the two upper magnetizations related

to the two main clusters the system reduces to whenever JK → 0):

mleft =
1
2k

2k∑

i=1

σi, mright =
1
2k

2k+1∑

i=2k+1

σi. (3.7)

As a last point, thermodynamical averages will be denoted by the brackets 〈·〉, such that

〈mk+1(β, J, ρ)〉 =
∑

~σmk+1e
−βHk+1(~σ|J,ρ)

Zk+1(β, J, ρ)
, (3.8)

and clearly 〈m(β, J, ρ)〉 = limk→∞〈mk+1(β, J, ρ)〉.

3.1.1 The thermodynamic limit

The existence of the thermodynamic limit for the free energy of the DHM has been achieved

a long time ago by Gallavotti and Miracle-Sole [57]. We exploit here a different interpolating

scheme with the pedagogical aim of highlighting the technique more than the result itself as

it will then be used to prove the existence of the thermodynamic limit for the hierarchical

Hopfield network. The main idea is that, since the interaction is ferromagnetic, the free energy

is monotone in k, with the introduction of new levels of positive interactions.

Theorem 3.1.2. The thermodynamic limit of the DHM free energy does exist and we call

lim
k→∞

fk+1(β, J, ρ) = f(β, J, ρ).
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Proof. To prove this statement let us introduce a real scalar parameter t ∈ [0, 1] and the

following interpolating function

Φk+1,t(β) =
1

2k+1
log
∑

~σ

exp(β(−Hk( ~σ1)−Hk( ~σ2) +
tJ

2
2(k+1)2(k+1)(1−2ρ)m2

k+1(~σ)), (3.9)

with mk+1 = 1
2k+1

∑2k+1

l=1 σl, such that

Φk+1,1 = fk+1, (3.10)

Φk+1,0 = fk, (3.11)

and

0 ≤ dΦk+1,t

dt
=

〈
β

1
2k+1

2(k+1)2(k+1)(1−2ρ)J

2
m2
k+1(~σ)

〉

t

≤ βJ2(k+1)(1−2ρ)

2
. (3.12)

Since

Φk+1,1(h) = Φk+1,0(h) +
∫ 1

0

dΦk+1,t

dt
dt,

fk+1 ≥ fk (the sequence is non-decreasing), thus

fk+1(β, J, ρ) ≤ fk(β, J, ρ) +
βJ

2
2(k+1)(1−2ρ). (3.13)

Iterating this argument over the levels we obtain

fk+1(β, J, ρ) ≤ f0(β, J, ρ) +
βJ

2

k+1∑

l=1

2l(1−2ρ). (3.14)

In the limit of k →∞
f ≤ f0 +

βJ

2

∞∑

l=1

2l(1−2ρ). (3.15)

The series on the right of the above inequality converges, since ρ > 1
2 , hence

f(β, J, ρ) ≤ f0(β, J, ρ) +
βJ

2
1

1− 2(2ρ−1)
. (3.16)

The sequence fk(β, J, ρ) is bounded and non-decreasing, so it admits a well defined limit

for k →∞.
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3.1.2 The mean-field scenario

In this Section we investigate the equilibrium states of the Dyson model at the mean-field

level, in particular we check the existence and the stability of two test-states: the (standard)

ferromagnetic state (with all the spin aligned, hence mleft = mright) and the simplest mixed

state, namely a state where all the left spins (that is the first 1, ..., 2k spins) are aligned each

other and opposite to the right spins (that is the remaining 2k + 1, ..., 2k+1 spins), which -in

turn- are aligned each other too (hence mleft = −mright).

Definition 3.1.3. Once considered a real scalar parameter t ∈ [0, 1], we introduce the follow-

ing interpolating Hamiltonian

Hk+1,t(~σ) = − Jt

22ρ(k+1)

2k+1∑

i>j=1

σiσj − (1− t)mJ2(k+1)(1−2ρ)
2k+1∑

i=1

σi +Hk( ~σ1) +Hk( ~σ2), (3.17)

such that for t = 1 the original system is recovered, while at t = 0 the two body interaction

is replaced by an effective but tractable one-body term. The possible presence of an external

magnetic field can be accounted simply by adding to the Hamiltonian a term ∝ h
∑2k+1

i σi,

with h ∈ IR.

This prescription allows defining an extended partition function as

Zk+1,t(h, β, J, ρ) =
∑

~σ

exp{−β[Hk+1,t(~σ) + h

2k+1∑

i=1

σi]}, (3.18)

where the subscript t stresses its interpolative nature, and, analogously,

Φk+1,t(h, β, J, ρ) =
1

2k+1
logZk+1,t(h, β, J, ρ). (3.19)

Since

Φk+1,0(h, β, J, ρ) = Φk,1(h+mJ2(k+1)(1−2ρ), β, J, ρ), (3.20)

as shown in [40], (discarding the dependence of Φ by β, J, ρ for simplicity) through a long

but straightforward calculation, we arrive to

Φk+1,1(h) = Φk+1,0(h)− βJ

2
(2(k+1)(1−2ρ)m2 + 2−2(k+1)ρ) +

βJ

2
2(k+1)(1−2ρ)

〈
(mk+1(~σ)−m)2

〉
t

≥ Φk,1(h+ Jm2(k+1)(1−2ρ))− βJ

2
(2(k+1)(1−2ρ)m2 + 2−2(k+1)ρ). (3.21)

Note that, in the last passage, we neglected level by level the source of order parameter’s

fluctuations
〈
(mk+1(~σ)−m)2

〉
t
-which is positive definite- thus we obtained a bound for the
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free energy.

For the seek of simplicity we extended the meaning of the brackets to account also for the in-

terpolating structure coded in the Boltzmannfaktor of eq.(3.18), by adding to them a subscript

t, namely 〈·〉 → 〈·〉t.
In order to start investigating non-standard stabilities, note further that Φk+1,0(h) =

Φk,1(h + mJ2(k+1)(1−2ρ)) but in principle we can have also two different contributions from

the two groups of 2k spins (left and right) thus we should write more generally

Φk+1,0(h) =
1
2

[
Φ1
k,1(h+mJ2(k+1)(1−2ρ)) + Φ2

k,1(h+mJ2(k+1)(1−2ρ))
]
. (3.22)

Now let us assume the Amit perspective [15] and suppose that these two subsystems have

different magnetizazions mleft = m1 and mright = m2 (equal in modulus but opposite in sign,

i.e. m1 = −m2): this observation implies that, starting from the k-th level, we can iterate

the interpolating procedure in parallel on the two clusters using respectively m1 and m2 as

trial parameters. Via this route we obtain

Φk+1,1(h) ≥ 1
2

Φ0,1

{
h+ J

[
k∑

l=1

2l(1−2ρ)m1 + 2(k+1)(1−2ρ)m

]}

+
1
2

Φ0,1

{
h+ J

[
k∑

l=1

2l(1−2ρ)m2 + 2(k+1)(1−2ρ)m

]}

− βJ

2

[
2(k+1)(1−2ρ)m2 +

k+1∑

l=1

2−2lρ

]
− βJ

2

k∑

l=1

2l(1−2ρ)

(
m2

1 +m2
2

2

)
, (3.23)

that is

fk+1(h, β, J, ρ) ≥ log 2 +
1
2

{
log cosh

[
βh+ βJ

(
m1

k∑

l=1

2l(1−2ρ) + 2(k+1)(1−2ρ)m

)]}
+

+
1
2

{
log cosh

[
βh+ βJ

(
m2

k∑

l=1

2l(1−2ρ) + 2(k+1)(1−2ρ)m

)]}
+

− βJ

2

[
2(k+1)(1−2ρ)m2 +

k+1∑

l=1

2−2lρ

]
− βJ

2

k∑

l=1

2l(1−2ρ)

(
m2

1 +m2
2

2

)

= f(k,m,m1,m2|h, β, J, ρ). (3.24)

Therefore, we have that fk+1(h, β, J, ρ) ≥ supm,m1,m2
f(k,m,m1,m2|h, β, J, ρ) and we need

to evaluate the optimal order parameters in order to have the best free energy estimate.

Taking the derivatives of the free energy with respect to m, m1 and m2 we obtain the self
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consistent equations holding at the extremal points of f(k,m,m1,m2|h, β, J, ρ), which read

as 



m1 = tanh
[
βh+ βJ

(
m1
∑k

l=1 2l(1−2ρ) + 2(k+1)(1−2ρ)m
)]
,

m2 = tanh
[
βh+ βJ

(
m2
∑k

l=1 2l(1−2ρ) + 2(k+1)(1−2ρ)m
)]
,

m = m1+m2
2 ,

where the third equation is only a linear combination of m1 and m2 and it simply states that

the global magnetization is the average of the ones of the two main clusters.

It is easy to see that, at zero external field h = 0, the Pure solution m1 = m2 = m = mP ,

where the whole system has a non zero magnetization, and the Antiparallel (meta-stable) one

mA = m1 = −m2 andm = 0, where the system has two clusters with opposite magnetizations

and no global magnetization, both exist.

Clearly, according to the value of the temperature, we can have a paramagnetic solution

(mP = mA = 0), or two gauge symmetric solutions for each of the two possible states

(±mP ,±mA). Taking the thermodynamic limit we get the following

Theorem 3.1.4. The mean-field bound for the DHM free energy associated to the meta-stable

state reads as

f(h, β, J, ρ) ≥ sup
m1,m2,m

lim
k→∞

f(k,m,m1,m2)

= sup
m1,m2

log 2 +
1
2

log cosh(βh+ βJC2ρ−1m1)

+
1
2

log cosh((βh+ βJC2ρ−1m2)− βJC2ρ

2
− βJC2ρ−1

2
(
m2

1 +m2
2

2
),(3.25)

where Cy = 2−y

1−2−y . The mean field bound for the DHM free energy associated to the ferro-

magnetic state can be obtained again simply by identifying m1 = m2 = m.

In the thermodynamic limit, the last level of interaction (the largest in number of links

but the weakest as for their intensity), that would tend to keep m1 and m2 aligned, vanishes.

Thus the system effectively behaves just as the sum of two non interacting subsystems with

independent magnetizations satisfying the following

Proposition 3.1.5. The mixture state of the DHM has two independent order parameters,

one for each larger cluster, whose self-consistencies read as

m1,2 = tanh (βh+ βJC2ρ−1m1,2) . (3.26)
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One step forward, if we want to find out the critical value βc that breaks ergodicity, we

can expand them for k →∞, and for h = 0, hence obtaining, in the limit m1,2 → 0:





m1 ∼ βJm1
21−2ρ

1−21−2ρ +O(m3
1),

m2 ∼ βJm2
21−2ρ

1−21−2ρ +O(m3
2),





such that we can write the next

Corollary 3.1.6. Mean-field criticality in the DHM has the classical critical exponent one

half and critical temperature βMF
c given by

βMF
c =

1− 21−2ρ

J21−2ρ
. (3.27)

One may still debate however that, while the intensity of the upper links is negligible, it

may still collapse the state of one cluster to the other (thus destroying metastability), as for

instance happens when we use a vanishing external field in a critical mean-field ferromagnet

to select the phase by hand. In the appendix D we give a detailed explanation, and a rigorous

proof, that this is not the case here: The DHM has links too evanescent to drive all the spins

to converge always to the same sign and mixture states are preserved.

3.1.3 The not-mean-field scenario

In this Section we bypass the mean-field limitations and show that the outlined scenario is

robust even beyond the mean-field picture. We stress that it is not a rigorous solution of

the free energy, but rather a more stringent (with respect to the mean-field counterpart)

analytical bound supported by extensive numerical simulations. In particular, we exploit

the interpolative technology introduced in [40] to take into account (at least a) part of the

fluctuations of the order parameters (thus improving the previous description) as, in models

beyond mean-field, the magnetization is no longer self-averaging and its fluctuations can not

be neglected. Let us start investigating the improved bound with the following

Definition 3.1.7. Once introduced two suitable real parameters t, x, the interpolating Hamil-

tonian that we are going to consider to bypass the mean-field bound has the form

Hk+1,t(~σ) = −tu(~σ)− (1− t)v(~σ) +Hk( ~σ1) +Hk( ~σ2), (3.28)
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Figure 3.2: Behavior of the magnetizations for the Dyson model within the non-mean-field

scenario. Left panel: Pure state (serial processing). Right panel: Mixture state (parallel

processing). Note that the difference in energy among the pure state and the mixture state

scales as ∆E ∝ 2(k+1)·(1−2ρ), thus -in the thermodynamic limit- the parallel state becomes

effectively stable.

with

u(~σ) =
J

22ρ(k+1)

2(k+1)∑

i>j=1

σiσj +
xJ

2 · 22ρ(k+1)

2k+1∑

i,j=1

(σi −m)(σj −m),

v(~σ) =
J(1 + x)

2 · 22ρ(k+1)




2k∑

i,j=1

(σi −m)(σj −m) +
2k+1∑

i,j=2k+1

(σi −m)(σj −m)


+mJ2(k+1)(1−2ρ)

2k+1∑

i=1

σi,

where x ≥ 0 accounts for fluctuation resorption and 0 ≤ t ≤ 1 plays as before.

The associated partition function and free energy are, respectively,

Zk+1,t(x, h) =
∑

~σ

exp



−β


Hk+1,t(~σ) + h

2k+1∑

i=1

σi





 , (3.29)

Φk+1,t(x, h) =
1

2k+1
logZk+1,t(x, h). (3.30)

The procedure that yields to the non-mean-field bound for the free energy permits to obtain

(see [40]) the following expression for the pure ferromagnetic case (where again we omitted

the dependence by β, J, ρ for simplicity)

fk+1(h, β, J, ρ) ≥ Φk,1(
1

22ρ
, h+m2(k+1)(1−2ρ))− βJ

2
(2(k+1)(1−2ρ)m2 + 2−2ρ(k+1)). (3.31)
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However, as shown for the previous bound, let us now suppose that the system is split in two

parts, with two different magnetizations mleft = m1 and mright = m2: resuming the same

lines of reasoning of the previous Section, we obtain

Φk,1(
1

22ρ
, h+m2(k+1)(1−2ρ)) =

1
2

Φ1
k,1(

1
22ρ

, h+m2(k+1)(1−2ρ)) +
1
2

Φ2
k,1(

1
22ρ

, h+m2(k+1)(1−2ρ)).

(3.32)

From this point we can iterate the previous scheme point by point up to the last level of the

hierarchy using as trial order parameter m1,2 for Φ1,2, respectively. As a consequence, formula

(3.31), derived within the ansatz of a pure ferromagnetic state, is generalized by the following

expression

fk+1(h, β, J, ρ) ≥ 1
2

Φ0,1(
k+1∑

l=1

2−2lρ, h+ Jm1

k∑

l=1

2l(1−2ρ) +mJ2(k+1)(1−2ρ)) +

+
1
2

Φ0,1(
k+1∑

l=1

2−2lρ, h+ Jm2

k∑

l=1

2l(1−2ρ) +mJ2(k+1)(1−2ρ)) +

−βJ
2

k∑

l=1

2l(1−2ρ)(
m2

1 +m2
2

2
)− βJ

2

k+1∑

l=1

2−2lρ − βJ

2
2(k+1)(1−2ρ)m2.

An explicit representation for Φ0,1 reads as

Φ0,1(
k+1∑

l=1

2−2lρ, h+ Jm1

k∑

l=1

2l(1−2ρ) +mJ2(k+1)(1−2ρ)) = ln 2 + (3.33)

+
βJ

2
(1 +m2

1)
k+1∑

l=1

2−2lρ + log cosh

{
βh+ βmJ2(k+1)(1−2ρ) + βm1J

[
k∑

l=1

2l(1−2ρ) −
k+1∑

l=1

2−2lρ

]}
,(3.34)

in such a way that

fk+1 ≥ log 2 +
1
2

log cosh

{
βh+ βmJ2(k+1)(1−2ρ) + βm1J

[
k∑

l=1

2l(1−2ρ) −
k+1∑

l=1

2−2lρ

]}
+

+
1
2

log cosh

{
βh+ βmJ2(k+1)(1−2ρ) + βm2J

[
k∑

l=1

2l(1−2ρ) −
k+1∑

l=1

2−2lρ

]}
+

− βJ

2

[
k∑

l=1

2l(1−2ρ) −
k+1∑

l=1

2−2lρ

](
m2

1 +m2
2

2

)
+

− βJ

2
2(k+1)(1−2ρ)m2. (3.35)

Summarizing, in the thermodynamic limit one has the following
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Theorem 3.1.8. The non-mean-field bound for the DHM’s free energy associated to the mix-

ture state reads as

f(h, β, J, ρ) ≥ sup
m1,m2

{
log 2 +

1
2

log cosh [βh+ βm1J(C2ρ−1 − C2ρ)] + (3.36)

+
1
2

log cosh [βh+ βm2J(C2ρ−1 − C2ρ)]−
βJ

2
(C2ρ−1 − C2ρ)

(
m2

1 +m2
2

2

)}
,

where Cy = 2−y

1−2−y .

Proposition 3.1.9. Even beyond the mean-field level of description, the mixture state of the

DHM is described by two independent order parameters, one for each larger cluster, whose

self-consistencies read as

m1,2 = tanh(βh+ βJm1,2(C2ρ−1 − C2ρ)). (3.37)

As for the MF approximation, we are going to find the critical temperature βc; considering

the system at zero external field h = 0, thus writing




m1 ∼ βJm1( 1
22ρ−1−1

− 1
22ρ−2−2ρ ) +O(m3

1),

m2 ∼ βJm2( 1
22ρ−1−1

− 1
22ρ−2−2ρ ) +O(m3

2),

so to get the following

Corollary 3.1.10. This non-mean-field criticality, in the DHM, has the classical exponent

too but a different critical temperature βNMF
c given by the following formula:

βNMF
c =

(22ρ − 1)(1− 21−2ρ)
J

. (3.38)

3.2 Analysis of the Hopfield hierarchical model

As we saw in the previous Section, the Dyson model has a rich variety of states, whit the

same free energy in the thermodynamic limit. Now we want to apply the analysis previously

outlined and the ideas that stemmed from the related findings to a Hierarchical Hopfield

Model.

To this task we need to introduce, beyond 2k+1 dichotomic spins/neurons, also p quenched

patterns ξµ, µ ∈ (1, ..., p), that do not participate in thermalization: These are vectors of

length 2k+1, whose entries are extracted once for all from centered and symmetrical i.i.d. as

P (ξµi ) =
1
2
δ(ξµi − 1) +

1
2
δ(ξµi + 1). (3.39)
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Mirroring the previous Section, the Hamiltonian of the hierarchical Hopfield model is as

well defined recursively by the following

Definition 3.2.1. The Hamiltionian of Hierarchical Hopfield model (HHM) is defined by

Hk+1(~σ) = Hk( ~σ1) +Hk( ~σ2)− 1
2

1
22ρ(k+1)

p∑

µ=1

2k+1∑

i,j=1

ξµi ξ
µ
j σiσj (3.40)

with H0(σ) = 0; ρ ∈ (1/2, 1) is a number tuning the interaction strength with the neuron’s

distance, and p is the number of stored patterns. Accounting for the presence of external

stimuli can be included simply within a one-body additional term in the Hamiltonian as ∝
hµ
∑2k+1

i ξµi σi, and a survey overall the stimuli is accomplished summing over µ ∈ (1, ..., p)

all the hµ.

Even in this context, we can again write the Hamiltonian of the HHM in terms of a

distance di,j between the spin pair (i, j) obtaining

Hk[{σ1...σ2k}] = −
∑

i<j

σiσj




k∑

l=di,j

(∑P
µ=1 ξ

µ
i ξ

µ
j

22ρl

)
 = −

∑

i<j

σiσj J̃ij , (3.41)

J̃ij =
k∑

l=di,j

(∑P
µ=1 ξ

µ
i ξ

µ
j

22ρl

)
= J(di,j , k, ρ)

P∑

µ=1

ξµi ξ
µ
j (3.42)

where, the Hebbian kernel on a hierarchical topology becomes modified by the distance-

dependent weight

J(di,j , k, ρ) =
4ρ−di,jρ − 4−kρ

4ρ − 1
· . (3.43)

Definition 3.2.2. We introduce the Mattis magnetizations (or Mattis overlaps), over the

whole system, as

mµ(~σ) =
1

2k+1

2k+1∑

i=1

ξµi σi. (3.44)

The definition can be extended trivially to the inner clusters restricting properly the sum over

the spins, e.g. dealing with the two larger sub-clusters as before we have

mµ
left =

1
2k

2k∑

i=1

ξµi σi, mµ
right =

1
2k

2k+1∑

j=2k+1

ξµj σj . (3.45)
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3.2.1 The thermodynamic limit

As for the previous investigation, at first we want to prove that the model is well defined,

namely that the thermodynamic limit for the free energy exists. To this task we have the

following

Theorem 3.2.3. The thermodynamic limit of the HHM’s free energy exists and we call

lim
k→∞

fk+1(β, p, ρ) = f(β, p, ρ).

Let us write the Hamiltonian as

Hk+1(~σ) = Hk( ~σ1) +Hk( ~σ2)− 1
2

2(k+1)2(k+1)(1−2ρ)
p∑

µ=1

(mk+1
µ (~σ))2,

and let us consider the following interpolation, where again -for the sake of simplicity- hereafter

we stress the dependence by the external fields {hµ} only and use the symbol Eξ to denote

averaging over the quenched patterns:

Φk+1,t({hµ}) = (3.46)

=
1

2k+1
Eξ log

∑

~σ

exp



β


−Hk( ~σ1)−Hk( ~σ2) + t

1
2

2(k+1)2(k+1)(1−2ρ)
p∑

µ=1

(mk+1
µ (~σ))2 +

p∑

µ=1

hµξ
µ
i σi





 .

We notice that

Φk+1,1(h) = fk+1, (3.47)

Φk+1,0(h) = fk (3.48)

and that
d

dt
Φk+1,t =

〈
1

2k+1

2(k+1)2(k+1)(1−2ρ)

2

p∑

µ=1

[mk+1
µ (~σ)]2

〉

t

≥ 0. (3.49)

in such a way that fk+1(β, p, ρ) ≥ fk(β, p, ρ). Now we want to prove that fk+1(β, p, ρ) is

bounded: it is enough to see that

fk+1(β, p, ρ) = fk(β, p, ρ) +
∫ 1

0

d

dt
Φk+1,t : (3.50)

Since we have

d

dt
Φk+1,t =

〈
β

2(k+1)2(k+1)(1−2ρ)

2

p∑

µ=1

(mk+1
µ (~σ))2

〉

t

≤ βp2(k+1)2(k+1)(1−2ρ)

2
, (3.51)
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we can write

fk+1(β, p, ρ) ≤ fk(β, p, ρ) + βp
2(k+1)(1−2ρ)

2
. (3.52)

Iterating this procedure over the levels we get

fk+1(β, p, ρ) ≤ f0(β, p, ρ) +
βp

2

k+1∑

l=1

2l(1−2ρ), (3.53)

such that, in the k →∞ limit, we can write

f ≤ f0 +
βp

2

∞∑

l=1

2l(1−2ρ).

Since ρ > 1
2 the series on the r.h.s. of the above inequality converges, thus f(β, p, ρ) is

bounded by

f(β, p, ρ) ≤ f0 +
βp

2
1

2(2ρ−1) − 1

and non increasing for (3.49), then its thermodynamic limit exists.

3.2.2 The mean-field scenario

Plan of this Section is to investigate the serial and parallel retrieval capabilities in the HHM

at the mean-field level. As usual, we obtain our goal by mixing the Amit ansatz technique

(in selecting suitably candidate states for retrieval) with the interpolation technique.

Definition 3.2.4. Let us define the interpolating Hamiltonian Hk+1,t(~σ) as

Hk+1,t(~σ) = Hk( ~σ1)+Hk( ~σ2)− t

2 · 22ρ(k+1)

p∑

µ=1

2k+1∑

i,j=1

ξµi ξ
µ
j σiσj−(1−t)·2(k+1)(1−2ρ)

p∑

µ=1

mµ

2k+1∑

i=1

ξµi σi,

(3.54)

Clearly, we can associate such an Hamiltonian to an extended partition function Zk+1,t(h)

and to an extended free energy Φk+1,t(h) as

Zk+1,t({hµ}) =
∑

~σ

exp



−β


Hk+1,t(~σ) +

p∑

µ=1

hµ

2k+1∑

i=1

ξµi σi





, (3.55)

Φk+1,t({hµ}) =
1

2k+1
Eξ logZk+1,t({hµ}), (3.56)
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where, for the sake of simplicity, we stressed only the dependence by the fields. We can rewrite

(3.54) as

Hk+1,t(~σ) = Hk( ~σ1)+Hk( ~σ2)− 22(k+1)t

2 · 22ρ(k+1)

p∑

µ=1

m2
k+1,µ(~σ)−(1−t)2(k+1)2(1−2ρ)(k+1)

p∑

µ=1

mk+1,µ(~σ)mµ,

(3.57)

It is easy to show that

Φk+1,1({hµ}) = fk+1, (3.58)

Φk+1,0({hµ}) = Φk,1({hµ + 2(k+1)(1−2ρ)mµ}), (3.59)

and that

dΦk+1,t

dt
=

1
2k+1

1
Zk+1,t

∑

~σ

exp(−β(Hk+1,t(~σ) +
p∑

µ=1

hµ

2k+1∑

i=1

ξµi σi))(−β
dHk+1,t(~σ)

dt
)

=
1

2k+1

1
Zk+1,t

∑

~σ

exp(−β(Hk+1,t(~σ) +
p∑

µ=1

hµ

2k+1∑

i=1

ξµi σi))×

×(
β22(k+1)

2 · 22ρ(k+1)

p∑

µ=1

m2
k+1,µ(~σ)− β2(k+1)(1−2ρ)2(k+1)

p∑

µ=1

mµmk+1,µ(~σ))

=
β

2
2(k+1)(1−2ρ)

〈
p∑

µ=1

m2
k+1,µ(~σ)− 2mµmk+1,µ(~σ) +m2

µ

〉

t

− β

2
2(k+1)(1−2ρ)

p∑

µ=1

m2
µ

=
β

2
2(k+1)(1−2ρ)

p∑

µ=1

〈
(mk+1

µ (~σ)−mµ)2
〉
t
− β

2
2(k+1)(1−2ρ)

p∑

µ=1

m2
µ.

Since the term in the brackets above 〈·〉t is nonnegative, we get

Φk+1,1 = Φk+1,0 +
∫ 1

0

dΦk+1,t(x, h)
dt

dt

≥ Φk,1({hµ + 2(k+1)(1−2ρ)mµ})−
β

2
2(k+1)(1−2ρ)

p∑

µ=1

m2
µ

≥ Φ1,0({hµ +
k+1∑

l=2

2l(1−2ρ)mµ})−
β

2

k+1∑

l=2

2l(1−2ρ)
p∑

µ=1

m2
µ

= Φ0,1({hµ +
k+1∑

l=1

2l(1−2ρ)mµ})−
β

2

k+1∑

l=1

2l(1−2ρ)
p∑

µ=1

m2
µ,

where we used (3.59) recursively.
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Now we can estimate the last term, Φ0,1({hµ +
∑k+1

l=1 2l(1−2ρ)mµ}), in the following way

Φ0,1({hµ +
k+1∑

l=1

2l(1−2ρ)mµ}) = Eξ log
∑

S∈{−1,1}

exp(β
p∑

µ=1

(hµ +
k+1∑

l=1

2l(1−2ρ)mµ)ξµS)(3.60)

= log 2 + Eξ log cosh(β
p∑

µ=1

(hµ +
k+1∑

l=1

2l(1−2ρ)mµ)ξµ),(3.61)

where Eξ averages over the quenched patterns as usual.

Summarizing we have

fk+1 ≥ log 2 + Eξ log cosh(β
p∑

µ=1

(hµ +
k+1∑

l=1

2l(1−2ρ)mµ)ξµ)− β

2

k+1∑

l=1

2l(1−2ρ)
p∑

µ=1

m2
µ. (3.62)

which is enough to state the next

Theorem 3.2.5. (Mean Field Bound for Serial Retrieval) Given −1 ≤ mµ ≤ +1, ∀µ = 1, ..., p

the following relation holds

f(β, {hµ}, p) ≥ sup
{mµ}


log 2 + Eξ log cosh(β

p∑

µ=1

(hµ + C2ρ−1mµ)ξµ)− β

2
C2ρ−1

p∑

µ=1

m2
µ


 ,

where the optimal order parameters are the solutions of the system

mµ = Eξξµ tanh(β
p∑

ν=1

(hν + C2ρ−1m
ν)ξν),

that are the self-consistent equations of a standard Hopfield model with rescaled temperature

βC2ρ−1.

Again the critical temperature of the model with no external fields, separating the para-

magnetic phase from the retrieval one, can be obtained expanding for small {mµ}, so to

get

mµ = Eξ[βC2ρ−1ξ
µ

p∑

ν=1

(ξνmν)] +O(mµ2) = βC2ρ−1 +O(mµ2) (3.63)

hence βMF
c = C−1

2ρ−1. As previously outlined for the DHM, it is possible to assume -for the

kth level- two different classes of Mattis magnetizations mµ
left = mµ

1 and mµ
right = mµ

2 such

that mµ = mµ
1 + mµ

2 and then check the stability of this potential parallel retrieval of two

patterns. Following this way we write

Φk,1({hµ + 2(k+1)(1−2ρ)mµ}) =
1
2

Φ1
k,1({hµ + 2(k+1)(1−2ρ)mµ}) +

1
2

Φ2
k,1({hµ + 2(k+1)(1−2ρ)mµ}).
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Using the procedure developed in the previous analysis for both the elements of the sum and

using, starting from the k-th level, mµ
1,2 as order parameters of Φ1,2 we obtain

fk+1 ≥ 1
2

Φ0,1({hµ +
k∑

l=1

2l(1−2ρ)mµ
1 + 2(k+1)(1−2ρ)mµ}) +

1
2

Φ0,1({hµ +
k∑

l=1

2l(1−2ρ)mµ
2

+ 2(k+1)(1−2ρ)mµ})− β

2
2(k+1)(1−2ρ)

p∑

µ=1

m2
µ −

β

2

k∑

l=1

2l(1−2ρ)
p∑

µ=1

(mµ
1 )2 + (mµ

1 )2

2
.(3.64)

Now, evaluating both the terms Φ0,1 and taking the infinite volume limit we can finally state

the next

Theorem 3.2.6. (Mean Field Bound for Parallel Retrieval) Given −1 ≤ mµ ≤ +1, ∀µ =

1, ..., p the following relation holds

f(β, {hµ}, p) ≥ sup
{mµ}

[log 2 + Eξ log cosh(β
p∑

µ=1

(hµ + C2ρ−1m
µ
1 )ξµ)

+ Eξ log cosh(β
p∑

µ=1

(hµ + C2ρ−1m
µ
2 )ξµ)− β

2
C2ρ−1

p∑

µ=1

mµ
1

2 +mµ
2

2

2
],(3.65)

representing the free energy of two effectively independent Hopfield models -one for each sub-

cluster (left and right), whose optimal order parameters fulfill

mµ
1,2 = Eξξµ tanh(β

p∑

ν=1

(hν + C2ρ−1m
ν
1,2)ξν)

and whose critical temperature is again βMF
c = C−1

2ρ−1.

3.2.3 The not-mean-field scenario

Scope of the present Section is to bypass mean-field limitations and show that the outlined

scenario is robust. To this task, mirroring the previous analysis on DHM, here we provide an

improved (with respect to the mean-field counterpart) bound.

The idea underlying this non-mean-field bound is the same that we used in the DHM, exten-

sively explained in [40]. Let us start introducing the following

Definition 3.2.7. Let us take x ≥ 0 -a real scalar parameter related to order parameter

fluctuations-, and t ∈ [0, 1] -which allows the morphism between the tricky two body coupling

and the effective one-body interaction-, and let us introduce also the following interpolating

Hamiltonian

Hk+1,t = −tu(~σ)− (1− t)v(~σ) +Hk( ~σ1) +Hk( ~σ2) (3.66)
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with

u(~σ) =
1

2 · 22ρ(k+1)

p∑

µ=1

2k+1∑

i,j

ξµi ξ
µ
j σiσj +

x

2 · 22ρ(k+1)

p∑

µ=1

2k+1∑

i,j=1

(ξµi σi −mµ)(ξµj σj −mµ),(3.67)

v(~σ) =
(x+ 1)

2 · 22ρ(k+1)
(
p∑

µ=1

2k∑

i,j=1

(ξµi σi −mµ)(ξµj σj −mµ) +
2k+1∑

i,j=2k+1

(ξµi σi −mµ)(ξµj σj −mµ))

+
p∑

µ=1

mµ2(k+1)(1−2ρ)
2k+1∑

i=1

ξµi σi. (3.68)

The partition function and free energy associated to the Hamiltonian (3.66) are, respec-

tively,

Zk+1,t(x, {hµ}) =
∑

~σ

exp(−β(Hk+1,t(~σ) +
p∑

µ=1

2k+1∑

i

hµi ξ
µ
i σi)), (3.69)

Φk+1,t(x, {hµ}) =
1

2k+1
Eξ logZk+1,t(x, {hµ}). (3.70)

As usual we relate Φk+1,0 with Φk,1 as

Φk+1,0(x, {hµ}) = Φk,1(
1 + x

22ρ
, {hµ +mµ2(k+1)(1−2ρ)}). (3.71)

It is possible to show that the derivative of Φk+1,t with respect to t is

dΦk+1,t

dt
(x, t) =

1
2k+1

1
Zk+1,t

∑

~σ

exp(−β(Hk+1,t(~σ) +
p∑

µ=1

hµ

2k+1∑

i

ξµi σi))(βu(~σ)− βv(~σ))

= −β
2

2(k+1)(1−2ρ)
p∑

µ=1

m2
µ

+
β(x+ 1)

2(k+1)(1+2ρ)

p∑

µ=1

∑

1≤i≤2k

∑

2k+1≤j≤2k+1

〈
(ξµi σi −mµ)(ξµj σj −mµ)

〉
t

(3.72)

and consequently

fk+1 = Φk+1,1(0, {hµ}) = Φk,1(
1

22ρ
, {hµ + βmµ2(k+1)(1−2ρ)})− β

2
2(k+1)(1−2ρ)

p∑

µ=1

m2
µ

+ C(k + 1, β, ρ, {mµ}) (3.73)

Iterating the procedure one arrives to:

fk+1 = Φ0,1(
k+1∑

l=1

2−2lρ, {hµ + βmµ

k+1∑

l=1

2l(1−2ρ)})− β

2

k+1∑

l=1

2l(1−2ρ)
p∑

µ=1

m2
µ

+
k+1∑

l=1

C(l, β, ρ, {mµ}). (3.74)
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Now we are going to neglect the fluctuation source, containing
〈

(ξµi σi −mµ)(ξµj σj −mµ)
〉
t
,

and that we indicate with C(k + 1, β, ρ, {mµ}): at difference with before, while in the pure

ferromagnetic case Griffiths inequalities hold [61, 62] and ensure that such a term is positive

defined (thus allowing us to get the bound), in this context -as for neural networks Griffiths

theory have not yet been developed- we are left with an approximation only. Calculating the

value of Φ0,1, using the (3.69), (3.70) and (3.71) we get the following

Theorem 3.2.8. (Non-mean field approximation for Serial retrieval) Given −1 ≤ mµ ≤ +1,

∀µ = 1, ..., p the Serial NMF-approximation for the Hierarchical Hopfield model reads as

fNMF (β, {hµ}, p) = sup
m


log 2 + Eξ log cosh(

p∑

µ=1

(hµ + βmµ(C2ρ−1 − C2ρ))ξµ)− β

2

p∑

µ=1

m2
µ(C2ρ−1 − C2ρ)


 ,

representing an Hopfield model at rescaled temperature, with optimal order parameters fulfilling

mµ = Eξξµ tanh(β
p∑

ν=1

(βhν + (C2ρ−1 − C2ρ)mν)ξν)

and critical temperature βNMF
c (C2ρ−1 − C2ρ) = 1.

Again it is possible to generalize the serial retrieval, assuming two different families of

Mattis magnetizations ({mµ
1,2}pµ=1) for the two blocks of spin under the k-th level. Following

this way and using the NMF interpolating procedure for the two blocks we get

fk+1({hµ}, β, ρ, p) = log 2 +
1
2

Eξ log cosh(
p∑

µ=1

(βhµ + βmµ
1 (

k∑

l=1

2l(1−2ρ) −
k+1∑

l=1

2l(−2ρ)) + βmµ2(k+1)(1−2ρ))ξµ)

+
1
2

Eξ log cosh(
p∑

µ=1

(βhµ + βmµ
2 (

k∑

l=1

2l(1−2ρ) −
k+1∑

l=1

2l(−2ρ)) + βmµ2(k+1)(1−2ρ))ξµ)

− β

2
(
k∑

l=1

2l(1−2ρ) −
k+1∑

l=1

2l(−2ρ))
p∑

µ=1

mµ
1

2 +mµ
2

2

2
− β

2
2(k+1)(1−2ρ)

p∑

µ=1

m2
µ

+ C(k + 1, β, ρ, {mµ}) +
1
2

k∑

l=1

(
C(l, β, ρ, {m1

µ}) + C(l, β, ρ, {m2
µ})
)

that, in the infinite volume limit, where the interactions between the two block vanish, and

partially neglecting again the correlations, brings to the following

Definition 3.2.9. (Non mean field approximation for Parallel retrieval) Given −1 ≤ mµ ≤
+1, ∀µ = 1, ..., p the Parrallel NMF-approximation for the Hierarchical Hopfield model reads
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as

f({hµ}, β, ρ, p) = sup
{mµ1,2}

{
log 2 +

1
2

Eξ log cosh
[ p∑

µ=1

(βhµ + βmµ
1 (C2ρ−1 − C2ρ)

]

+
1
2

Eξ log cosh
[ p∑

µ=1

(βhµ + βmµ
2 (C2ρ−1 − C2ρ)

]

− β

2
(C2ρ−1 − C2ρ)

p∑

µ=1

mµ
1

2 +mµ
2

2

2

}
, (3.75)

i.e., the free energy of two independent Hopfield models for each of the two subgroups of spins,

with disentangled optimal order parameters satisfying

mµ
1,2 = Eξξµ tanh(β

p∑

ν=1

(hν + (C2ρ−1 − C2ρ)mν
1,2ξ

ν),

and critical temperature βNMF
c (C2ρ−1 − C2ρ) = 1.

A last note of interest, regards the capacity of these networks: we have shown how it

is possible to recall simultaneously two patterns by spitting the system into two subgroups,

going down over the levels from the top and we have seen that, since the upper interaction

is vanishing with enough velocity, in the thermodynamic limit the two subgroups of neurons

can be thought of as independent: each one is governed by an Hopfield Hamiltonian and can

choose to recall one of the memorized patterns. Clearly we could use the same argument

iteratively and split the system in more sub-sub-clusters going down over the various levels.

Crucially, what is fundamental is that -at least- the sum of the upper levels of interactions

remains vanishing in the infinite volume limit. If we split the system M times, we have to use

different order parameters, for the magnetizations of the blocks, until the k−M level, where

the system is divided into 2M subgroups. The procedure keeps working as far as

lim
k→∞

k∑

l=k−M
2l(1−2ρ)

p∑

µ=1

mµ
l = 0. (3.76)

Since the magnetizations are bounded, in the worst case we have
k∑

l=k−M
2l(1−2ρ)

p∑

µ=1

mµ
l ≤ p

k∑

l=k−M
2l(1−2ρ)

≤ p
∞∑

l=k−M
2l(1−2ρ) ∝ 2(1−2ρ)(k−M)p : (3.77)

if we want the system to handle up to p patterns, we need p different blocks of spins and then

M = log(p). So for example if p = O(k), 2(1−2ρ)(k−log(p))p→ 0 as k →∞.

91



Part III

Conclusions
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In this thesis, starting from the mean field Hopfield model as the harmonic oscillator of

complex network able to retrieve, one at a time, patterns of information, I have discussed

about the needed for multitasking associative networks able to manage several patterns of

information at the same time and I have investigated the possibility to build them, approaching

the problem from a statistical mechanics perspective.

In Chapter 1 I recalled some interesting results about the standard Hopfield model, in

particular its equivalence with a bipartite mean field spin glass model, the first (dichotomic)

party representing spins and the second (gaussian) party involving patterns. I’ve shown how

such a kind of mapping can be useful for a rigourus investigation of the model, cause it

gives us the possibility to use well known results about the monopartite spin glass systems

like the Sherrington-Kirkpatrick and the Gaussian spin glass model. Moreover, from the

bipartite effective network it is possible to understand the key of the multiple patterns retrieval

mechanism, i.e. the existence of weakly interacting subcommunities of spins/neurons. I’ve

shown how these kind of communities can emerge in two different ways: introducing a suitable

level of dilution in the bipartite interactions (and consequently in the patterns entries), or by

going away from the mean field framework and introducing a different topology in such a way

that a non-uniform distance among spins emerges.

There are several future direction starting from this mapping because from a rigorous

perspective the Hopfield model is still considered a mathematical challenge. First of all the

results obtained in Chapter 1 have to be generalized beyond the replica symmetric approxima-

tion, i.e. if the free energy of the analogical Hopfield model can be written as a convex linear

combination of the SK and the Gaussian model also in the RSB framework. In this case,

since the Gaussian model was proven to be replica symmetric, the complexity of the Hopfield

model would be related only to that of the SK one, and this could be very interesting for

proving the existence of the Hopfield thermodynamic limit. Moreover all those results have

to be carried beyond the analogical (gaussian couplings) limitations.

In Chapter 2 I introduced the Diluted Hopfield model, investigating different regimes of

load (number of stored patterns) and dilution: from the low to the high storage regime, from

the fully connected to the finite connectivity regime. In particular, in the case when the

bipartite network is sparse,i.e. each spin has a finite degree, I’ve shown that in a large part

of the parameter space of noise, dilution and storage load, delimited by a critical surface, the

network behaves as an extensive parallel processor, retrieving all P patterns in parallel without

falling into spurious states due to pattern cross-talk and typical of the structural glassiness
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built into the network. In the final section I used a cavity/ belief propagation method including

also pattern asymmetry and heterogeneous dilution, leading to a significantly broader range

of network structures to which the theory can be applied.

The most interesting future directions regarding the Diluted Hopfield models come from

the applications of such a models to real biological system like the immune system. In particu-

lar one may think to generalize the dilution procedure allowing correlations between different

patterns or introducing a level of interaction among them: this would correspond to consider

bipartite systems with intra-party interactions too [27].

In Chapter 3 I investigated the statistical mechanics of hierarchical neural networks. First,

I approached these systems a la Mattis, by thinking at the Dyson model as a single-pattern

hierarchical neural network and I discussed the stability of equilibrium states different from

the ferromagnetic one. One step forward, I extended this scenario toward multiple stored

patterns by implementing the Hebb prescription for learning within the couplings, resulting

in an Hopfield-like networks constrained on a hierarchical topology. The main finding is that

embedding the Hebbian rule on a hierarchical topology allows the network to accomplish both

serial and parallel processing, depending on the level of fast noise affecting the system and

the decay of the interactions with the distance among neurons.

Hierarchical neural networks are a very recent argument and there are a lot of future

directions to follow. First of all these kind of results have to be linked and compared with the

standard Renormalization-Group approach to the problem of hierarchical topology, indeed,

the existence of stable states different from the ferromagnetic one in the Dyson model can

be related perhaps to the lack of self-average in the magnetization. Finally there are several

issues still not properly investigated, like for example the network’s capacity, i.e. the number

of patterns the system is able to retrieve at the same time, bacause up to now there are only

numerical results or partial hints coming from the interpolating procedure.
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Appendix A

The Gaussian SK model

Following [24], we introduce a system on N sites, whose generic configuration is defined by

spin variables zi ∈ IR, i = 1, 2, ..., N attached on each site. We call the external quenched

disorder a set of N2 independent and identical distributed random variables Jij , defined for

each couple of sites (i, j). We assume each Jij to be a centered unit Gaussian N (0, 1) i.e.

E(Jij) = 0, E(J2
ij) = 1.

We give to the z variables an a priori unit Gaussian distribution, dµ(z) = dµ(z1)...dµ(zN ),

dµ(zi) = (2π)−
1
2 exp(−z2

i /2).

Then, according to the interpolation needs explained in [25], we define the random parti-

tion function

ZN (β, J, λ) =
∫
dµ(z) exp

[
β

1√
2N

N∑

i,j

Jijzizj −
β2

4N
(
N∑

i=1

z2
i )2 +

λ

2

N∑

i=1

z2
i

]
. (A.1)

Here, in the first piece of the Boltzmannfaktor we have the usual long range spin-spin inter-

action of the mean field spin glass model at inverse temperature β, extended to soft spins.

The second piece, arises in a very natural way during the interpolation procedure between

the analogical neural network and a couple of spin glasses, of dichotomic and soft nature,

respectively [25]. This terms acts as an efficient smooth cut-off, preventing any divergence of

the integral on soft spin at∞. Notice that we have normalized the cut-off term so that in the

annealing procedure, characterized by EZN (β, J, λ), where E are averages on the J variables,

the contribution from the first term is exactly cancelled by the second term. But we can

consider more general cases through a simple rescaling of the Gaussian variables. Finally,
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the parameter λ is a Lagrangian multiplier, inserted for the sake of convenience, in order to

modify the scale of the soft spin, as it is sometime useful.

All the thermodynamic properties of the model are codified in the partition function, so

that we can introduce the (quenched average of the) free energy per site fN (β), the Boltzmann

state ωJ and the auxiliary function AN (β) (conventionally called the “pressure”), according

to the definition

−βfN (β) = AN (β) = N−1E logZN (β, J), (A.2)

ωJ(O) = Z−1
N

∫
dµ(z)O(z) exp

[
− βHN (z, J)− β2

4N
(
N∑

i=1

z2
i )2 +

λ

2

N∑

i=1

z2
i

]
, (A.3)

where O is a generic observable function of the z’s. In the notation ωJ , we have stressed the

dependence of the Boltzmann state on the external noise J , but, of course, there is also a

dependence on β and N .

Let us now introduce the important concept of replicas. Consider a generic number s of

independent copies of the system, characterized by the spin variables z(1)
i , . . . z

(s)
i distributed

according to the product state

ΩJ = ω
(1)
J . . . ω

(s)
J , (A.4)

where all ω(α)
J act on each one z(α)

i ’s, and are subject to the same sample J of the external

noise. Finally, for a generic smooth function F (z(1)
i , . . . z

(s)
i ) of the replicated spin variables,

we define the 〈.〉 average as

〈
F (z(1)

i , . . . z
(s)
i )
〉

= EΩJ(F (z(1)
i , . . . z

(s)
i )). (A.5)

We also define the overlap q between replicas:

qzazb =
1
N

N∑

i=1

zai z
b
i ,

so that we can write

ZN (β, λ, J) =
∫
dµ(z) exp

(
β

√
N

2
K(z)− β2

4N
(
N∑

i=1

z2
i )2 +

λ

2

N∑

i=1

z2
i

)
, (A.6)

whereK(z) is a family of centered gaussian random variables with covariances Szz′ = E[K(z)K(z′)] =

q2
zz′ and the regularization term is just 1

2
β2N

2 q2
zz = 1

2
β2N

2 Szz. Notice that the diagonal part of

the variance is not trivial, since q2
zz = 1

N2

(∑N
i=1 z

2
)2.
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A.1 Thermodynamic Limit

The aim of this section is to show how to get a rigorous control of the infinite volume limit of

the free energy fN (or similarly AN ). The main idea, inspired by [66], is to compare AN , AN1

and AN2 , with N = N1 + N2. For this purpose we consider both the original N site system

and two independent subsystems made of by N1 and N2 soft spins respectively, so to define

ZN (t) =
∫
dµ(z) exp


β
√

t

2N

N∑

i,j=1

Jijzizj − t
β2

4N
(
N∑

i=1

z2
i )2




exp


β
√

1− t
2N1

N1∑

i,j=1

J ′ijzizj − (1− t) β
2

4N1
(
N1∑

i=1

z2
i )2




exp


β
√

1− t
2N2

N∑

i,j=N1+1

J ′′ijzizj − (1− t) β
2

4N2
(

N∑

i=N1+1

z2
i )2




exp

(
λ

2

N∑

i=1

z2
i

)
, (A.7)

with 0 ≤ t ≤ 1. The partition function ZN (t) interpolates between the original N-spin model

(obtained for t = 1) and the two subsystems (of sizes N1 and N2, obtained for t = 0) equipped

with independent noises J ′ and J ′′, both independent of J . Notice that the quartic term does

participate in the interpolation.

Now we follow the standard strategy, based on differentiation with respect to the inter-

polating parameter t, and witness an almost miraculous cancellation between terms coming

from the differentiation of the quartic interaction and the diagonal part of the spin glass

contribution. We omit the details, and state the following main result

Theorem A.1.1. The following super-additivity property holds

NAN (β, h) ≥ N1AN1(β, h) +N2AN2(β, h). (A.8)

As it is very well known, the super-additivity property gives an immediate control of the

thermodynamic limit [94], and we can state the next

Theorem A.1.2. The thermodynamic limit for AN (β, h) exists and equals its sup, i.e.

lim
N→∞

AN (β, h) = A(β, h) = sup
N
AN (β, h). (A.9)
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A.2 High Temperature behavior

We start to analyze our model characterizing the high temperature regime, at small β. First

we define the annealed free energy of the model

−βfAN (β, λ) = AAN (β, λ) =
1
N

log EZN (β, λ, J), (A.10)

that can be easily computed as in the following

Proposition A.2.1. For λ < 1 the annealed free energy of the model in the thermodynamic

limit is well defined and coincides with

−βfA(β, λ) = lim
N→∞

AAN (β, λ) = −1
2

log(1− λ). (A.11)

Proof. It is enough to notice that

EJZN =
∫
dµ(z) exp

(
λ

2

N∑

i=1

z2
i

)
= (1− λ)−

N
2 . (A.12)

This follows from the cancellation under annealing of the first term in the Boltzmannfaktor

with the second. In fact, we have

E exp


 β√

2N

N∑

i,j=1

Jijzizj


 = exp


 β2

4N

N∑

i,j=1

z2
i z

2
j


 = exp

(
β2

4N
(
N∑

i=1

z2
i )2

)
.

Thus (A.11) follows from (A.10) and the proposition is proven.

We define the high temperature regime as the region in the (β, λ) plane where the quenched

free energy is equal to the annealed one. We already know that the annealed approximation

is an upper bound for the pressure, in fact a simple application of the Jensen inequality shows

that
1
N

E logZN (β, λ; J) ≤ 1
N

log EZN (β, λ, J) = AAN (β, λ). (A.13)

On the other side we have that

1
N

E logZN (β, λ; J) ≥ 1
N

E logZ ′N (β, λ; J), (A.14)

where Z ′N (β, λ; J) is an auxiliary partition function in which diagonal terms of the spin-spin

interaction are neglected, i.e.

Z ′N (β, λ; J) =
∫
dµ(z) exp


− 1√

2N

N∑

i 6=j
Jijzizj −

β2

4N
(
N∑

i=1

z2
i )2 +

λ

2

N∑

i=1

z2
i




=
∫
dµ(z) exp


− 1√

N

N∑

i<j

Jijzizj −
β2

4N
(
N∑

i=1

z2
i )2 +

λ

2

N∑

i=1

z2
i


 ,
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where we have noted that 1√
2
(Jij + Jji) is a centered gaussian random variable N (0, 1) that

we have simply denoted by Jij . Inequality (A.14) follows still from Jensen inequality on the

Jii noises:

E logZN (β, λ; J) = EJijEJii logZN (β, λ; Jij , Jii)

≥ EJij logZN (β, λ; Jij ,EJii [Jii])

= EJij logZN (β, λ; Jij , 0) = E logZ ′N (β, λ; J).

Note that the auxiliary partition function Z ′N gives the same annealed approximation of ZN ;

in fact we have the following

Proposition A.2.2. For λ < 1,

lim
N→∞

1
N

log EJZ ′N (β, λ; J) = −1
2

log(1− λ) = AA(β, λ). (A.15)

Proof.

EZ ′N =
∫
dµ(z) exp

(
λ

2

N∑

i=1

z2
i −

β2

4N

N∑

i=1

z4
i

)

= (1− λ)−
N
2

(∫
dz√
2π
e
− 1

2
z2− β2

4N(1−λ)2
z4
)N

, (A.16)

where the diagonal quartic term appears because it is not compensated in the annealing.

Now, putting βλ = β
1−λ , we notice that the function in the integral

∫
dz√
2π
e−

1
2
z2− β2

λ
4N

z4 (A.17)

tends to 1 uniformly for 0 ≤ λ < 1, when N grows to infinity, and so the integral. That

completes the proof.

Now, we can control the high temperature region of Z ′N studying the fluctuations of the

random variable Z ′N/EZ ′N , according to the Borel-Cantelli lemma approach [30][98]. The

following lemma holds:

Lemma A.2.3. For βλ = β
1−λ ≤ 1 we have

lim sup
N→∞

E(Z
′2
N )

E2(Z ′N )
≤ 1√

1− β2
λ

. (A.18)
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The proof follows from a direct standard calculation along the line exploited in the case of

the Sherrington-Kirkpatrick model, and will not be reported here in detail for the sake of

conciseness. Lemma A.2.3 is a sufficient condition to state the following

Lemma A.2.4. In the region of the (β, λ) plane defined by βλ < 1, i.e. β < 1− λ,

lim
N→∞

1
N

logZ ′N (β, λ; J) = lim
N→∞

1
N

log EZ ′N (β, λ; J) = AA(β, λ), (A.19)

J-almost surely.

In fact, by following a standard procedure, it is enough to consider that for a sequence

on non-negative random variables uN , normalized to EuN , for which the second momenta

are uniformly bounded Eu2
N ≤ c, we have, by Borel-Cantelli lemma, that almost surely

limN→∞N
−1 log uN = 0. In our case, we have to define uN = Z ′N/E(Z ′N ), and the rest

follows smoothly.

Thanks to inequalities (A.13) and (A.14), we have proven the following main

Theorem A.2.5. In the thermodynamic limit, J-almost surely, the free energy of the Gaussian

spin glass model does coincide with the annealed one

lim
N→∞

1
N

logZN (β, λ; J) = −βf(β, λ) = −1
2

log(1− λ), (A.20)

in the region of the (β, λ) plane defined by β < 1− λ.

Therefore, by avoiding the diagonal terms in the interaction, which clearly do not suffer

to be annealed, we can have a control of the ergodic region, by exploiting the usual method

based on Borel-Cantelli lemma. However, a complete control of the ergodic region can be also

achieved by using the strategy developed in Section 5.

A.3 The replica symmetric form for the free energy

In this section we introduce the replica symmetric expression for the free energy density,

and give a sum rule connecting it with the true free energy together with an error term of

definite sign. For this purpose, we apply the well known interpolation scheme [64][59][23][26]

to compare the original two-body interaction with a one-body interaction system. Concretely,

we define, for t ∈ [0, 1] and a generic parameter q̄ ≥ 0, which will be recognized after the
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optimization as the self-averaged overlap, the interpolating function

ϕN (t) =
1
N

E log
∫
dµ(z) exp

(
β
√
t

√
N

2
K(z)− t β

2

4N
(
N∑

i=1

z2
i )2

)

exp

(
β
√

1− t√q̄
N∑

i=1

J ′izi − (1− t)β
2q̄

2

N∑

i=1

z2
i

)

exp

(
λ

2

N∑

i=1

z2
i

)
. (A.21)

Here the external cavity fields on each site J ′i are i.i.d. unit Gaussian random variables, also

independent from all Jij . We encode in E the averages with respect to both J and J ′. At

t = 1 the interpolating function (A.21) recovers the original system, while at t = 0 it accounts

for a simpler factorized one-body model and we can easily get through a simple calculation

ϕN (0) = log(σ) +
1
2
β2q̄σ2, (A.22)

with σ = (1− λ+ β2q̄)−
1
2 . Therefore ϕN (t) fulfills the following boundary conditions:

ϕN (1) = AN (β, λ),

ϕN (0) = log(σ) +
1
2
β2q̄σ2. (A.23)

Now we proceed according to the usual strategy, by evaluating the derivative with respect to

t, and then integrating in the interval [0, 1]. We use the notation 〈.〉t = EΩt(.), where Ωt(.)

is the replicated Boltzmann state according to the interpolating system appearing in (A.21).

By taking the t derivative, we obtain

d

dt
ϕN (t) =

β2

4
q̄2 − β2

4
〈
(q12 − q̄)2

〉
t
, (A.24)

and by integration:

Theorem A.3.1. For every q̄ ∈ Dβ,λ ≡
{
q̄ ∈ IR+ : 1− λ+ β2q̄ > 0

}
let us define the trial

function

Ã(β, λ, q̄) = log(σ) +
1
2
β2q̄σ2 +

β2

4
q̄2, (A.25)

with σ = (1 − λ + β2q̄)−
1
2 . Then, ∀N and ∀q̄ ∈ Dβ,λ, the quenched free energy of the mean

field gaussian spin glass model defined in (A.1) fulfills the sum rule

AN (β, λ) = −βfN (β, λ) = Ã(β, λ, q̄)− β2

4

∫ 1

0
dt
〈
(q12 − q̄)2

〉
t
. (A.26)

Moreover, ∀q̄ ∈ Dβ,λ, Ã(β, λ, q̄) is an upper bound for AN (β, λ) uniformly in N , i.e.

AN (β, λ) = −βfN (β, λ) ≤ Ã(β, λ, q̄). (A.27)
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Since the bound (A.27) is uniform in N , then it is true also in the thermodynamic limit. The

error term in (A.26) reduces to the overlap’s fluctuations around q̄. We can minimize this

error, or equivalently optimize the estimate in (A.27), by taking the value of q̄ that minimize

Ã(β, λ, q̄). For this purpose we state the following

Proposition A.3.2. The minimum for Ã(β, λ, q̄), as a function of q̄, is reached at q̄ = 0 for

β ≤ 1− λ, while for β > 1− λ the minimum is q̄ = β−(1−λ)
β2 .

Proof. We study Ã(β, λ, q̄) as a function of q̄2. A simple calculation gives

∂

∂q̄2
Ã(β, λ, q̄) =

1
2q̄

∂

∂q̄
Ã(β, λ, q̄) =

β2

4

(
1− β2

(1− λ+ β2q̄)2

)
.

Therefore ∂
∂q̄2

Ã(β, λ, q̄) is increasing, and Ã is a convex function of q̄2. At q̄ = 0 we have that

∂

∂q̄2
Ã(β, λ, q̄2)|q̄=0 =

β2

4

(
1− β2

(1− λ)2

)
=
β2

4
(
1− β2

λ

)
.

Due to the convexity of Ã in q̄2, the minimum is achieved at q̄ = 0 for βλ < 1 and at

q̄ = β−(1−λ)
β2 for βλ > 1, where the derivative has a zero.

By combining the information of Theorem A.3.1 and Proposition A.3.2 we have the proof of

the following important result.

Theorem A.3.3. The replica symmetric expression for the free energy is well defined by the

following variational principle:

ARS(β, λ) = inf
q̄∈Dβ,λ

Ã(β, λ, q̄), (A.28)

where

Ã(β, λ, q̄) = log(σ) +
1
2
β2q̄σ2 +

β2

4
q̄2, (A.29)

with σ(β, λ, q̄) defined in (A.25). The minimum is achieved at q̄ = 0 for β ≤ 1 − λ and at

q̄ = β−(1−λ)
β2 otherwise. Moreover the replica symmetric approximation is an upper bound for

A(β, λ), in fact, uniformly in N ,

AN (β, λ) = −βfN (β, λ) ≤ ARS(β, λ). (A.30)

Notice that at the optimal point q̄ = β−(1−λ)
β2 we have βσ2 = 1.

For βλ < 1 the replica symmetric free energy reduces to the annealed one, that, accordingly

with Theorem A.2.4, coincides with the thermodynamic limit of the true free energy in such a

region. Note that q̄ = β−(1−λ)
β2 is also the optimal value for λ > 1, in fact 1−λ+β2q̄ = β > 0

such that q̄ ∈ Dβ,λ and the RS expression is well defined. In this case we see that q̄ → ∞
when β → 0.

102



A.4 Fully Broken Replica Symmetry

The Gaussian model is unique, in that it allows to explicitly calculate the fully broken replica

symmetry trial functional, which should give an improvement on the replica symmetric bound

for the free energy density. As a matter of fact, as a consequence of an elementary sum rule,

it will be shown that the fully broken replica symmetry variational principle gives the same

result as the replica symmetric functional. Replica symmetry breaking is not realized in the

Gaussian case. We give some details about the procedure, since it can be generalized beyond

the simple model considered here, as for example in the case of the coupling of the Sherrington-

Kirkpatrick interaction with a neural network and a Gaussian spin glass, as shown in [25],

and work in preparation.

First of all we introduce the convex space X of functional order parameters x, as nonde-

creasing functions of the auxiliary variable q in the [0, 1] interval, i.e.

X 3 x : [0, Q] 3 q → x(q) ∈ [0, 1], (A.31)

We have to think x as connected at the end to the distribution function for the overlap. We

will consider the case of piecewise constant functional order parameters, characterized by an

integer K and two sequence of numbers, q0, q1, . . . , qK and m1, . . . ,mK , satisfying

0 = q0 ≤ q1 . . . ≤ qK = Q, 0 ≤ m1 . . . ≤ mK ≤ 1, (A.32)

such that x(q) = mi for q ∈ [qi−1, qi]. It is useful to define also m0 = 0 and mK+1 = 1. The

replica symmetric case correspond to K = 2, q1 = q̄, m1 = 0 and m2 = 1, where overlap

self-averages around q̄; the case K = 3, with two possible value (q1 and q2) for the overlap,

is the first level of replica symmetry breaking, and so on. Now, following the interpolation

scheme in [65], we consider a generic piecewise constant x and we introduce the interpolating

partition function

Z̃N (t;x) =
∫
dµ(z) exp


β
√

t

2N

N∑

i,j=1

Jijzizj − t
β2

4N
(
N∑

i=1

z2
i )2




exp

(
β
√

1− t
K∑

a=1

√
qa − qa−1

N∑

i=1

Jai zi − (1− t)β
2Q

2

N∑

i=1

z2
i

)

exp

(
βh

N∑

i=1

zi +
λ

2

N∑

i=1

z2
i

)
, (A.33)

where t ∈ [0, 1]. Here we have introduced additional independent unit gaussian random

variables Jai , a = 1, . . . ,K, i = 1, . . . , N . Let us call Ea the average with respect to all the
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random variables Jai , i = 1, . . . , N and E0 the average with respect to all the Jij . We denote

with E the average with respect to all the J . Now we define recursively the random variables

ZK = Z̃N ; ZK−1 = (EKZmkK )
1
mk ; . . . ; Z0 = (E1Z

m1
1 )

1
m1 , (A.34)

where each Za depends only on the external noise Jij and on the Jbi for b ≤ a. Finally we

define the auxiliary interpolating function

ϕN (t;x) =
1
N

E0 logZ0(t;x(q)), (A.35)

that is completely averaged out with respect of all the external noises. Notice that, at t = 1,

we recover the original AN (β, λ), while, at t = 0, we have a factorized expression in terms of

a solvable one body interaction problem. Thus, we have the possibility to find a sum rule for

the free energy in the fully broken replica case through

AN (β, λ) = ϕN (0, x) +
∫ 1

0
dt
d

dt
ϕN (t), (A.36)

after calculating the t-derivative of ϕN (t, x). For this purpose we need some additional defi-

nitions. Let us introduce the random variables

fa =
Zmaa

EaZmaa
, a = 1, . . . ,K, (A.37)

and notice that they depend only on the Jbi for b ≤ a and they are normalized, Efa = 1.

Moreover we consider the t-dependent state ω associated to the Boltzmannfaktor defined in

(A.33) and its replicated Ω. A very important rule is played by the following states ω̃a, with

a = 1, . . . ,K, and their replicated Ω̃a, defined as

ω̃K(.) = ω(.); ω̃a = Ea+1 . . .EK(fa+1 . . . fKω(.)). (A.38)

Finally we define the generalized 〈.〉a average as

〈.〉a = E(f1 . . . faΩ̃a(.)). (A.39)

We now proceed exactly as in the Sherrington-Kirkpatrick case [65], and reach the following

Theorem A.4.1. The t-derivative of ϕN (t), defined in (A.35), is given by

d

dt
ϕN (t) =

β2

4

K∑

a=1

(ma+1 −ma)q2
a

− β2

4

K∑

a=1

(ma+1 −ma)
〈
(q12 − qa)2

〉
a
. (A.40)
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Theorem A.4.2. In the thermodynamic limit, for every functional order parameter x of the

type (A.32), the following sum rule holds

A(β, λ) = ϕ(0;x) +
β2

4

K∑

a=1

(ma+1 −ma)q2
a

− β2

4

K∑

a=1

(ma+1 −ma)
∫ 1

0

〈
(q12 − qa)2

〉
a
dt, (A.41)

and, consequently, we have the following bound for the free energy density:

−βf(β, λ) = A(β, λ) ≤ ϕ(0;x) +
β2

4

K∑

a=1

(ma+1 −ma)q2
a. (A.42)

Clearly, Theorem A.4.2 follows from Theorem A.4.1 by taking into account (A.36) and noting

that the error term, containing overlap fluctuations around every qa, has a definite sign.

Now we give the expression for ϕN (0;x), as in the following

Theorem A.4.3. For any choice of the piecewise functional order parameter x, the initial

condition ϕN (0;x) is given by

ϕN (0;x) = log σ(Q) + f(0, 0;x), (A.43)

where f(q, y;x) is the solution of the Parisi equation, i.e. the nonlinear anti-parabolic partial

differential equation

∂qf(q, y) +
1
2
(
f ′′(q, y) + x(q)f ′2(q, y)

)
= 0, (A.44)

with final condition at q = Q

f(Q, y) =
β2

2
σ2(Q)y2, (A.45)

and σ(Q) = (1− λ+ β2Q)−
1
2 , with the obvious restriction on Q to have a positive σ(Q).

Proof. Since the Boltzmannfaktor factorizes at t = 0, we have that

Z̃N (0;x) =
∫
dµ(z) exp

(
(λ− β2Q)

2

N∑

i=1

z2
i

)
exp

(
β

K∑

a=1

√
qa − qa−1

N∑

i=1

Jai zi

)

=
N∏

i=1

σ(Q) exp

(
β2

2
σ2(Q)(

K∑

a=1

√
qa − qa−1J

a
i )2

)

≡
N∏

i=1

σ(Q) exp

(
f(Q,

K∑

a=1

√
qa − qa−1J

a
i )

)
. (A.46)

From the definition (A.35) of the interpolating function ϕN (t;x), we note that, due to the 1/N

factor, we can evaluate the (A.46) on a single site only. The σ(Q) goes to form the log σ(Q)
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term and what remains is just the solution of the Parisi equation, evaluated at y = 0, and

propagated from q = Q to q = 0 through a series of gaussian integration as in [65].

Due to the Gaussian character of all integrations involved in this procedure, we can exactly

solve equation (A.44) with final condition (A.45) to find f(0, 0;x) and so ϕN (0;x). In fact

we give the following

Lemma A.4.4. For any functional order parameter x ∈ X , the solution of equation (A.44)

with final condition (A.45), evaluated at y = 0 and q = 0 is given by

f(0, 0;x) =
1
2
β2σ2(Q)

∫ Q

0

dq

1− β2σ2(Q)
∫ Q
q x(q′)dq′

. (A.47)

Proof. We look for a solution of (A.44) of the form f(q, y) = a(q) + 1
2b(q)y

2. Since f must

fulfill final condition (A.45), it has to be a(Q) = 0 and b(Q) = β2σ2(Q). From

∂qf(q, y) +
1
2
(
f ′′(q, y) + x(q)f ′2(q, y)

)

= a′(q) +
1
2
b(q) +

1
2
y2
(
b′(q) + x(q)b2(q)

)
, (A.48)

we see that f(q, y) is a solution of (A.44) if a(q) and b(q) are solutions of the ordinary

differential equation system

a′(q) +
1
2
b(q) = 0 (A.49)

b′(q) + x(q)b2(q) = 0, (A.50)

with final conditions a(Q) = 0 and b(Q) = β2σ2(Q). Integrating equation (A.50) we obtain

1
b(q)

=
1

β2σ2(Q)
−
∫ Q

q
x(q′)dq′. (A.51)

Putting (A.51) into equation (A.49) and integrating, we have the proof.

Finally, from the continuity of f(q, y;x) with respect to the choice of the functional order

parameter x (see [65], [63]) and noticing that

β2

4

K∑

a=1

(ma+1 −ma)q2
a =

β2

4
Q2 − β2

2

∫ Q

0
qx(q)dq, (A.52)

we can use Theorem A.4.2 for stating our first result
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Theorem A.4.5. The pressure of the mean field gaussian spin glass model is bounded by:

A(β, λ) ≤ inf
x∈X

Â(β, λ;x), (A.53)

with

Â(β, λ;x) = log σ(Q) +
1
2
β2σ2(Q)

∫ Q

0

dq

1− β2σ2(Q)
∫ Q
q x(q′)dq′

+
β2

4
Q2 − β2

2

∫ Q

0
qx(q)dq. (A.54)

Moreover the infimum is attained exactly at the RS functional order parameter x = 0, 0 ≤
q < qRS = q̄, x = 1 elsewhere.

Proof. The bound is a direct consequence of all the results in this section. So we will focus

our attention only on its last part, that is

ARS(β, λ) ≤ inf
x∈X

Â(β, λ;x).

Let us notice that, without any loss of generality, we can assume Q as large as we like, in

particular Q ≥ q̄, where q̄ is the replica symmetric expression, with value q̄ = β−(1−λ)
β2 outside

of the ergodic region.. In fact, let us write Â(β, λ;x) in the following equivalent form

Â(β, λ;x) = log σ(Q) +
1
2
β2

∫ Q

0

dq

1− λ+ β2Q− β2
∫ Q
q x(q′)dq′

+
β2

4
Q2 − β2

2

∫ Q

0
qx(q)dq. (A.55)

If we take Q′ > Q, and define x′(q) = x(q) for 0 ≤ q ≤ Q, and x′(q) = 1 for Q < q ≤ Q′, we

can immediately check the equality

Â(β, λ;x′) = Â(β, λ;x).

It is enough to split the integral
∫ Q′

0 dq in the definition of Â(β, λ;x′) as a sum
∫ Q

0 dq+
∫ Q′
Q dq,

and take into account the definition of x′. Then we have the following sum rule, connect-

ing a generic broken replica trial Â(β, λ;x), with the optimal replica symmetric expression,

corresponding to x̄(q) = 0 for 0 ≤ q ≤ q̄, and x̄(q) = 1 for q̄ < q ≤ Q,

Â(β, λ;x) = Â(β, λ; x̄) +R,

with a nonnegative R. The proof is elementary, and can be easily obtained by splitting the

integral
∫ Q

0 dq in the definition of Â(β, λ;x) as a sum
∫ q̄

0 dq +
∫ Q
q̄ dq, and taking into

account the definition of x̄. This shows that the replica symmetry breaking does not improve

the optimization. Of course the error term R becomes zero when x = x̄.
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The fact that symmetry breaking does not improve the result of the replica symmetric

expression has very far reaching consequences. In fact, we have the following main result

Theorem A.4.6. In the infinite volume limit the pressure of the mean field gaussian spin

glass model is given by its replica symmetric expression

A(β, λ) = ARS(β, λ) ≤ inf
x∈X

Â(β, λ;x), (A.56)

where ARS(β, λ) is defined in Theorem A.3.3.

Proof. We follow a very brilliant strategy developed by Talagrand (see for example Chap.

2.11 in [98]), in order to give the precise boundary of the replica symmetric region in the

Sherrington-Kirkpatrick mean field spin glass model. This strategy is based on the consid-

eration of two coupled replicas with a generic fixed overlap constraint. For the pressure of

the system with the two coupled replicas it is possible to develop broken replica symmetry

bounds, as a generalization of those introduced in [65]. The final result is that the boundary

region where replica symmetry holds is given by the occurence of a lowering of the pressure,

with respect to its replica symmetric value, for a trial order parameter of the type x(q) = 0

for 0 ≤ q ≤ q̄, x(q) = m, for q̄ < q ≤ q̃, x(q) = 1 for q̃ < q ≤ 1, where q̄ is the replica

symmetric overlap, and m, q̃ are suitable parameters, allowing to lower the pressure. In other

words, the absence of a one level replica symmetry breaking assures that we are in the replica

symmetric region. In our case, we can follow Talagrand procedure and conclude the validity

of the replica symmetric expression for the pressure, for any value of the involved parameters,

since we have already shown that there can be no lowering of the pressure by any symmetry

breaking Ansatz. Notice that this proof develops completely inside the general frame given by

the interpolation procedure, and the resultant broken replica symmetry bounds introduced in

[65].

These results are in full agreement with those found by Ben Arous, Dembo and Guionnet

in [31], where they exploit the rotational symmetry of the model and employ a clever method

of large deviations, in a purely probabilistic setting.
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Appendix B

Free energy evaluation in the high

storage regime

In this appendix we calculate the free energy per spin of the system characterised by the

Hamiltonian (2.2), within the replica-symmetric (RS) ansatz, for the scaling regime P = αN .

Let us start by introducing the partition function ZN (β, ξ) and the disorder-averaged free

energy f :

ZN (β, ξ) =
∑

σ
e

1
2
βN−τ

∑N
i,j=1

∑P
µ=1 ξ

µ
i ξ
µ
j σiσj (B.1)

f = − lim
N→∞

1
βN

logZN (β, ξ), (B.2)

where · · · denotes averaging over the randomly generated {ξµi }. If we use the replica identity

logZ = limn→0 n
−1 logZn, and separate the contributions from the K condensed patterns

from those of the αN−K non-condensed ones we get

f = − lim
N→∞

lim
n→0

1
βnN

log
∑

σ1,··· ,σn
e

1
2
βN−τ

∑N
i,j=1

∑P
µ=1

∑n
α=1 ξ

µ
i ξ
µ
j σ

α
i σ

α
j

= − 1
β

log 2− lim
N→∞

lim
n→0

1
βnN

log
〈

e
1
2
βN−τ

∑K
µ=1

∑n
α=1(

∑N
i=1 ξ

µ
i σ

α
i )2

×e
1
2
βN−τ

∑P
µ>K

∑n
α=1(

∑N
i=1 ξ

µ
i σ

α
i )2
〉
σ1,...,σn

. (B.3)
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We compute the non-condensed contributions first, using the standard tool of Gaussian lin-

earisation, and the usual short-hands Dz = (2π)−1/2e−z
2/2dz and Dz =

∏n
α=1 Dzα:

Ξ = e
1
2
βN−τ

∑
µ>K

∑n
α=1(

∑N
i=1 ξ

µ
i σ

α
i )2 =

[
e

1
2
βN−τ

∑n
α=1(

∑N
i=1 ξiσ

α
i )2
]P−K

=
[∫

Dz e
√
βN−τ/2

∑n
α=1 zα

∑N
i=1 ξiσ

α
i

]P−K

=

[∫
Dz

N∏

i=1

(
1−cN−γ+cN−γ cosh(

√
βN−τ/2

n∑

α=1

σαi zα)
)]P−K

=

[∫
Dz

N∏

i=1

[
1+

1
2
βcN−γ−τ

( n∑

α=1

σαi zα
)2 +O(N−2τ−γ)

]]P−K

=
[∫

Dz e
1
2
βcN−γ−τ

∑n
α,β=1 zαzβ

∑N
i=1 σ

α
i σ

β
i +O(N1−2τ−γ)

]P−K
. (B.4)

Now it is evident, as in our earlier calculations, that the correct scaling for large N requires

choosing τ = 1 − γ. For the correction term in the exponent this gives O(N1−2τ−γ) =

O(Nγ−1), which is indeed vanishing since γ < 1. We now arrive at

Ξ = exp
{

(P−K) log
∫

Dz e
1
2
βcN−1

∑n
α,β=1 zαzβ

∑N
i=1 σ

α
i σ

β
i +O(Nγ−1)

}
(B.5)

We next introduce n2 parameters {qαβ} and their conjugates {q̂αβ}, by inserting partitions

of unity:

1 =
∏

αβ

∫
dqαβ δ

(
qαβ −

1
N

N∑

i=1

σαi σ
β
i

)
=
∫ [∏

αβ

dqαβdq̂αβ
2π/N

]
eiN

∑
α,β q̂αβ(qαβ− 1

N

∑
i σ
α
i σ

β
i ). (B.6)

Substituting (B.6) into (B.5) gives the contribution to the partition function of non-condensed

patterns:

Ξ =
∫ [∏

αβ

dqαβdq̂αβ
]
eiN

∑
α,β q̂αβqαβ+(P−K) log

∫
Dz e

1
2βc

∑n
α,β=1 zαqαβzβ+O(Nγ)

×e−i
∑
i

∑
α,β σ

α
i q̂αβσ

β
i . (B.7)

The contribution from condensed pattern, see (B.3), is

e
1
2
βNγ−1

∑
µ≤K

∑n
α=1(

∑N
i=1 ξ

µ
i σ

α
i )2 =

∫
Dm e

√
βN(γ−1)/2

∑
µ≤K

∑n
α=1

∑N
i=1 ξ

µ
i σ

α
i m

µ
α , (B.8)

with m = {mµ
α} ∈ IRnK . If we rescale mµ

α → c
√
βN (1−γ)/2mµ

α this becomes

(
c2βN1−γ

)nK/2∫
dm e−

1
2
βc2N1−γm2+βc

∑
µ≤K

∑n
α=1

∑N
i=1 ξ

µ
i σ

α
i m

µ
α . (B.9)
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Inserting (B.7,B.9) into (B.3) gives the following expression for the free energy per spin:

f = − 1
β

log 2− lim
N→∞

{K/2
βN

log(c2βN1−γ)

+ lim
n→0

1
βnN

log
∫

dm
[∏

αβ

dqαβdq̂αβ
]

×e
N

[
i
∑
α,β q̂αβqαβ+P−K

N
log
∫

Dz e
1
2βc

∑n
α,β=1 zαqαβzβ− 1

2
βc2N−γm2

]

×
N∏

i=1

〈
eβc

∑
µ≤K

∑n
α=1 ξ

µ
i σ

α
i m

µ
α−i

∑
α,β σ

α
i q̂αβσ

β
i .
〉
σ1
i ,...,σ

n
i

}
(B.10)

The number of order parameters being integrated over is of order K, so corrections to the

saddle-point contribution will be of order O(K logN/N). To proceed via steepest descent we

must therefore impose K � N/ logN . Since also the energy term N−γ
∑

µ≤K m2 should be of

order one, as well as the individual components of m, the only natural choice is K = O(Nγ).

Under this scaling condition we then find

f = − 1
β

log 2− lim
K→∞

lim
n→0

1
βn

extrm,q,q̂f̂(m, {q, q̂}) (B.11)

with

f̂(m, {q, q̂}) = i
∑

α,β

q̂αβqαβ + α log
∫

Dz e
1
2
βc
∑n
α,β=1 zαqαβzβ − βc2

2Nγ

n∑

α=1

∑

µ≤K
(mµ

α)2(B.12)

+
〈

log
〈

eβc
∑
µ≤K

∑n
α=1 ξ

µσαmµα−i
∑
α,β σ

αq̂αβσ
β

.
〉
σ1,...,σn

〉
ξ

(B.13)

Now we can use the replica symmetry ansatz, and demand that the relevant saddle-point is

of the form

mµ
α = mµ, qαβ = δαβ + q(1−δαβ), q̂αβ =

iα(βc)2

2
[Rδαβ + r(1−δαβ)], (B.14)

From now on we will denote m = (m1, . . . ,mK) and ξ = (ξ1, . . . , ξK). After some simple

algebra we can take the limit n→ 0, and find that our free energy simplifies to

βfRS = lim
N→∞

extrm,q,r f̂RS(m, q, r) (B.15)

with

f̂RS(m, q, r) = − log 2 +
1
2
αr(βc)2(1−q) +

βc2

2Nγ
m2 − α

2

( βcq

1−βc(1−q) − log[1−βc(1−q)]
)

−
〈∫

Dz log cosh[βc(m · ξ + z
√
αr)]

〉
ξ

(B.16)
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Appendix C

Finite connectivity: Replica approach

C.1 Simple limits

Here we work out the theory in some simple limits, which can be worked out independently,

to test more complicated stages of our general calculation:

• The paramagnetic state at β = 0:

lim
β→0

βf = − lim
N→∞

lim
n→0

1
Nn

log
∑

σ1...σn
1 = − log 2. (C.1)

The conditioned overlap distribution at β = 0 would be

P (M |ψ) =
1

P (ψ)
lim
N→∞

1
αN

αN∑

µ=1

δ(ψ − ψµ)
∫ π

−π

dφ
2π

eiMφ 2−N
∑

σ
e−iφ

∑
i ξ
µ
i σi

= lim
N→∞

∫ π

−π

dφ
2π

eiMφ
(

1 +
c

N
[cos(φ)−1]

)N

=
∫ π

−π

dφ
2π

eiMφ+c[cos(φ)−1] = e−c
∑

k≥0

ck

k!

∫ π

−π

dφ
2π

eiMφ〈eiφσ〉kσ=±1

= e−c
∑

k≥0

ck

k!
〈
δM,

∑
`≤k σk

〉
σ1...σk=±1

. (C.2)

• The case of external fields only:
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This simply corresponds to removing the M2
µ terms, and gives

f = − lim
N→∞

lim
n→0

1
βNn

log
∏

iα

(∑

σ

eβσ
∑αN
µ=1 ψµξ

µ
i

)

= − 1
β

log 2− lim
N→∞

lim
n→0

1
βn

log coshn
(
β
∑

µ≤αN
ψµξµ

)

= − 1
β

log 2− lim
N→∞

lim
n→0

1
βn

log
∫

dhdĥ
2π

eiĥh coshn(βh) e−iĥ
∑
µ≤αN ψµξµ

= − 1
β

log 2− lim
N→∞

lim
n→0

1
βn

log
∫

dhdĥ
2π

eiĥh coshn(βh)
αN∏

µ=1

(
1+

c

N
[cos(ĥψµ)−1]

)

= − 1
β

log 2− lim
n→0

1
βn

log
∫

dhdĥ
2π

eiĥh coshn(βh)eαc
∫

dψ P (ψ)[cos(ĥψ)−1]

= − 1
β

log 2− lim
n→0

1
βn

log
∫

dhdĥ
2π

eiĥh+αc
∫

dψ P (ψ)[cos(ĥψ)−1]
{

1+n log cosh(βh)+O(n2)
}

= − 1
β

log 2− 1
β

∫
dh W (h) log cosh(βh), (C.3)

with the effective field distribution

W (h) =
∫

dĥ
2π

eiĥh+αc
∫

dψ P (ψ)[cos(ĥψ)−1]

= e−αc
∑

k≥0

(αc)k

k!

∫ [∏

`≤k
P (ψ`)dψ`

] ∫ dĥ
2π

eiĥh
∏

`≤k
cos(ĥψ`)

= e−αc
∑

k≥0

(αc)k

k!

∫ [∏

`≤k
P (ψ`)dψ`

]〈 ∫ dĥ
2π

eiĥ(h−
∑
`≤k ψ`σ`)

〉
σ1...σk=±1

=
∑

k≥0

e−αc
(αc)k

k!

〈〈
δ
[
h−

∑

`≤k
ψ`σ`)

]〉
ψ1...ψk

〉
σ1...σk=±1

. (C.4)

C.2 Normalization of F (ω)

In this appendix we derive equation (2.90). It follows from
∫ π

−π
dω cos(ω · σ) =

∫
dmdm̂

2π
eimm̂ cos(m)

∫ π

−π
dω e−im̂ω·σ =

∫
dmdm̂

2π
eimm̂ cos(m)

[2c
m̂

sin(m̂π)
]n

=
∫

dm̂
δ(m̂+1) + δ(m̂−1)

2

[2c
m̂

sin(m̂π)
]n

= 0, (C.5)

where we isolated σ · ω via 1 = (2π)−1
∫

dmdm̂ eimm̂−im̂ω·σ and used
∫ π

−π
dω e−im̂ω·σ =

n∏

α=1

∫ π

−π
dωα e−im̂ωασα =

n∏

α=1

(
2
∫ π

0
dωα cos(m̂ωασα)

)

=
n∏

α=1

(2cσα

m̂
sin(m̂πσα)

)
=
[2c
m̂

sin(m̂π)
]n
. (C.6)
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C.3 Continuous RS phase transitions via route I

Here we derive the equation for the continuous phase transitions in the absence of external

fields, i.e. for P (ψ) = δ(ψ), away from the solution (2.115). At the transition, the the function

D0(ω|β), which we will denote simply as D(ω|β), still satisfies (2.91). Continuous bifurcations

away from (2.115) can be identified via a functional moment expansion. We transform

π(ω)→ cos(ω) + ∆(ω), (C.7)

with fk({π1, . . . , π`}) → f̃k({∆1, . . . ,∆k}), W [{π}] → W̃ [{∆}], and W̃ [{∆}] = 0 as soon as
∫

dω ∆(ω) 6= 0 (because
∫

dω π(ω) = 1), and λ(θ|W ) → λ̃(θ|W̃ ). We expand our equations

in powers of the functional moments %(ω1, . . . , ωr) =
∫
{d∆} W̃ [{∆}]∆(ω1) . . .∆(ωr). One

assumes that close to the transition there exists some small ε such that %(ω1, . . . , ωr) =

O(εr). If the lowest bifurcating is of order ε1, we obtain, upon multiplying (2.105) by ∆ and

subsequently integrating over ∆:

%(ω) =
∫
{d∆}∆(ω)

∫
dθ
2π

λ̃(θ|W̃ )
∏

ω

δ
[
∆(ω) + cos(ω)− cos(ω−θ)

]

=
∫

dθ
2π

λ̃(θ|W̃ )[cos(ω−θ)− cos(ω)] = cos(ω)
∫

dθ
2π

λ̃(θ|W̃ )[cos θ−1], (C.8)

where we used the invariance under θ → −θ of

λ̃(θ|W̃ ) =
∑

m∈ZZ

eimθ+cα
∑
k≥0

cke−c
k!

∫∏k
`=1

[
{d∆`}W̃ [{∆`}]

]
{cos[m arctan f̃k({∆1,...,∆k})]−1}. (C.9)

The solution of (C.8) is clearly %(ω) = φ cos(ω), with

φ =
∫

dθ
2π

λ̃(θ|W̃ )[cos(θ)− 1], (C.10)

which we need to evaluate further by expanding λ̃(θ|W̃ ) for small ε. Conversely, if the lowest

bifurcating order is ε2 one must focus on

%(ω1, ω2) =
∫
{d∆}∆(ω1)∆(ω2)

∫
dθ
2π

λ̃(θ|W̃ )
∏

ω

δ
[
∆(ω)− cos(ω)− cos(ω−θ)

]

= cos(ω1) cos(ω2)
∫

dθ
2π

λ̃(θ|W̃ )[cos(θ)−1]2 + sin(ω1) sin(ω2)
∫

dθ
2π

λ̃(θ|W̃ ) sin2(θ).

(C.11)

We first inspect (C.10). Transforming each π` in (2.114) according to (C.7), we have

k∏

`=1

π`(ω) =
k∏

`=1

[cos(ω)+∆`(ω)] = cosk(ω)
[
1+

k∑

`=1

∆`(ω)
cos(ω)

]
+O(∆2). (C.12)
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Inserting this result into (2.114), and using the properties (2.91), allows us to expand f̃k({∆1, . . . ,∆k}):

f̃k({∆1, . . . ,∆k}) =

∑k
`=1

∫ π
−π dω sin(ω) cosk−1(ω)∆`(ω)D(ω|β)∫ π
−π dω cosk+1(ω)D(ω|β)

+O(∆2). (C.13)

We substitute the above into (C.9) and expand cos(m arctan(x)) = 1− 1
2m

2x2 +O(x4). Upon

introducing

Ik =
∫ k∏

`=1

[
{d∆`}W̃ [{∆`}]

][ k∑

s=1

∫ π

−π
dω sin(ω) cosk−1(ω)∆s(ω)D(ω|β)

]2
, (C.14)

Ak =
∫ π

−π
dω cosk+1(ω)D(ω|β), (C.15)

we see that Ik = O(ε2), so we can now expand λ̃(θ|W̃ ) as

λ̃(θ|W̃ ) =
∑

m∈ZZ

exp
[
imθ − cα

2
m2
∑

k≥0

e−cck

k!
Ik
A2
k

+O(ε4)
]

=
∑

m∈ZZ

eimθ
[
1− cα

2
m2
∑

k≥0

e−cck

k!
Ik
A2
k

+O(ε4)
]

= 2πδ(θ) + παc δ′′(θ)
∑

k≥0

e−cck

k!
Ik
A2
k

+O(ε4). (C.16)

Next we need to work out the factors Ik. Using the functional moment definition %(ω1, . . . , ωr) =
∫
{d∆} W̃ [{∆}]∆(ω1) . . .∆(ωr), one may write

∫ k∏

`=1

[
{d∆`}W̃ [{∆`}]

] k∑

r,s=1

∆r(ω′)∆s(ω′′)

=
∑

r

∫
{d∆r} W̃ [{∆r}]∆r(ω′)∆r(ω′′) +

∑

r 6=s

∫
{d∆r}{d∆s} W̃ [{∆r}]W̃ [{∆s}]∆r(ω′)∆s(ω′′)

= k%(ω′, ω′′) + k(k − 1)%(ω′)%(ω′′). (C.17)

This allows us to work out (C.14) further:

Ik = k

∫ π

−π
dω′dω′′ sin(ω′) cosk−1(ω′)D(ω′|β) sin(ω′′) cosk−1(ω′′)D(ω′′|β)ψ(ω′, ω′′)

+k(k−1)
[ ∫ π

−π
dω′ sin(ω′) cosk−1(ω′)D(ω′|β)ψ(ω′)

]2

= k

∫ π

−π
dω′dω′′D(ω′|β)D(ω′′|β) sin(ω′) cosk−1(ω′)ψ(ω′, ω′′) sin(ω′′) cosk−1(ω′′),(C.18)

where in the last equality we have used the symmetry of D(ω|β) and %(ω) = φ cos(ω). In-

serting this last expression in (C.16) and shifting the summation index k → k + 1 then leads
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to

λ̃(θ|W̃ ) = 2πδ(θ) + παc2δ′′(θ)S({%}) +O(ε4), (C.19)

S({%}) =
∑

k≥0

e−cck

k!

∫ π
−πdω′dω′′D(ω′|β)D(ω′′|β) sin(ω′) cosk(ω′)%(ω′, ω′′) sin(ω′′) cosk(ω′′)

[ ∫ π
−πdωD(ω|β) cosk+2(ω)

]2 .(C.20)

To make further progress we need to calculate %(ω′, ω′′). We can first simplify (C.11) using

(C.10), giving

%(ω1, ω2) = φ′ sin(ω1) sin(ω2)− (2φ+ φ′) cos(ω1) cos(ω2), (C.21)

where we defined

φ′ =
∫ π

−π

dθ
2π

λ̃(θ|W̃ ) sin2(θ). (C.22)

With this we can simplify (C.20) to

S({%}) = φ′
∑

k≥0

e−cck

k!

[ ∫ π
−πdωD(ω|β) sin2(ω) cosk(ω)

]2

[ ∫ π
−πdωD(ω|β) cosk+2(ω)

]2 . (C.23)

Together with (C.19), this allows us to established equations from which to solve the two

amplitudes φ and φ′, by substitution into (C.10) and (C.22). This results in, after intergation

by parts over θ:

φ =
1
2
αc2S({%})

∫ π

−π
dθ [cos(θ)−1]δ′′(θ) +O(ε4) = −1

2
αc2S({%}) +O(ε4)

= −1
2
αc2φ′

∑

k≥0

e−cck

k!

[ ∫ π
−πdωD(ω|β) sin2(ω) cosk(ω)

]2

[ ∫ π
−πdωD(ω|β) cosk+2(ω)

]2 +O(ε4) (C.24)

φ′ =
1
2
αc2S({%})

∫ π

−π
dθ sin2(θ)δ′′(θ) +O(ε4)

= αc2φ′
∑

k≥0

e−cck

k!

[ ∫ π
−πdωD(ω|β) sin2(ω) cosk(ω)

]2

[ ∫ π
−πdωD(ω|β) cosk+2(ω)

]2 +O(ε4). (C.25)

Since φ′ = 0 immediately implies that φ = 0, the only possible continuous bifurcation must

be the first instance where φ′ 6= 0. According to the above equation this O(ε2) bifurcation

happens when

1 = αc2
∑

k≥0

e−cck

k!

[∫ π
−πdω sin2(ω) cosk(ω)D(ω|β)∫ π
−πdω cosk+2(ω)D(ω|β)

]2

, (C.26)
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with D(ω|β) = (2π)−1
∑

m∈ZZ cos(mω)eβm
2/2c. Equation (C.26) defines the transition point,

where the system will leave the state (2.115). The right-hand side of (C.26) obeys limβ→0 RHS =

0. In C.7 we show that limβ→∞RHS = αc2, so a transition at finite temperature Tc = β−1
c > 0

exists to a new state with W [{π}] 6= ∏
ω δ[π(ω) − cos(ω)] as soon as αc2 > 1. The critical

temperature becomes zero when αc2 = 1.

C.4 Saddle point equations in terms of L(σ)

Here we derive equation (2.134), starting from the definition (2.128) and relation (2.129):

L(σ) = αc

〈∫ π
−πdω cos(ω · σ)Q(ω)

∑
M eiω·M+

∑
α χ(Mα,ψ)

∫ π
−πdωQ(ω)

∑
M eiω·M+

∑
α χ(Mα,ψ)

〉

ψ

= αc

〈∫
dω cos(ω · σ)

∑
M′ Q̃(M′)

∑
M eiω·(M−M′)+

∑
α χ(Mα,ψ)

∫
dω

∑
M′ Q̃(M′)

∑
M eiω·(M−M′)+

∑
α χ(Mα,ψ)

〉

ψ

. (C.27)

We can then work out the integrals
∫ π

−π
dω cos(ω · σ)eiω·(M−M′) =

1
2

∫ π

−π
dω (eiω·σ+eiω·σ)eiω·(M−M′)

= π(δM′,M+σ + δM′,M−σ), (C.28)

and substituting into (C.27) gives

L(σ) =
1
2
αc

〈∑
M

[
Q̃(M+σ)eβ

∑
α χ(Mα,ψ) + Q̃(M−σ)eβ

∑
α χ(Mα,ψ)

]

∑
M Q̃(M)e

∑
α χ(Mα,ψ)

〉

ψ

=
1
2
αc

〈∑
M Q̃(M)

[
eβ
∑
α χ(Mα−σα,ψ) + eβ

∑
α χ(Mα+σα,ψ)

]
∑

M Q̃(M)e
∑
α χ(Mα,ψ)

〉

ψ

= cα

〈
e
βn
2c

∑
M Q̃(M)eβ

∑
α χ(Mα,ψ) cosh[β(1

cM · σ + ψ
∑

α σ
α)]

∑
M Q̃(M)eβ

∑
α χ(Mα,ψ)

〉

ψ

. (C.29)

C.5 Simple limits to test the replica theory

Here we inspect several simple limits to test our results for the overlap distribution and the

free energy.

• Infinite temperature:

Using limβ→0 L(σ) = αc and
∑

M Q̃(M) = ec in (2.135) we immediately find the correct
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free energy

lim
β→0

βfRSB = − lim
n→0

1
n

{
log
∑

σ
1
}

= − log 2. (C.30)

Moreover, from (2.133) we can extract

lim
β→0

Q̃(M) =
∫ π

−π

dω
(2π)n

cos(ω ·M) ec 2−n
∑
σ cos(ω·σ)

=
∑

k≥0

ck

k!
2−nk

∑

σ1...σk

∫ π

−π

dω
(2π)n

cos(ω ·M)
∏

`≤k
cos(ω · σ`)

=
∑

k≥0

ck

k!
2−nk

∑

σ1...σk
δM,

∑
`≤kσ` =

∑

k≥0

ck

k!

n∏

α=1

〈δMα,
∑
`≤k σ`

〉σ1...σk=±1.(C.31)

Hence, it now follows from (2.136) that

lim
β→0

P (M |ψ) = lim
n→0

1
n

n∑

γ=1

∑
M∈ZZn

∑
k≥0

ck

k!

∏n
α=1〈δMα,

∑
`≤k σ`

〉σ1...σk=±1 δM,Mγ

∑
M∈ZZn

∑
k≥0

ck

k!

∏n
α=1〈δMα,

∑
`≤k σ`

〉σ1...σk=±1

= e−c
∑

k≥0

ck

k!
〈δM,

∑
`≤k σ`

〉σ1...σk=±1. (C.32)

This coincide with our RS expression, as it should since at high temperature the RS

ansatz is exact.

• External fields only:

In the case of having only external fields we simply remove all terms that come from

the interaction energy in (C.29), obtaining

L(σ) = αc 〈cosh
[
βψ
∑

α

σα
]
〉ψ. (C.33)

Inserting this into (2.133), and introducing the normalised measure

λ(σ) =
eαc 〈cosh[βψ

∑
α σα]〉ψ

∑
σ′ e

αc 〈cosh[βψ
∑
α σ
′
α]〉ψ

, (C.34)
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we get

Q̃(M) =
∫ π

−π

dω
(2π)n

cos(ω ·M) ec
∑
σ λ(σ) cos(ω·σ)

=
∑

k≥0

ck

k!

∫ π

−π

dω
(2π)n

eiω·M
(∑

σ
λ(σ)e−iω·σ

)k

=
∑

k≥0

ck

k!

∫ π

−π

dω
(2π)n

eiω·M
∑

σ1...σk

[ k∏

`=1

λ(σ`)
]
e−iω·

∑
`≤kσ`

=
∑

k≥0

ck

k!

∑

σ1...σk

[ k∏

`=1

λ(σ`)
]
δM,

∑
`≤kσ` . (C.35)

This then gives for the free energy, upon removing the interaction energy:

fRSB = − lim
n→0

1
βn

{
α
〈

log
∑

M∈ZZn

Q̃(M) eβψ
∑
αMα

〉
ψ

+ log
∑

σ
eαc[〈cosh[βψ

∑
α σα]〉ψ−1] − αc

∑

σ
λ(σ)〈cosh[βψ

∑

α

σα]〉ψ
}

= − lim
n→0

1
βn

{
α
〈

log
[∑

k≥0

ck

k!

∑

σ1...σk

[ k∏

`=1

λ(σ`)
] ∑

M∈ZZn

δM,
∑
`≤kσ`e

βψ
∑
αMα

]〉
ψ

+ log
∑

σ
eαc[〈cosh[βψ

∑
α σα]〉ψ−1] − αc

∑

σ
λ(σ)〈cosh[βψ

∑

α

σα]〉ψ
}

= − lim
n→0

1
βn

{
α
〈

log
[∑

k≥0

ck

k!

(∑

σ
λ(σ)eβψ

∑
α σα

)k]〉
ψ

+ log
∑

σ
eαc[〈cosh[βψ

∑
α σα]〉ψ−1] − αc

∑

σ
λ(σ)〈cosh[βψ

∑

α

σα]〉ψ
}

= − lim
n→0

1
βn

{
αc
〈∑

σ
λ(σ)eβψ

∑
α σα

〉
ψ
− αc

+ log
∑

σ
eαc[〈cosh[βψ

∑
α σα]〉ψ−1] − αc

∑

σ
λ(σ)〈cosh[βψ

∑

α

σα]〉ψ
}

= − lim
n→0

1
βn

{
αc
∑

σ
λ(σ)〈cosh[βψ

∑

α

σα]〉ψ − αc

+ log
∑

σ
eαc[〈cosh[βψ

∑
α σα]〉ψ−1] − αc

∑

σ
λ(σ)〈cosh[βψ

∑

α

σα]〉ψ
}

= − lim
n→0

1
βn

{
log
∑

σ
eαc [〈cosh[βψ

∑
α σα]〉ψ−1]

}
, (C.36)

where in the penultimate step we used λ(σ) = λ(−σ). We next use the following replica

identity, which is proved via Taylor expansion of even non-negative analytical functions
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F (x) that have F (0) = 1:

lim
n→0

n−1 log
〈
F (

n∑

α=1

σα)
〉
σ1...σn=±1

=
∑

k>0

F (k)(0)
k!

( dk

dxk
log cosh(x)

)∣∣∣
x=0

. (C.37)

Application to the function F (z) = exp[αc〈cosh[βψz]〉ψ − αc] gives

fRSB = − 1
β

log 2− e−αc

β
lim
x,z→0

∑

k>0

1
k!

( dk

dxk
log cosh(x)

) dk

dzk
eαc〈cosh(βψz)〉ψ

= − 1
β

log 2− e−αc

β

∑

`≥0

(αc)`

`!
lim
x,z→0

∑

k>0

1
k!

( dk

dxk
log cosh(x)

) dk

dzk
〈cosh(βψz)〉`ψ

= − 1
β

log 2− e−αc

β

∑

`≥0

(αc)`

`!
lim
x,z→0

∑

k>0

1
k!

( dk

dxk
log cosh(x)

) dk

dzk
〈〈eβψ

∑
r≤` σrzr〉ψ1...ψ`〉σ1...σ`=±1

= − 1
β

log 2− e−αc

β

∑

`≥0

(αc)`

`!

〈〈∑

k>0

1
k!

(
lim
x→0

dk

dxk
log cosh(x)

)(
β
∑

r≤`
σrψr

)k〉
ψ1...ψ`

〉
σ1...σ`=±1

= − 1
β

log 2− e−αc

β

∑

`≥0

(αc)`

`!

〈〈
log cosh

(
β
∑

r≤`
σrψr

)〉
ψ1...ψ`

〉
σ1...σ`=±1

= − 1
β

log 2− 1
β

∫
dh W (h) log cosh(βh), (C.38)

with

W (h) =
∑

k≥0

e−αc
(αc)k

k!

〈〈
δ
[
h−

∑

`≤k
ψ`σ`)

]〉
ψ1...ψk

〉
σ1...σk=±1

. (C.39)

This recovers correctly the solution of external fields only.

C.6 Derivation of RS equations via route II

The RS ansatz converts the saddle point equation (2.134) into
∫

dh W (h)eβh
∑
α σα = eβn/2c

〈〈∫
{dπ}W [π]

∏

α

(∑

M

π(M)eβ(M2/2c+ψM+τ(ψ+M/c)σα)
)〉

ψ

〉
τ=±1

= eβn/2c
〈〈∫

{dπ}W [π]
(∑

M

π(M)eβ(M2/2c+ψM+τ(ψ+M/c))
) 1

2
n+ 1

2

∑
α σα

×
(∑

M

π(M)eβ(M2/2c+ψM−τ(ψ+M/c))
) 1

2
n− 1

2

∑
α σα

〉
ψ

〉
τ=±1

= eβn/2c
〈〈∫

{dπ}W [π]
(∑

M π(M)eβ(M2/2c+ψM+τ(ψ+M/c))

∑
M π(M)eβ(M2/2c+ψM−τ(ψ+M/c))

)1
2

∑
α σα

〉
ψ

〉
τ=±1

= eβn/2c
∫

dh eβh
∑
α σα

〈〈∫
{dπ}W [π]δ

[
h− 1

2β
log
(∑

M π(M)eβ(M2/2c+ψM+τ(ψ+M/c))

∑
M π(M)eβ(M2/2c+ψM−τ(ψ+M/c))

)]〉
ψ

〉
τ=±1

.

(C.40)
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We conclude after sending n→ 0 that

W (h) =
〈〈∫

{dπ}W [π] δ
[
h− 1

2β
log
(∑

M π(M)eβ(M2/2c+ψM+τ(ψ+M/c))

∑
M π(M)eβ(M2/2c+ψM−τ(ψ+M/c))

)]〉
ψ

〉
τ=±1

.(C.41)

W (h) is indeed symmetric. Next we turn to equation (2.133), where we require quantities of

the form

%(ω) =
∑

σ
cos(ω · σ)eL(σ) =

∑

σ
cos(ω · σ)eαc

∫
dh W (h)eβh

∑
α σα . (C.42)

In fact we will need only the ratio %(ω)/%(0). We note that

%(0) = 2n
∑

k≥0

(αc)k

k!

∫
dh1 . . . dhk

[∏

`≤k
W (hk)

]
coshn

(
β
∑

`≤k
h`

)
= eαc+O(n). (C.43)

We can hence write the RS version of our first saddle-point equation as follows, usingW (h) =

W (−h):

∫
{dπ}W [π]

n∏

α=1

π(Mα) = e−c
∫ π

−π

dω
(2π)n

cos(ω ·M)ece
−αc+O(n)%(ω)

= e−c+O(n)
∑

k≥0

ck

k!

∫ π

−π

dω
(2π)n

cos(ω ·M)
〈

cos(ω · σ)eαc
∫

dh W (h)[eβh
∑
ασα−1]

〉k
σ

= e−c+O(n)
∑

k≥0

ck

k!

〈〈∫ π

−π

dω
(2π)n

eiω·(τM−
∑
`≤k τ`σ`)eαc

∑
`≤k

∫
dh W (h)[eβh

∑
ασ

`
α−1]

〉
σ1...σk

〉
τ,τ1...τk=±1

= e−c+O(n)
∑

k≥0

ck

k!
e−αck

〈
eαc

∑
`≤k

∫
dh W (h)eβh

∑
α σ

`
α
δM,

∑
`≤kσ`

〉
σ1...σk

= e−c+O(n)
∑

k≥0

ck

k!
e−αck

∑

r≥0

(αc)r

r!

〈(∫
dh W (h)

∑

`≤k
eβh

∑
α σ

`
α

)r
δM,

∑
`≤kσ`

〉
σ1...σk

= e−c+O(n)
∑

k≥0

ck

k!
e−αck

∑

r≥0

(αc)r

r!

∫
dh1 . . . dhr

[∏

s≤r
W (hs)

] ∑

`1...`r≤k

∏

α

〈
eβ
∑
s≤r hsσ`s δMα,

∑
`≤k σ`

〉
σ1...σk

= e−c+O(n)
∑

k≥0

ck

k!
e−αck

∑

r≥0

(αc)r

r!

∫
dh1 . . . dhr

[∏

s≤r
W (hs)

] ∑

`1...`r≤k

∏

α





〈
eβ
∑
s≤r hsσ`s δMα,

∑
`≤k σ`

〉
σ1...σk〈

eβ
∑
s≤r hsσ`s

〉
σ1...σk





=
∫
{dπ}

(∏

α

π(Mα)
)

e−c+O(n)
∑

k≥0

ck

k!
e−αck

∑

r≥0

(αc)r

r!

∫
dh1 . . . dhr

[∏

s≤r
W (hs)

] ∑

`1...`r≤k

×
∏

M

δ


π(M)−

〈
eβ
∑
s≤r hsσ`s δM,

∑
`≤k σ`

〉
σ1...σk〈

eβ
∑
s≤r hsσ`s

〉
σ1...σk


 . (C.44)
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We thus conclude that for n → 0 the following equation for W [π] solves our saddle-point

problem:

W [π] = e−c
∑

k≥0

ck

k!
e−αck

∑

r≥0

(αc)r

r!

∫ ∞

−∞
dh1 . . . dhr

[∏

s≤r
W (hs)

] ∑

`1...`r≤k

×
∏

M

δ


π(M)−

〈
eβ
∑
s≤r hsσ`s δM,

∑
`≤k σ`

〉
σ1...σk〈

eβ
∑
s≤r hsσ`s

〉
σ1...σk


 . (C.45)

Everything is properly normalised, and if W (h) = W (−h) the measure W [π] is seen to

permit only real-valued distributions π(M) such that π(M) ∈ [0,∞) and π(−M) = π(M) for

all M ∈ ZZ.

C.7 Continuous RS phase transitions via route II

Here we work with the order parameter equation that is written in terms of W (h) only, i.e.

(2.140), and look for phase transitions in the absence of external fields. For P (ψ) = δ(ψ) we

must solve W (h) from

W (h) = e−c
∑

k≥0

ck

k!
e−αck

∑

r≥0

(αc)r

r!

∫ ∞

−∞
dh1 . . . dhr

[∏

s≤r
W (hs)

] ∑

`1...`r≤k

×
〈
δ


h− 1

2β
log



〈
eβ(
∑
`≤kτ`)

2/2c+β(
∑
`≤kτ`)τ/c+β

∑
s≤r hsτ`s

〉
τ1...τk=±1〈

eβ(
∑
`≤kτ`)

2/2c−β(
∑
`≤kτ`)τ/c+β

∑
s≤r hsτ`s

〉
τ1...τk=±1





〉
τ=±1

.(C.46)

Clearly W (h) = δ(h) solves this equation for any temperature. Due to W (h) = W (−h), we

will always have
∫

dh W (h)h = 0, so the first bifurcation away from W (h) = δ(h) is expected

to be in the second moment. We write h = εy, with 0 < ε � 1, and expand in powers of ε.

Upon setting W (h) = ε−1W̃ (h/ε) we have

W̃ (y) = e−c
∑

k≥0

ck

k!
e−αck

∑

r≥0

(αc)r

r!

∫ ∞

−∞
dy1 . . . dyr

[∏

s≤r
W̃ (ys)

] ∑

`1...`r≤k

×
〈
δ


y − 1

2βε
log



〈
eβ(
∑
`≤kτ`)

2/2c+β(
∑
`≤kτ`)τ/c+βε

∑
s≤r ysτ`s

〉
τ1...τk=±1〈

eβ(
∑
`≤kτ`)

2/2c−β(
∑
`≤kτ`)τ/c+βε

∑
s≤r ysτ`s

〉
τ1...τk=±1





〉
τ=±1

.(C.47)
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Next we expand the logarithm in the last line. To leading orders in ε we obtain

1
2βε

log
(
. . .
)

=
1

2βε
log



〈
eβ(
∑
`≤kτ`)

2/2c+β(
∑
`≤kτ`)τ/c

[
1 + βε

∑
s≤r ysτ`s

]〉
τ1...τk=±1〈

eβ(
∑
`≤kτ`)

2/2c−β(
∑
`≤kτ`)τ/c

[
1 + βε

∑
s≤r ysτ`s

]〉
τ1...τk=±1




=
1

2βε
log




1 + βε
∑

s≤r ys

〈
τ`se

β(
∑
`≤kτ`)

2/2c+β(
∑
`≤kτ`)τ/c

〉
τ1...τk=±1〈

e
β(
∑
`≤kτ`)2/2c+β(

∑
`≤kτ`)τ/c

〉
τ1...τk=±1

1 + βε
∑

s≤r ys

〈
τ`se

β(
∑
`≤kτ`)2/2c−β(

∑
`≤kτ`)τ/c

〉
τ1...τk=±1〈

e
β(
∑
`≤kτ`)2/2c−β(

∑
`≤kτ`)τ/c

〉
τ1...τk=±1




=
1
2

∑

s≤r
ys





〈
τ`se

β(
∑
`≤kτ`)

2/2c+β(
∑
`≤kτ`)τ/c

〉
τ1...τk〈

eβ(
∑
`≤kτ`)

2/2c+β(
∑
`≤kτ`)τ/c

〉
τ1...τk

−
〈
τ`se

β(
∑
`≤kτ`)

2/2c−β(
∑
`≤kτ`)τ/c

〉
τ1...τk〈

eβ(
∑
`≤kτ`)

2/2c−β(
∑
`≤kτ`)τ/c

〉
τ1...τk





= τ
∑

s≤r
ys

{∫
Dz tanh(z

√
β/c+β/c) coshk(z

√
β/c+β/c)∫

Dz coshk(z
√
β/c+β/c)

}
. (C.48)

Hence our order parameter equation (C.47) becomes

W̃ (y) = e−c
∑

k≥0

ck

k!
e−αck

∑

r≥0

(αc)r

r!

∫ ∞

−∞
dy1 . . . dyr

[∏

s≤r
W̃ (ys)

] ∑

`1...`r≤k

×
〈
δ


y − τ

∑

s≤r
ys

{∫
Dz tanh(z

√
β/c+β/c) coshk(z

√
β/c+β/c)∫

Dz coshk(z
√
β/c+β/c)

}

〉
τ=±1

.(C.49)

The first potential type of bifurcation away from W (h) = δ(h) would have
∫

dh W (h)h =

ε
∫

dy W̃ (y)y ≡ εm1 6= 0. However, we see that mutiplying both sides of (C.49) by y, followed

by integration, immediately gives m1 = 0. Thus, as expected, a bifurcation leading to a

function W (h) with
∫

dh W (h)h 6= 0 is impossible.

Any continous bifurcation will consequently have
∫

dh W (h)h = 0 and
∫

dh W (h)h2 =

ε2
∫

dy W̃ (y)y2 ≡ ε2m2 6= 0. Multiplication of equation (C.49) by y2, followed by integration

over y gives

m2 = e−c
∑

k≥0

ck

k!
e−αck

∑

r≥0

(αc)r

r!

∫ ∞

−∞
dy1 . . . dyr

[∏

s≤r
W̃ (ys)

] ∑

`1...`r≤k

×
∑

s≤r
y2
s

〈{∫Dz tanh(z
√
β/c+β/c) coshk(z

√
β/c+β/c)∫

Dz coshk(z
√
β/c+β/c)

}2 〉
τ=±1

. (C.50)

So now we get a bifurcation when

1 = αc2
∑

k≥0

e−c
ck

k!

{∫
Dz tanh(z

√
β/c+β/c) coshk+1(z

√
β/c+β/c)∫

Dz coshk+1(z
√
β/c+β/c)

}2

. (C.51)
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We note that the right-hand side of (C.51) obeys limβ→0 RHS = 0 and limβ→∞RHS = αc2.

Hence a transition at finite temperature Tc(α, c) > 0 exists to a new state with W (h) 6= δ(h)

as soon as αc2 > 1. The critical temperature becomes zero when αc2 = 1, so Tc(α, 1/
√
α) = 0

for all α ≥ 0. For large c, using tanhx = x+O(x3) and coshx = 1 + x2/2, valid for small x,

we have Tc =
√
α.

C.8 Coincidence of the two formulae for the transition line

In order to prove that the two expressions (C.51) and (C.26) for the RS transition line are

identical, as they should be, we show that

{∫ π
−πdω sin2(ω) cosk(ω)D(ω|β)∫ π
−πdω cosk+2(ω)D(ω|β)

}2

=

{∫
Dz tanh(z

√
β/c+β/c) coshk+1(z

√
β/c+β/c)∫

Dz coshk+1(z
√
β/c+β/c)

}2

,(C.52)

where Dz = (2π)−1/2e−z
2/2 dz. We can rewrite the argument of the curly brackets on the

right-hand side, which we will denote as A, as

A =
∫

Dz sinh(z
√
β/c+β/c) coshk(z

√
β/c+β/c)∫

Dz coshk+1(z
√
β/c+β/c)

=

∫
Dz 〈τk+1e

(z
√
β/c+β/c)

∑
`≤k+1 τ`〉τ1...τk+1=±1

∫
Dz 〈e(z

√
β/c+β/c)

∑
`≤k+1 τ`〉τ1...τk+1=±1

=
〈τk+1e(β/2c)(

∑
`≤k+1 τ`)

2+(β/c)
∑
`≤k+1 τ`〉τ1...τk+1=±1

〈e(β/2c)(
∑
`≤k+1 τ`)

2+(β/c)
∑
`≤k+1 τ`〉τ1...τk+1=±1

, (C.53)

where we have carried out the Gaussian integrations. Next we insert 1 =
∑

M∈ZZ δM,
∑
`≤k+1 τ`

,

and write the Kronecker delta in integral form. This gives

A =

∑
M∈ZZ e(β/2c)M2+(β/c)M

∫ π
−πdω eiωM 〈τk+1e−iω

∑
`≤k+1 τ`〉τ1...τk+1=±1

∑
M∈ZZ e(β/2c)M2+(β/c)M

∫ π
−πdω eiωM 〈e−iω

∑
`≤k+1 τ`〉τ1...τk+1=±1

= −i

∑
M∈ZZ e(β/2c)M2+(β/c)M

∫ π
−πdω eiωM cosk(ω) sin(ω)

∑
M∈ZZ e(β/2c)M2+(β/c)M

∫ π
−πdω eiωM cosk+1(ω)

. (C.54)

By completing the square,
∑

M e(β/2c)M2+(β/c)M = e−β/(2c)
∑

M e(β/2c)(M+1)2 , shifting the

summation index M → M − 1, and using the symmetry properties (2.91) of D(ω|β) at zero
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fields, we finally get

A = −i

∑
M∈ZZ e(β/2c)M2 ∫ π

−πdω eiω(M−1) cosk(ω) sin(ω)
∑

M∈ZZ e(β/2c)M2
∫ π
−πdω eiω(M−1) cosk+1(ω)

= −i

∫ π
−πdω D(ω|β) cosk(ω) sin(ω)[cos(ω)−i sin(ω)]∫ π
−πdω D(ω|β) cosk+1(ω)[cos(ω)−i sin(ω)]

= −
∫ π
−πdω D(ω|β) cosk(ω) sin2(ω)∫ π
−πdω D(ω|β) cosk+2(ω)

, (C.55)

which proves (C.52).
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Appendix D

Selection of a state

While we have shown that, in the thermodynamic limit, the (intensive) energies associated to

the two states that we used as example (the ferromagnetic and the mixture states) do coincide,

thus thermodynamically the metastable state is not forbidden (while its weight is negligible

w.r.t. the ferromagnetic scenario, and the system must be trapped opportunely with external

fields in its basin to keep it in the large k limit), we still have to face the following addressable

question: Let us consider the mixture state and approach the critical region from the ergodic

scenario: the two clusters differ in magnetization, one has m1 > 0 and the other m1 < 0 and

there is the just the upper (hence weakest) link connecting them. Maybe that one cluster

acts on the other playing as an external field in mean-field schemes, thus selecting the phase

/reversing the other cluster magnetization sign), which would result in destruction of mixture

states? Aim of this note is to show that this is not the case.

The way we pave to prove this statement is the following: at first we will address this question

within the more familiar mean-field perspective (namely considering the Curie-Weiss model),

then we will enlarge the observation stemmed in that example toward bipartite ferromagnetic

systems and we will show that they continue holding. As a last step to obtain the result, we

will compare the Dyson model (whose spins are locked in a mixture state) with a bipartite

ferromagnet so to enlarge to the present model the stability argument.

Under the critical temperature systems of spins whose dynamics is no longer ergodic have

an equilibrium state (in the thermodynamic limit) that can be a mixture of several pure

states. Each of these states has its own basin of attraction in the sense that the system will

reach one of them, according with its initial configuration. As far as ferromagnetic systems

are concerned, adding a suitable external field, it is possible to select one of this pure states,
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Figure D.1: Analysis of the susceptibility of the system, defined as X = 〈m2〉 − 〈m〉2, versus
the noise level T ≡ β−1, for various sizes (as reported in the legend) and ρ = 0.99. Left

panel: X(T ) for the pure state. Right panel: X(T ) for the mixture state. Note that, while

in the ferromagnetic (pure) case all the cuspids are on the same noise level whatever k, this

is not the case for the mixture state because such a state is metastable as the difference in

the energy ∆E among the two states scales as ∝ 1/N2ρ−1, hence only for k →∞ the mixture

state becomes stable and its cuspid happens at the same noise level of the pure counterpart.

i.e. the dynamics is forced into one of the attractors. Now we can ask when an external field

is able to select a state or not. Consider a Glauber dynamics for a ferromagnetic system of

N spins at zero temperature:

σi(t+ 1) = sgn(hi(S(t)) + hN ). (D.1)

For example we can keep in mind the case of the CW model where hi(S(t), the field acting

on the i-th spin is the magnetization m(S(t)) = 1
N

∑N
i=1 σi(t). In that case each initial

configuration for which |hN | > |hi(S0)| will follow the external field. In general (if for example

|hN | < 1) there will always exist initial configuration (|hN | < |hi(S0)|) that do not feel

the influence of the external field, but, if we choose the initial configuration randomly and

accordingly to PN (S0), we can say that the field hN selects the state if

PN (S0 : |hN | > |hi(S0)|) N→∞→ 1. (D.2)

On the contrary we will say that the field will not select the state if

PN (S0 : |hN | < |hi(S0)|) N→∞→ 1. (D.3)
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In what follow we will consider PN (S0) =
∏N
i=1 p(σ

0
i ), with p(S) uniform in {−1, 1}. For the

CW model we can state the following

Theorem D.0.1. In the CW model, where hi(S) = m(S) = 1
N

∑N
i=1 σi, ∀ε > 0,

hN : |hN | > 1

N
1
2 (1−ε)

selects the state;

hN : |hN | < 1

N
1
2 (1+ε)

does not select the state.

For what concerns the first statement we note that, if |hN | > 1

N
1
2 (1−ε)

PN (S0 : |hN | > |hi(S0)|) = 1− PN
(
S0 : |hi(S0)| > |hN |

)
≥ 1− PN

(
S0 : |m(S0)| > 1

N
1
2

(1−ε)

)

≥ 1−N1−εEN [m2(S0)] = 1−N−ε N→∞→ 1, (D.4)

where we used Chebyshev inequality and the fact that EN [m2(S0)] = 1
N . For the second

statement we note that, since |hN | < 1

N
1
2 (1+ε)

,

PN (S0 : |hN | > |hi(S0)|) ≤ PN

(
S0 : |m(S0)| < 1

N
1
2

(1+ε)

)

= PN

(
S0 : |

√
Nm(S0)| < 1

N
ε
2

)

→ µN (0,1)

(
|z| < 1

N
ε
2

)
N→∞→ 0, (D.5)

where we just used the fact that the variable
√
Nm(S0) = 1√

N

∑N
i=1 S

0
i satysfies the CLT and

tends in distribution to a N (0, 1) gaussian variable.

We can repeat the same analysis in a mean field bipartite ferromagnetic model where the

interaction inside the parties (modulated by J11 and J22) and the ones among the parties

(modulated by J12) have different couplings. In that case we can ask in which case J12 is able

to select the state where the two parties are aligned and not independent. If we consider for

example a spin in the first party we have for the Glauber dynamics

σi(t+ 1) = sgn(hi(S(t)) + hN ) = sgn(J11m1(S(t)) + J12m2(S(t))), (D.6)

i.e. we can repeat the same argument of the CW model identifying the field sent by the

second party (proportional to the magnetization m2(S)) as the external field. Thus, using

the analogous version of the previous theorem, we see that J12 is able to select the state only

if

J12(N)|m2(S0)| > 1

N
1
2

(1−ε)
, (D.7)
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with probability 1. Since for the CLT |m2(S0)| is O(
√
N) with probability one, vanishing J12

will not be able to select the totally magnetized state: in that case the system behaves exactly

as two non interacting CW subsystems. Oversimplifying along this line, namely assuming a

mean-field scenario for the inner blocks, the Dyson model could be considered from this point

of view as a generalization of a bipartite model. In fact if we divide the system into two

subgroups of spins we have that the external field (representing the last level of interaction)

is proportional to J(N)mN (S), while the internal field is a sum of contributions coming from

all the submagnetizations. Since J(N) = N1−2ρ is vanishing in the thermodynamic limit,

the two subgroups behave as they were non interacting: this may puzzle about the phase

transition as the system -when not trapped within the pure state- crossing the critical line (in

the β, ρ plane) moves from an ergodic region -where the global magnetization is zero- toward

a mixture state where again is zero. However, regarding the latter, the two sub-clusters have

not-zero magnetizations and even in this case, crossing the line returns in a canonical phase

transition. To give further proof of this delicate way of breaking ergodicity, we show further

results from extensive Monte Carlo runs that confirm our scenario and are reported in Fig.

D.
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